搜档网
当前位置:搜档网 › 桥梁移动模架施工实用工艺工法

桥梁移动模架施工实用工艺工法

桥梁移动模架施工实用工艺工法
桥梁移动模架施工实用工艺工法

桥梁移动模架施工工艺工法

1 前言

1.1 概况

移动模架逐孔现浇法工艺的作业设备,BllMovable Scaffolding System,所以移动模架工法也简称MSS工法,在我国大陆地区一般称MSS为造桥机。MSS造桥机是一种安装简易、操作高效、重量轻的整孔现浇桥梁施工设备,它适用于各种断面、各种跨度的桥梁和不同的桥型。当桥墩较高、桥跨较长或桥下净空受到限制时,已更为广泛地采用移动模架逐孔现浇施工技术。国外,最早在1969年由德国PZ公司研制在德国阿母辛克(Amsinck)桥正式使用。国内最早于1990年引进该类造桥设备施工了厦门高集海峡公路大桥。我国第一条客运专线秦沈线,由于受架设设备限制,采用的大都是32 m及以下跨度的PC箱梁,使桥梁孔跨布置受到了局限。京沪高速铁路大量采用中等跨度PC箱梁,随着移动模架造桥机的不断改进完善及造桥技术的日臻成熟,该技术必将拥有广阔的发展空间。

移动模架造桥机有两种结构形式,即上行式(图1)和下行式(图2)。

图1 上行式移动模架构造图

图2 下行式移动模架构造图

1.2工艺原理

移动模架造桥机技术现已成为最主要的建桥方法之一。移动模架为架模一体式施工方式,其工艺原理是在设计混凝土箱梁的上方(或下方)设置承重钢主梁来支承模板、梁重和各种施工荷载,钢主梁可在滑道滑行。钢主梁前端支承于墩上.后端支承于已浇混凝土梁端上。当一跨梁段张拉完毕后,脱模卸架,由模架上配套的液压系统和传动装置,牵引钢主梁和模板纵移至下一跨。此方法为大型桥梁施工向机械化、自动化和标准化的方向迈进了成功的一步。实践证明此法适用于跨径20-70m的等跨和等高度连续梁桥施工,平均推进速度约每昼夜3m。

2.工艺工法特点

2.1 工序简单,施工周期短。上、下部构造可平行施工,在下部构造超前完成2~3孔后,上部箱梁施工即可按顺序进行,有利于加快全桥的整体施工进度。机械化程度高,采用全液压设备进行操作,极大程度地降低了劳动强度,缩短施工周期:经过与国内传统的施工方法对比发现,采用MSS技术施工可缩短桥梁上部结构施工工期达50一200%。

2.2 工序重复,易于掌握和管理。由于每段梁的模板、钢筋、预应力体系、混凝土浇注等工序和工艺基本相同,施工2~3个梁段后即可走入正轨。易于掌握和管理。同时移动模架反复周转使用,有效地降低了综合施工成本。

2.3 移动模架工厂化施工,标准化作业,梁体整体性好,利于工程质量和安全控制。采用移动模架施工,每孔箱梁仅在0.2L附近设一道横向工作缝。混凝土箱梁的整体性能好。尤其是对于深处海洋环境中的桥梁,使结构的耐久性更有保证,从结构上对工程质量有利。同时,可在模架制造时事先设置预拱度控制变形,便于控制梁体整体性、结构尺寸和线形,保证施工质量。另外由于施工工艺先进合理,成熟可靠,施工均在模板内进行,基本不受外界因素干扰,因而比其他现场浇注混凝土的施工方法更有安全保障。

2.4 移动模架逐孔施工,具有明显的经济效益,经过多年的工程实践,对于桥墩超过一定的高度而无法设置脚手架施工的高架桥梁工程和地面为软弱土层、脚手架或支架基础处理困难且费用较高,以及在桥梁跨数超过10孔的情况下采用移动模架法进行施工将更加显示出“经济、高效”的特点。

2.5 施工时的受力与运营时的受力一致,不需要增加施工受力钢筋,减少建材消耗。

2.6 移动模架对于高墩桥梁,尤其是城市立交和高架桥(因为移动模架作业面通常在桥墩的顶部,不需要限制桥下净空)的施工。具有显著的安全性:基本

不影响桥下的通车、通航要求;对桥下地面的要求低,也不受桥梁墩高及地面设施的影响,适用于交通繁忙区域高架桥的不中断交通施工。

2.7 施工占地少,对环境的影响和污染少,有利于文明施工。因施工是从桥的一端向另一端逐孔推进,施工完毕的箱梁桥面可用作半成品的加工和堆放场地,对于施工场地狭窄的工程具有独特的优势。

2.8 采用MSS技术施工有利于各种地下管线及桥梁上部结构交叉施工,节省工期,且可设置防雨、防寒、防晒的项棚围护措施,可保证施工期间不受天气的影响,也有利于掌握工期。

2.9 移动模架工法适用于跨径在20m~60 m的简支或者连续梁桥,桥长达到一定规模时(一般大于800m)较其他工法经济。

2.10 上行式移动模架造桥机能适应平曲线R>600 m的多跨连续梁施工,逐孔现浇时梁体整体性能好,几何尺寸易于调整,使梁体结构更合理化。

2.11 移动模架造桥机主梁箱型结构载荷能力强,抗弯刚度大,主梁变形小,结构安全可靠。箱粱混凝土灌注前的预拱度便于控制,以保证良好的线形。

2.12 造桥机主梁经过不断的改进和完善。可成为一机多用的桥梁施工设备,既是现浇或预制梁逐孔施工设备,又能兼做架梁或承重梁的设备,重复利用率高,节省投资,综合效益好。

3.适用范围

高墩现浇箱梁施工、复杂地形现浇梁施工、水上现浇梁施工。

4.主要引用标准

《客运专线铁路工程施工质量验收标准应用指南》;

《客运专线铁路桥涵工程施工技术指南》(TZ213-2005);

《铁路混凝土工程施工技术指南》(TZ210-2005);

《钢结构设计规范》GBGB50017-2003

《铁路架桥机架梁规程》TB10213

《钢结构工程施工质量验收规范》GB50205

5.施工方法

移动模架作为主要承重结构,利用桥墩为支点临时支承梁体自重,在移动模架上完成模板调整、预拱度设置、绑扎钢筋、浇筑混凝土、张拉预应力索筋等,当完成一孔梁的施工,之后移动模架降架脱模,移动至下一跨就位,以此进行逐孔浇筑施工。采用逐孔施工能连续操作,施工设备的周转次数愈多,经济效益越高。

6.工艺流程及操作要点

6.1施工工艺流程

移动模架施工过程中,要利用前后支腿顶升油缸调整模板的纵向标高,使模板处于浇注混凝土时的正确位置,与此同时设置好预拱度。预拱度设置由安装在主梁上的吊杆调节连接器来完成,预拱度值由模架自身挠度和箱梁预拱度两部分组成,工艺流程见下图3。

图3 MZ1000S移动模架施工工艺流程图6.2操作要点

6.2 1 首跨梁施工

6.2.1.1 移动模架拼装

移动模架拼装工艺流程为:场地平整------拼装支架搭设------7节主梁地面拼装(上叠梁暂时不装,主梁分两段拼装,前四节承重钢箱梁和后三节主梁分开安装)------前后支腿安装------前四节承重主梁吊装------吊装后三节主梁与前段主梁空中对接------8号辅助主梁安装------安装上叠梁------吊装导梁与主梁空中对接------挑梁吊臂及电葫芦轨道安装------拼装调整底模架底模板------拼装调整侧模架侧模板及撑杆------拼装调整翼模及撑杆------拼装调整异形侧模与异形翼模------整体吊装模板与吊臂连接-----连接模板、调整模板------安装墩顶散模及其构件------安装电气系统、液压系统------整机调试、空运转。

一、搭设临时支架

为移动模架拼装需要,在57#-58#墩之间及后支腿处搭设临时支架,移动模架支撑架采用钢管支架施工,钢管立柱采用φ600,钢管立柱之间采用[16a槽钢剪刀撑连接。如图4所示。

图4 后支腿支架与主梁支架

二、主梁及前后支腿拼装

1、主梁地面拼装

在57#墩、58#墩身线路右侧施工场地上用枕木搭建主梁拼装临时平台,2.5m见方高度0.6m,在地面逐节拼装主梁,并将接头螺栓上满拧紧。并在墩台旁边搭设临时钢管支撑平台,使临时支撑的上表面和标准桥面齐平,并在平台

上方后支腿相应位置坐好标记及预埋件。主梁拼装如图5所示:

图5 主梁拼装图

2、前后支腿安装

在临时支撑顶安装造桥机后支腿,并与预埋件锁定;在57#墩顶安装造桥机前支腿,并与预埋件锁定,支腿后方安装支腿斜拉机构,前方拉设锁链并可靠锚固,如图6所示。

图6 前支腿后支腿安装示意图

3、主梁吊装与对接,导梁与主梁对接,主梁与辅助钢箱梁对接

用两台250墩吊车将主梁分次吊装到位,接头螺栓上满拧紧,并在相应位置安装辅助支腿及相关配件;其中一台汽车吊将在地面拼装好的辅助钢箱梁及辅助支腿吊装到位;另一台汽车吊将在地面拼装好的9号主梁和10号主梁吊装到位,接头螺栓上满拧紧。如下图7-8所示:

图7空中对接示意图

图8前导梁与主梁、叠梁与主梁安装示意图

三、挑梁、吊臂、吊杆及电动葫芦轨道安装

挑梁、吊臂吊杆及电动葫芦轨道是模架系统构造必不可少的一部分,它们是模架的传力装置及结构调整装置。如图9-10所示。

图9 挑梁及吊臂安装、吊杆的安装

四、拼装调整底模架底模板

底模架及模板安装,底模是箱梁混凝土的直接支承及成型体系,而底模架则是底模的受力桁架,通过桁架传力→吊杆→主梁。如图10所示

图10 底模架及底模板安装

五、拼装调整侧模架侧模板及撑杆

侧模架共14组,每组侧模架由主桁架、连接桁架连接成整体,构成空间桁架结构。如图11所示

图11 侧模架及侧模板安装

六、安装液压系统

MZ1000S型移动模架造桥机液压系统共五套,分别为前支腿液压系统(1套)、后支腿液压系统(1套)、辅助支腿液压系统(1套)和开模液压系统(2套)。

七、拼装调模架系统剩余部分

翼模共8组,左右各4组,每组两块模板之间通过4. 8级精制螺栓对拉连接成整体,构成一组。翼模与侧模之间也过4. 8级精制螺栓对拉连接成整体,与侧模架撑杆连接。整体吊装模板与吊臂连接,调整造桥机的模架系统包括底模架和侧模架,是箱梁混凝土的直接支承体系。工作时,左右两组底模架用8.8级精制螺栓对拉,形成整体。安装墩顶散模及其构件、爬梯及走道安装,完善模架系统。

6.2.1.2移动模架预压载

在初次使用该类移动模架时,应科学严格的进行预压试验,以便将试验数据与计算值进行对比,确定弹性变形是否与计算相符,同时取得非弹性变形数据指导后续梁跨施工预拱度设置。

在底腹板铺设完成后,进行预压试验。验证MZ1000S移动模架造桥机的设计和制造质量,需要在现场做空载试验和堆载试验,以确保设备在以后的使用过程中正常工作和使用安全及通过模拟移动模架在箱梁施工时的加载过程来分析、验证移动模架主梁框架及其附属结构的弹性变形,消除其非弹性变形。预压采用堆码沙袋法分级加载,分别按照计算重量的0%、50%、80%、100%、120%实施,并在各吊杆位置、主梁跨中、1/4跨及梁端设置观测点进行观测,按规范准确获得预压试验数据,通过其规律来指导移动模架施工中模板的预拱度值及其混凝土分层浇注的顺序。预压现场影像如图12所示

图12移动模架预压载

6.2.1.3安装支座及模板调整

安装支座前先对混凝土垫石凿毛,支座吊装就位后,采用重力式灌浆方法,在支座底板与支座垫石表面灌注2~3cm厚专门的支座灌浆料,支座灌浆料必须保证充满锚栓孔及垫石与支座之间的空隙。

模架预拱度的设置主要是考虑钢箱主梁承重后引起的弹性变形。预拱度的设置由模板桁架的竖杆长度变化来实现,吊杆也通过其丝扣的调整来达到与竖杆的统一长度。

预拱度设置及模板调整:当侧模及底模安装就位后,调整各支点模板纵向标高,使钢箱模板处于浇筑混凝土时的正确位置,与此同时设置好预留拱度。预拱的设置分两次完成,第一次指在移动模架制造时考虑主梁预留上拱度,第二次由安装在钢箱上的垫块和侧模连接处框架支承立柱上的调整栓来完成;各支点预拱度值结合设计,由综合计算分析而定,预拱度理论值的计算主要考虑如下因素:钢箱的弹性变形、恒载、混凝土梁产生的弹塑性变形、支点沉降。

6.2.1.4普通钢筋及预应力管道安装

梁体钢筋应整体绑扎,先进行底板及腹板钢筋的绑扎,然后进行顶板钢筋的绑扎,当梁体钢筋与预应力钢筋碰撞时,可适当移动梁体钢筋或进行弯折。梁体钢筋最小保护层除顶板面为30mm外,其余均为35mm,且绑扎铁丝的尾段不应伸人保护层内。本设计桥面排水坡由梁体顶板顶面直接形成,顶面钢筋根据桥面坡度斜置,施工中应注意钢筋位置的准确性,所有梁体预留孔处均增设相应的环状钢筋;桥面泄水孔处钢筋可适当移动,并增设螺旋筋和斜置的井字形钢筋进行加强;施工中为确保腹板,顶板,底板钢筋的准确位置,应根据实际情况加强架立钢筋的设置,可采用增加架立钢筋数量或增设马镫型或矩形的架立钢筋等措施。当使用垫块控制保护层厚度时,垫块应采用与梁体同寿命的材料,且保证梁体的耐久性。

钢筋在使用前,进行调直和除锈,保证钢筋表面洁净、平直,无局部弯折;钢筋的加工制作在加工车间严格按设计图进行,成品编号堆码,以便使用。

将加工好的钢筋运至模板内,按设计图放样绑扎,在交叉点处用扎丝绑牢,必要时采取点焊,以确保钢筋骨架的刚度和稳定性。

钢筋绑扎按设计及施工规范要求进行,在箱梁腹板钢筋绑扎接近完成时,要按设计图要求的位置,绑扎纵向预应力束管道定位筋,然后安装管道。管道要平顺,接头部分要用大一号波纹管套接,用胶带纸裹紧。定位钢筋要编号,并与箱梁模板号相对应,其焊接位置由管道坐标计算而定。

6.2.1.5内模安装及预埋件施工

底板、腹板钢筋及预应力波纹管道安装完毕验收合格后,安装内模。内模采用拆装式组合钢模板结构体系,按使用部位的不同,43m混凝土箱梁所用内模划分为标准节段、吊杆节段1、吊杆节段2、吊杆节段3、过渡节段1、过渡节段2、过渡节段3及加厚节段。40m混凝土箱梁所用内模分为标准节段、吊杆节段1、吊杆节段2、吊杆节段3、过渡节段1、过渡节段2、过渡节段3、加厚节段、标准节段(40m用),其中除标准节段(40m用)为新制部分外,其余均倒用43m箱梁的相关节段。内模设有模板带、可调撑杆和水平撑杆,以承受混凝土荷载及便于内模的调整定位。模板与模板带之间、可调撑杆与模板带之间以及可调撑杆与水平撑杆之间均采用螺栓连接。

顶板钢筋绑扎按设计及施工规范要求进行,同时注意按照设计图纸,预埋防护墙钢筋、遮板与电缆槽钢筋,桥面注意预埋轨道板基座钢筋与桥面连接的套筒。同时注意预埋接触网基础预埋件、预留腹板通风孔、桥面集水槽、梁底排水孔及综合接地系统的埋设。要求预埋件及预留孔洞的位置准确,预埋件的加工制造质量符合设计图纸与规范的要求。

6.2.1.6箱梁混凝土浇筑及养护

混凝土浇筑时间控制在初凝时间内。混凝土在混凝土工厂集中拌制,用混凝土搅拌车运至墩位后,混凝土输送泵泵送至模内,同时采用两台输送泵对称泵送浇筑。

浇筑混凝土时采用跨中向两段斜向分段、水平分层的方法灌注。上层与下层前后浇筑距离不小于1.5m,每层浇筑厚度不超过30cm。在混凝土浇筑过程中,注意使混凝土入模均匀,避免大量集中入模。派有经验的混凝土工负责振捣,振捣采用插入式的振动器,振动棒避免碰撞模板、钢筋、预应力管道和其他预埋件,移动间距不超过其作用半径的1.5倍,与侧模保持5~10cm的间距,插入下层混凝土5~10cm左右,将所有部位均振捣密实,密实的标志是混凝土停止下沉,不再冒气泡、表面呈现平坦、泛浆。

纵向从跨中向梁端对称浇注,到距梁端4m时,再从梁端向跨中方向浇注,并在混凝土初凝前完成梁体混凝土浇注任务,避免因移动模架过程变形拉裂梁体混凝土,同时又保证支座处混凝土的良好性。

混凝土浇注顺序:先灌注底板、后灌注腹板、再灌注顶板及桥面混凝土。底板混凝土厚度严格控制,沿梁长每2m设一厚度控制标记;腹板捣固时若混凝土从内模下冒出底板时,停止振捣,待混凝土浇注完毕后,对内模与底板接触处进行处理和压光。

各部位混凝土浇筑方法如下:

底板混凝土浇筑:输送管道通过内模预留窗口将混凝土送入底板,窗口间距

约4m,根据实际情况调整。下料时,一次数量不宜太多,并且要及时振捣,尤其边角处必须填满混凝土并振捣密实,以防浇筑腹板时冒浆。底板不需分层浇筑。

腹板混凝土浇筑:两侧腹板混凝土要同步进行,其混凝土高差不超过1m,以保持模板支架受力均衡。开始时分层不宜超过20cm,以确保倒角处混凝土振捣密实,一定要保证混凝土从内倒角处翻出,并和底板混凝土衔接好。内翻的混凝土及时向前铲平,最后多余混凝土及时铲除、抹平。腹板每层混凝土浇筑厚度不得超过40cm,每层均要振捣密实,严禁漏振和过振现象,振捣器采用插入式高频振捣器。

顶板混凝土浇筑:当腹板浇筑到箱梁腋点后,要开始浇筑顶板混凝土,其浇筑顺序为先中间,后浇两侧翼缘板,但两侧翼板要同步进行。为控制桥面标高,必须按两侧模板标示高度进行混凝土浇筑,并现场每隔1~2m设置一个标高控制点,保证主梁混凝土面平整,保证梁面纵、横向坡度符合要求。在完成第二次抹面后,立即覆盖养生。

指定专人填写施工记录,包括原材料质量、混凝土坍落度、拌合时间、质量、浇筑和振捣方法、浇筑进度和浇筑过程中出现的问题及处理方法、结果。顶板表面进行二次收浆抹面,并于终凝前拉毛,及时养护,防止裂纹。

混凝土养护按自然养护工艺办理:

①梁体养护用水与拌制梁体混凝土用水相同。

②洒水次数应以混凝土表面湿润状态为度,一般情况白天1~2小时一次,晚上4小时一次。

③保湿养护时间符合表1要求。

表1养护时间表

大气潮湿(50%<RH<75%),无风,无阳光

直射大气干燥(RH<50%),有风,或阳光

直射

日平均气温T(℃)潮湿养护期限(d)日平均气温T(℃)潮湿养护期限

(d)

5≤T<10 10≤T<20 20≤T 14

10

7

5≤T<10

10≤T<20

20≤T

21

14

10

养护期间混凝土强度未达到规定强度之前,不得承受外荷载。当混凝土强度

满足拆模要求,且芯部混凝土与表层混凝土之间的温差、表层混凝土与环境之间的温差均≯15℃时,方可拆模。大风或气温急剧变化时不宜拆模。在炎热或大风干燥季节,应采取逐段拆模、便拆边盖的拆模工艺。

6.2.1.7预应力筋张拉及压浆

一、预应力筋张拉

预应力连续梁采用两端对称张拉,根据设计要求进行张拉。张拉前先进行孔道摩阻试验,实测孔道摩阻系数与偏差系数,与设计摩阻与偏差系数进行对比验证,如果偏差较大,需要请设计院进行张拉控制应力调整之后,方可进行张拉施工。左右最大不平衡束不应超过1束。采用张拉应力与伸长量双向控制,预施应力值以油压表读书为主,伸长值作为校核,张拉过程中应保持两端的伸长量基本一致。设计伸长量与实际伸长量之间误差应在±6﹪以内,在测定伸长量时应扣除因弹性变形引起的伸长值。预应力张拉时,梁体混凝土龄期必须达到7天以上,强度与弹模达到设计值的90%后进行。穿好预应力钢绞线,即可施加预应力(检验混凝土强度应注意试件的取样及养生条件。穿束前应检查锚垫板和孔道,锚垫板位置要正确,孔道要畅通,无水分和杂物。

钢绞线在使用前要对其强度、伸长量、弹性模量、外型尺寸及初始应力进行严格检查,也要对锚具及夹片硬度进行检查。

张拉机具应与锚具配套使用,应在进场时进行检查、校验。千斤顶与压力表应配套校验,以便确定张拉力与压力表读数之间的关系。校验时,千斤顶活塞的运行方向应与实际张拉工作状态一致,当采用试验机校验时,宜以千斤顶试验机的读数为准。压力表应选用防震型,表面最大读数应为张拉力的1.5~2.0倍,精度不低于1.0级,校正期有效期为一周。当使用0.4级时,检定有效期可为一个月。且横向张拉不超过300次、纵向张拉不超过200次,在千斤顶使用过程中出现不正常现象时应重新校验。

张拉时,千斤顶张拉力作用线应与钢绞线的轴线重合。钢绞线在张拉控制应力达到稳定后,方可锚固。

张拉程序:

持荷5min

0 →初应力→σk ……………→σk锚固

张拉到初应力时,划线作测伸长值的标记。两端千斤顶的升降压,划线,测伸长值的测量等工作应同步进行。张拉同一截面的断丝率不得大于5‰,在任何情况下,不允许整根拉断。

二、孔道压浆

为了避免预应力钢绞线被锈蚀,并与混凝土结成整体,当终拉完成后,宜在两天内进行管道压浆,压浆材料应以铁道部鉴定的高性能无收缩防腐灌浆剂。

压浆前须将孔道冲洗洁净,湿润,并使之无积水。压浆应缓慢均匀地进行,比较集中和邻近的孔道,宜尽先压注完成,以免串孔。

孔道压浆采用真空压浆工艺。先用真空泵使孔道内形成一定的气压差,再将水泥浆用压浆机压入孔内,使之填满预应力筋与孔道间的空隙,压入管道水泥浆应饱满密实,让预应力筋与砼牢固粘结为一整体。压浆前管道真空度应稳定在-0.06~0.1Mpa之间;浆体注满管道后,应该0.50~0.60Mpa压力下持压2min。

孔道压浆浆体由水泥、水、专用剂组成,其混合体应达到下列指标:水灰比为0.29~0.35,一般控制在0.33左右;浆体泌水率:水泥浆在拌合3h后,其泌水率应小于2%,且泌水应在24h内被浆体完全吸收;浆体温度:水泥浆搅拌机压浆时浆体温度应小于35℃;稠度为13秒~18秒,45分钟内,浆体的稠度变化不应大于2秒;缓凝时间:其初凝时间应不小3h,终凝时间应大于17h;膨胀率小于5%;密度不小于2.0h/cm3;抗压强度在标准养护条件下,其7天龄期的强度不小于40Mpa,28天龄期的强度应不小于60MPa.水泥浆自调制至灌入孔道的延续时间不得超过40min。水泥浆在使用前和压注过程中应经常搅动。

采用纯水泥浆时,一般每一孔道宜于两端先后各压浆一次,两次的时间间隔以先压注的水泥浆既充分泌水又未初凝为度,一般为30~40min。

对曲线孔道,应由最低点的压浆孔压浆,由最高点的排气孔排出气体和泌水。

压浆后应立即检查压浆的密实情况,如有不实,应及时处理,压浆中途发生故障,不能连续一次压满时,应立即用压力水冲洗干净,故障处理后再压浆。

压浆时,每一工作班应留不少于3组(9块)70.7×70.7×70.7mm立方体试件和40×40×40×160mm棱柱体试件,并增加一组同条件养护试件,作为张拉依据。

三、封锚

对预埋在构件中的锚具,压浆后应先将其周围冲洗干净并凿毛,然后设置钢筋网和浇筑封锚混凝土。

封锚前应对锚槽进行凿毛处理,并利用焊在锚板上的钢筋与封锚钢筋网绑扎在一起,以保证封锚端砼与梁体砼连为一体,封锚后应进行防水处理、锚槽外侧涂刷防水材料。

6.2.2移动模架开模前移

6.2.2.1模架开模及前移准备

箱梁张拉完毕,拆除墩顶散模及墩顶处侧模对拉措施;拆除吊杆、拆除底模及侧模纵横向连接螺栓,拆除模架横向对接螺栓;辅助支腿油缸伸出与桥面顶紧,

后支腿油缸收回脱空并吊挂前移至下孔指定位置,后支腿顺时针旋转2°左右,与待浇注孔箱梁横桥向平行;辅助支腿及前支腿支撑油缸收回脱空,整机下降0.27m;底模架横移开启并临时锁定,准备第一次前移过孔,如图13。

图13底模架张开

6.2.2.2整机第一次纵移

启动移动模架纵移机构,整机纵移13.95m后停止。移动模架后支腿油缸伸出与主梁转换支点牛腿顶紧,解除前支腿与墩顶间锁定;后支腿油缸伸出顶升0.1m,前支腿脱空,准备吊挂前移。如图14所示

图14 第一次纵移与前支腿脱空

6.2.2.3前支腿吊挂前移

前支腿吊挂前移钱,将辅助支腿和桥面竖向预应力筋或桥面预留孔锁定;前支腿脱空后吊挂前移至前墩安装位置附近,且支腿中心与桥墩预埋件中心横桥向对齐;启动前支腿横移油缸,推动前支腿横梁向曲线内侧移动至支腿中心与墩顶预埋件中心纵桥向对齐;前支腿沿顺时针方向旋转约2°,托辊轮箱保持与钢箱梁走道方钢平行;将前支腿立柱与墩顶临时用斜拉杆张紧,并与墩顶预埋件间锁定,指派专人检查无误后,后支腿油缸收回,整机准备第二次前移。如图15所示

图15前支腿吊挂前移

6.2.2.4整机第二次纵移

启动移动模架纵移机构,纵移至前支点牛腿与前支腿顶升油缸基本对正时停止。启动前支腿横移油缸,推动前支腿滑移横梁向曲线内侧横移约1200mm。启动前支腿顶升油缸,整机顶升100mm,吊挂后支腿纵移后支点与支腿油缸正对时停止;启动后支腿横移油缸对整机进行微调,完成后指派专人检查;横移关闭底模架,连接左右模架间连接螺栓。前后支腿油缸顶升0.27m至工作状态并锁定;安装吊杆并调整,模板测量并调整,拆除前支腿立住临时斜拉杆,整机完成过孔前移。如图16所示

图16过孔合模

6.2.3移动模架掉头及43.3m简支梁施工

移动模架拼装完成后,从北江中心岛58#墩开始施工到52#墩这6孔40m 简支梁之后,需要掉头。考虑52#-51#墩之间为1孔30m预制架设梁,50#-56#墩跨位于北江副航道,为掉头吊装作业的方便,所以在掉头之前,先把移动模架退回至中心岛57#-59#墩之间梁面上。

移动模架的掉头步骤:

步骤一:52#-53#40m简支梁施工完成;如图17所示

52#墩53#墩

图17 52#-53#40m简支梁施工图

步骤二:拆除侧模底模托架,移动模架退回至北江中心岛57#-59#墩间梁面上;如图18所示

图18 移动模架退回至57#-59#梁面上

步骤三:1、将9#、10#主梁与2#主梁拼接;

2、在8#主梁上安装后支腿;

3、1#主梁与8#主梁拼接,安装辅助支腿;

4、将前支腿安装在10#主梁上;

5、拆除支撑主梁的钢支撑木,按照正常过孔的工艺;如图19所示

图19 移动模架掉头拼装

步骤六:拼装侧模底模,进行60#-61#梁段施工。如图20所示

7.劳动力组织

7.1劳动力组织方式

移动模架施工劳动力组织采用架子队组织模式。

7.2人员配备

8.主要机具设备

移动模架的安装及简支梁现浇主要机械设备见设备机具配置表。

表3 移动模架拼装设备表

表4 简支箱梁原位现浇设备表

9.质量控制

9.1易出现的质量问题

9.1.1 标高控制

移动模架施工过程中,定位各支点处模板的纵向标高,使模板处于浇注混凝土时的正确位置,确保预拱度的设置准确。

9.1.2 外观

混凝土外露面平整度,色泽等;容易出现出现露筋和孔洞,表面蜂窝麻面面积超过该面面积的0.5%,梁体裂缝,外形轮廓清晰度及外部线型控制。

9.2保证措施

9.2.1 坚持设计文件图纸分级会审和技术交底制度。

9.2.2 工程施工中做到每个施工环节都处于受控状态,每个过程都有《质量记录》,施工全过程有可追溯性。

9.2.3 编写施工作业指导书,下发到相关部门及作业班组,并组织全部施工人员进行工序施工前培训,领会交底书、作业指导书内容及相关规范要求,做到工作有依据可查。

9.2.4确保箱梁施工质量施工措施:

(1)移动模架应有出厂检验证,要组织有关人员对移动模架的电气

控制系统,液压系统,机械系统进行全面检查与验收,

各工序开工之前,组织技术交底,要说明质量控制施工的各项要求,并明确责任人,落到实处;

(2)工程测量要实行双检双复,即施工队在施放立模标高时,自检自复,

地铁车站单侧墙移动模架施工工法

地铁车站单侧墙移动模架施工工法 中铁二局股份有限公司城通公司 1.前言 在深基坑侧墙施工时,侧墙多采用定型竹胶板、木模板+钢管支撑组合体系,使用过程中存在耗费工时长,材料利用率低,表观质量差、渗漏水现象较严重等缺点。 在施工武汉市轨道二号线一期工程第十八标18A 分标段工程【洪山广场站】时,根据施工工艺、基坑深度、支护要求和土质情况,选择了移动模板台车,代替传统的组合式模板,减少了劳动力投入,提高了工作效率。 2.工法特点 2.1成本低廉; 2.2 安全可靠; 2.3 操作方便; 2.4工作效率高; 2.5节能环保; 3.适用范围 适用于地下车库、地下室、地下车站等单侧墙体系工程。 4.工艺原理 4.1工艺原理 1、加固原理:借助预埋的地脚螺栓+台车自重+台车斜向可调节钢锭进行加固; 2、行走原理:在台车底部设置万向轮行走装置,利用人工推动行走; 3、工作原理:模板制安、脚手架搭设一次成型,侧墙墙体分段整体浇筑,侧墙刹尖部分预留契口,后期通过注浆的方式,保证该部位砼密实度。 4.2侧压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: 2 /121022.0V t F c ββγ= H F c γ= 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取25 kN/m3 t0------新浇混凝土的初凝时间(h ),可按实测确定。当缺乏实验资料时,可采用

移动模架法施工

下行式移动模架造桥机施工 1、前言 国内外移动模架(造桥机)使用状况 移动模架造桥机是一种自带模板、利用两根纵梁支撑、对混凝土桥梁进行逐孔向前现场浇筑的施工机械。该技术于20世纪50年代起源于西欧,1959年在阿尔卑斯山修建桥梁时首先创用,周期达到两周一孔;1963年西德斯特拉巴格公司采用穿巷导梁(两次走行型)现浇31m跨简支桥梁;1969年德国PZ公司首先使用桥面下支撑双梁一次走行的现浇方案,用于德国Amsinck立交桥,于1973年定型,该工法亦称PZ法,其最大适用跨度为55m。现在发展到了60米。 桥面上支承实例有瑞士如根托贝桥,此桥用MSU60/90型桥面上支承移动模架法施工,其外模为悬挂式;葡萄牙瓜迪亚纳河高架桥,其桥跨为50m+5×60m+50m,采用桥面上支承柔性悬挂法。 移动模架造桥技术,日本于1968年引进,美国在1977年使用。如美国亚特兰大的马耳他高架桥,其跨度为23.4m~44mPC单箱单室连续梁。 我国交通部门1975年援外时采用。1991年在国内最早被应用于厦门高集海峡大桥。该桥全长2070m,45m等跨距连续PC梁,采用PZ公司研制、瑞士LOSINGER公司生产的移动模架造桥机施工。台湾省在20世纪90年代后大量引进或制造了该类造桥机达40台。 国内第一台拥有自主知识产权、自行研制成功的移动模架造桥机,在1998年成功投入使用于厦门海仓大桥东引桥1000t/42m单箱PC梁的施工;1999年京珠高速公路武汉打靶堤立交桥采用自行研制的1000t/2×30m型移动模架造桥机;2000年至2001年深圳通香港之东深供水改造工程采用自行研制的500t/24mU型渡槽移动模架造桥机;2002年丹拉高速公路磴口黄河桥采用自行研制的简易式1200t/50m型移动模架造桥机。这些实践提供了国内移动模架造桥机可靠的施工技术研究并总结了成熟的施工工法。 ; 根据现场条件和施工组织比选,本桥采用下行式移动模架。下行式移

移动模架逐孔施工工法

移动模架逐孔施工工法 丄、八、亠 1冃I」言 1.0特大桥南引桥设计为5mx 40m的等截面预应力混凝土连续箱梁,采用等高度单箱单室斜腹板 结构,箱梁高2.4m,顶宽16m,底宽7m,梁长有32m 40m 48m三种,48m箱梁自重1590t。采用了下承式移动模架造桥机施工,施工安全可靠。采用ZQM1590移动模架造桥机制梁施工工法施工的32m、40m、48m跨度的梁片,具有箱梁整体性好,线形平顺美观的优点,受到业内人士的一 致认可和好评,并在进一步完善工艺的基础上形成了本工法。 2工法特点 2.0.1 本工法操作方便,安全可靠,机械化程度高,劳动力投入少,缩短工期。 2.0.2 本工法工作场地紧凑,桥位就地制梁,无需制梁、存梁场地和运梁、架梁设备。 2.0.3 本工法荷载通过其自身的系统直接作用在桥墩或承台上,对原地面承载力等要求不高; 模架在高处前移方便迅速,不妨碍桥下交通,对地形要求不高。 3适用范围 适用于48m跨度以下,多孔相连且梁重在1590T以下的公路简支箱梁、连续箱梁的施工。使 用本工法前需对墩台的结构受力进行计算,以保证该型造桥机架设后墩台的安全性。造桥机主要 性能参数表见表3。

4工艺原理 4.0.1 移动模架造桥机是一种自带模板,利用两组钢箱梁支承模板,通过自立行走、模板开合,

对混凝土梁进行逐孔原位现场浇筑的施工设备。 4.0.2 下承式移动模架造桥机自下而上可分为墩旁托架、支承台车、主梁、底模及横联、侧模 及支撑、中扁担梁、防台风装置及液压系统等组成,具体见图 4.0.2-1,图4.0.2-2。 4 3 图4.0.2-1 移动模架造桥机侧面结构图 图4.0.2-2 移动模架造桥机正面结构图 1——主梁;2——横联系统; 3――前导梁;4――后导梁;5――墩旁托架6――支承台车;7――底模;8――侧模平台;9――侧模支撑;10――中扁担梁 11――防风装置;12――托架支撑;13 ――配重;14 ――液压系统 4.0.3 造桥机工作时,整个模架在靠墩旁托架支撑的支承台车作用下,可通过竖移、横移、纵 移分别实现脱模、模架横向分离或合拢、过孔。底模在横移油缸作用下,实现开合并可通过底模螺杆调整高程。

桥梁移动模架施工实用工艺工法

桥梁移动模架施工工艺工法 1 前言 1.1 概况 移动模架逐孔现浇法工艺的作业设备,BllMovable Scaffolding System,所以移动模架工法也简称MSS工法,在我国大陆地区一般称MSS为造桥机。MSS造桥机是一种安装简易、操作高效、重量轻的整孔现浇桥梁施工设备,它适用于各种断面、各种跨度的桥梁和不同的桥型。当桥墩较高、桥跨较长或桥下净空受到限制时,已更为广泛地采用移动模架逐孔现浇施工技术。国外,最早在1969年由德国PZ公司研制在德国阿母辛克(Amsinck)桥正式使用。国内最早于1990年引进该类造桥设备施工了厦门高集海峡公路大桥。我国第一条客运专线秦沈线,由于受架设设备限制,采用的大都是32 m及以下跨度的PC箱梁,使桥梁孔跨布置受到了局限。京沪高速铁路大量采用中等跨度PC箱梁,随着移动模架造桥机的不断改进完善及造桥技术的日臻成熟,该技术必将拥有广阔的发展空间。 移动模架造桥机有两种结构形式,即上行式(图1)和下行式(图2)。 图1 上行式移动模架构造图 图2 下行式移动模架构造图

1.2工艺原理 移动模架造桥机技术现已成为最主要的建桥方法之一。移动模架为架模一体式施工方式,其工艺原理是在设计混凝土箱梁的上方(或下方)设置承重钢主梁来支承模板、梁重和各种施工荷载,钢主梁可在滑道滑行。钢主梁前端支承于墩上.后端支承于已浇混凝土梁端上。当一跨梁段张拉完毕后,脱模卸架,由模架上配套的液压系统和传动装置,牵引钢主梁和模板纵移至下一跨。此方法为大型桥梁施工向机械化、自动化和标准化的方向迈进了成功的一步。实践证明此法适用于跨径20-70m的等跨和等高度连续梁桥施工,平均推进速度约每昼夜3m。 2.工艺工法特点 2.1 工序简单,施工周期短。上、下部构造可平行施工,在下部构造超前完成2~3孔后,上部箱梁施工即可按顺序进行,有利于加快全桥的整体施工进度。机械化程度高,采用全液压设备进行操作,极大程度地降低了劳动强度,缩短施工周期:经过与国内传统的施工方法对比发现,采用MSS技术施工可缩短桥梁上部结构施工工期达50一200%。 2.2 工序重复,易于掌握和管理。由于每段梁的模板、钢筋、预应力体系、混凝土浇注等工序和工艺基本相同,施工2~3个梁段后即可走入正轨。易于掌握和管理。同时移动模架反复周转使用,有效地降低了综合施工成本。 2.3 移动模架工厂化施工,标准化作业,梁体整体性好,利于工程质量和安全控制。采用移动模架施工,每孔箱梁仅在0.2L附近设一道横向工作缝。混凝土箱梁的整体性能好。尤其是对于深处海洋环境中的桥梁,使结构的耐久性更有保证,从结构上对工程质量有利。同时,可在模架制造时事先设置预拱度控制变形,便于控制梁体整体性、结构尺寸和线形,保证施工质量。另外由于施工工艺先进合理,成熟可靠,施工均在模板内进行,基本不受外界因素干扰,因而比其他现场浇注混凝土的施工方法更有安全保障。 2.4 移动模架逐孔施工,具有明显的经济效益,经过多年的工程实践,对于桥墩超过一定的高度而无法设置脚手架施工的高架桥梁工程和地面为软弱土层、脚手架或支架基础处理困难且费用较高,以及在桥梁跨数超过10孔的情况下采用移动模架法进行施工将更加显示出“经济、高效”的特点。 2.5 施工时的受力与运营时的受力一致,不需要增加施工受力钢筋,减少建材消耗。 2.6 移动模架对于高墩桥梁,尤其是城市立交和高架桥(因为移动模架作业面通常在桥墩的顶部,不需要限制桥下净空)的施工。具有显著的安全性:基本

移动模架工法

一、前言 随着桥梁建设的飞速发展,预应力混凝土连续箱梁由于具有整体刚度大、施工质量容易保证、养护成本低等优点,已广泛应用于城市高架桥和大型桥梁的引桥建设中。而混凝土连续箱梁的施工方法,在国内却基本局限于采用满堂支架现浇。相比之下,移动模架法施工具有以下明显的优点:第一是工序简单,施工周期短,同时移动模架逐孔施工,具有明显的经济效益;第二是不需进行基础的处理,适用范围广;第三是移动模架对于高墩桥梁,尤其是城市高架桥,具有显著的安全性,同时可不影响桥下的通车要求。 针对润扬长江大桥北引桥的现场环境和混凝土连续箱梁的结构特点,路桥集团公路二局研制开发了YZ40/1500下行式移动模架造桥机,该造桥机适用于混凝土箱梁的逐孔现浇施工及先简支后连续的预制拼装施工。 二、工法特点 1、本工法使用的移动模架造桥机结构简单,部件尽量选用常用周转材料,加工量相对较小,节省成本。 2、一孔梁段施工完成后移动模架整体行走至下一孔,无需多次拼装模板及预压,施工周期短且所需人员少。 3、调整主梁之间的距离和模板顶托高度即可适应不同几何尺寸梁段的浇注,设备通用性好。 4、结构受力明确,理论计算结果与实际发生情况极为吻合,结构安全可靠,而且有利于箱梁的施工控制,保证良好的线形。 5、本工法跨中无任何支撑,因此跨间地基不需处理,同时在施工时不影响通车通航,具有显著的社会经济效益。 三、适用范围 本工法适用于45米左右跨径预应力混凝土连续箱梁逐孔现浇,也可用于混凝土箱梁节段拼装法施工。特别是墩身超过一定高度搭设支架有困难时,施工现场地基软弱或桥下有通车通航要求时,以本移动模架造桥机施工具有很大的优越性。本工法主要以陆上施工为主,水中施工时应根据现场情况作适当变动。

移动模架施工工艺工法

移动模架施工工艺工法 (QB/ZTYJGYGF-QL-0503-2011) 桥梁工程有限公司赵红来刘涛 1 前言 1.1 工艺工法概况 移动模架系统(move support system)简称MSS,是桥梁施工的先进方法。移动模架系统是一种自带模板,利用承重梁支承模板,对混凝土梁进行逐孔现场浇注的施工机械。国外,最早在1969年由德国PZ公司研制在德国阿母辛克(Amsinck)桥正式使用。国内最早于1990年引进该类造桥设备施工了厦门高集海峡公路大桥。 移动模架承重部分类型常见的多为两组定型的钢箱主梁(图1),也有使用拆装式常备杆件改造后的桁梁(图2);定型钢箱主梁形式的移动模架系统一般为专门设计,对匹配梁型使用,梁跨20~60m范围均有应用;拆装式常备杆件形式的移动模架系统的优势在于平曲线半径较小、梁跨多种组合等定型移动模架无法适应的环境下,钢箱主梁式移动模架与桁架主梁式移动模架原理基本相同,本工法主要内容为桁架主梁式移动模架。 图1 钢箱主梁式移动模架构造图 钢箱主梁式移动模架结构系统主要有:钢箱主梁、桁式鼻梁、横梁、模板系统、平台支架系统、支承移动模架主梁的支承系统、移动模架前移及横梁模板开合调整的液压控制系统。

图2 桁架主梁式移动模架构造图 该类移动模架体系由四部分组成:①固定于桥墩上部用来支承桁梁平台的支承体系;②收折式桁梁平台;③平台转跨推进行走系统;④支架平台上的满堂支架体系。 1.2 工艺原理 1.2.1 整个支撑体系附着于支撑墩柱或支承于桥梁承台上,通过支撑键及预埋键盒,将施工荷载全部转移至墩柱或承台之上,不再设置临时支墩。 1.2.2 每组桁梁通过可收折横联形成整体,作为现浇梁施工的支架平台。 1.2.3 支撑体系上设置横、纵及竖向移动装置,完成横移、纵移及高度调整。 2 工艺工法特点 2.1 无需地基处理,能对高度较大、无法或较难设置落地支架的现浇梁进行施工,减少了对环境的依赖和破坏,适用范围广。 2.2 使用常备杆件,可依具体施工条件进行组合,适应性强。牵引设备移动,操作简单,安全可靠。 2.3 模架前移及横梁、模板收折均可采用同步液压系统,操作简便、连续,工效高。 2.4 采用倒三角及倒梯形加强承重杆系,为桁梁提供足够的抗弯能力及刚度;承重杆系为收折设计,满足平台向前行走的施工需要。 2.5 标准化作业、施工周期快、质量好。 3 适用范围 3.1 高墩现浇箱梁施工。 3.2 复杂地形现浇梁施工。

6、重力式桥台施工工艺工法

重力式桥台施工工艺工法 (QB/ZTYJGYGF-QL-0406-2011) 桥梁工程有限公司沈勇军杨洋 1 前言 1.1 工艺工法概况 桥台位于桥梁两端,支承桥梁上部结构并和路堤相衔接的建筑物。其功能除传递桥梁上部结构的荷载到基础外。还具有抵挡台后的填土压力、稳定桥头路基、使桥头线路和桥上线路可靠而平稳地连接的作用。桥台一般是石砌或素混凝土结构,轻型桥台则采用钢筋混凝土结构。依据桥梁跨径、桥台高度及地形条件的不同,重力式桥台有多种形式,主要分为有T形、U形、埋置式、耳墙式等。 1.2 工艺原理 为了安全有效地将上部结构荷载传递给下部结构,采用现场浇筑或预制安装的方法,根据结构特点在承台顶面或扩大基础顶面施工桥台的台身、背墙、台帽等结构。其工艺原理和桥墩、盖梁施工类似,即在桥台以下结构检验合格的基础上,进行桥台结构测量定位、混凝土界面处理、钢筋绑扎、模板制作安装、混凝土浇筑、拆模、养护等工序作业,按照设计要求完成桥台结构施工。 2 工艺工法特点 重力式桥台也称实体桥台,主要靠自重来平衡背后的土压力,这种桥台具有较好的刚度、强度和较强的适应性,以及构造简单等优点。 3 适用范围 重力式桥台,它主要靠自重来平衡外荷载,以保持自身的稳定性。桥台台身多数由块石、片石混凝土或混凝土等圬工材料建造,并采用就地砌筑或浇筑的施工方法。这种桥台构造简单,但台身较高时工程量较大,一般用于桥梁跨度较小的低矮桥台。 4 主要技术标准 《公路桥涵施工技术规范》(JTG/T F50) 《公路工程质量检验评定标准》(JTG F80/1) 《城市桥梁工程施工与质量验收规范》(J820) 《铁路桥涵施工规范》(TB 10203) 《铁路桥涵工程施工质量验收标准》(TB 10415)

移动模架施工工艺工法模板

移动模架施工工艺 工法

移动模架施工工艺工法 1 前言 1.1 概况 移动模架系统(move support system)简称MSS,是桥梁施工的先进方法。移动模架系统是一种自带模板,利用承重梁支承模板,对混凝土梁进行逐孔现场浇注的施工机械。国外,最早在1969年由德国PZ公司研制在德国阿母辛克(Amsinck)桥正式使用。国内最早于1990年引进该类造桥设备施工了厦门高集海峡公路大桥。 移动模架承重部分类型常见的多为两组定型的钢箱主梁(图1),也有使用拆装式常备杆件改造后的桁梁(图2);定型钢箱主梁形式的移动模架系统一般为专门设计,对匹配梁型使用,梁跨20~40m范围均有应用;拆装式常备杆件形式的移动模架系统的优势在于平曲线半径较小、梁跨多种组合等定型移动模架无法适应的环境下,本工法主要内容为后者。 图1 钢箱主梁式移动模架构造图

图2 桁架主梁式移动模架构造图 该类移动模架体系由四部分组成:①固定于桥墩上部用来支承桁梁平台的支承体系;②收折式桁梁平台;③平台转跨推进行走系统;④支架平台上的满堂支架体系。 1.2 工艺原理 1.2.1 整个支撑体系附着于支撑墩柱上,经过支撑键及预埋键盒,将施工荷载全部转移至墩柱之上,不再设置临时支墩。 1.2.2 每组桁梁经过可收折横联行成整体,作为现浇梁施工的支架平台。 1.2.3 支撑体系上设置横、纵移装置,完成横移及纵移。 2 工艺工法特点 2.1 无需地基处理,能对高度较大、无法或较难设置落地支架的现浇梁进行施工,减少了对环境的依赖和破坏,适用范围广。 2.2 使用常备杆件,可依具体施工条件进行组合,适应性强。牵引设备移动,操作简单,安全可靠。 2.3 采用倒三角及倒梯形加强承重杆系,为桁梁提供足够的抗弯能力及刚度;承重杆系为收折设计,满足平台向前行走。

移动模架施工工法

移动模架施工工法 1.前言: 移动模架法制梁最早于1955年在德国使用,国内从20世纪90年代在公路桥梁施工中开始采用移动模架制梁。移动模架是一种自带模板可在桥位间自行移位,逐孔完成箱梁现浇施工的大型制梁设备,制梁不受桥下地质条件的限制,适应深谷、软基、水中等各种工况的要求,避免大吨位提、运、架设备和预制场的一次性投入;近年来我国铁路客运专线及高速铁路建设中得以迅速发展和广泛应用。 本工法是在参照有关技术标准的前提下,在沈丹铁路客运专线TJ-3标简支现浇箱梁施工过程中,经总结和完善而形成。通过应用本工法,保证了工程施工质量和安全,创造了良好的社会效益和经济效益。 2、工法特点: 2.1受环境影响较小,可在复杂地形条件下施工。 2.2能保证安全质量,施工速度快。 2.3施工方法简单,易于施工人员掌握。 2.4功能完备,机械化程度高。 3.适用范围: 本工法适用于客运专线32m及24m现浇梁施工。 4.工艺原理: 移动模架造桥机主梁在支承油缸及托辊轮箱的作用下,可实现升降及纵移动作;模架及模板在模架开启机构的作用下完成底模架横移开启及闭合的动作;模架通过挑梁、吊臂及吊杆悬挂在主箱梁底面,利用可调撑杆调节模板的预拱度,按设计要求调整梁底的线型高程。 5.施工工艺流程及操作要点: 5.1工艺流程: 移动模架系统在现场拼装成型,进行模板调整、预拱度设置及预压。钢筋在加工场集中加工、专用运输车运输到施工桥位、吊车吊装到

桥上作业面后进行绑扎;预应力孔道塑料波纹管成孔;底、腹板钢筋绑扎完成后,安装内模,最后进行顶板、翼缘板钢筋绑扎;混凝土在拌合站集中拌和、混凝土输送车运输,混凝土泵车泵送入模,插入式振动器进行梁体混凝土振捣,桥面采用悬空式整平机整平;梁体养护采用自然养生;预应力筋张拉采用两端整拉工艺,真空压浆、封端;移动模架落架、脱模,纵向前移至下一浇筑孔位。 图5.1-1 移动模架造桥机施工工艺框图

铁路轨道施工工艺

铁路上的施工工艺,可以将具体的工程名称变动一下就可以使用了。 轨道工程施工工艺 一、正线铺设道床施工工艺 1、施工准备 (1)复核路基断面尺寸、平整度、高程,核实线路中线测设贯通情况,确认合格后钉设线路中桩,桩距为:直接为25米,曲线为20米,缓和曲线为10米,钉设曲线五大控制桩。 (2)按铺架进度计划和铺轨方案,编制铺设道床实施性施工组织设计。 (3)确定底碴供应的砂场,保证施工便道的畅通。落实面层道碴场的产量, 严格控制道碴的质量,包括道碴的级别、材质力学性能、级配、颗粒形状与清洁度标准等,按规范规定进行取样试验,确认合格后方可使用。使用前编制好装车及运输供应计划。 (4)落实施工所需劳力、材料和机具,检查施工机具和设备的完好状态。 2、铺底碴 (1)根据线路中心线桩,按设计底碴宽度放出两侧底碴边线,设置底碴厚度控制桩。 (2)正线线路设计为双层道床,底碴为中粗砂。底碴由汽车直接运到现场铺设,按计划的用量均匀卸车。人工进行摊铺并拉线整形和整平,小型压路机压实。 (3)为配合铺架单位架梁铺轨,在沿线所有的桥头处30米范围内,预铺30cm厚道碴,使道床面高出桥台挡碴墙不小于5cm,并按5‰坡度做好碴面的顺接。 3、配合铺架单位铺设轨排 铺设轨排由铺架单位(第22标段)负责,本标段正线及桥梁连续铺完。铺轨期间我方给予积极配合,跟随轨排铺架进行重点整道,作业内容为:方正枕木,紧固配件和扣件,串实承轨处枕下底碴,消灭反超高和三角坑。保障铺轨后列车速度达到15km/h,加强线路养护,确保工程列车安全。 4、上碴整道 (1)正线上碴整道与铺架施工相配合,轨排铺设一个区段后,立即用K型列车在该区段沿线均匀卸碴,然后进行上碴整道作业。重点整道、第一遍上碴整道、第二遍上碴整道、线路整修四道工序形成流水作业。 (2)上碴整道分两遍进行。第一遍上碴厚度为枕下0.15~0.2米,上碴整道作业后,使工程列车速度达到25km/h。通过5趟工程列车后,即可补满道碴进行第二遍上碴整道作业,使工程列车通过速度达到35km/h。正线分段施工处临时道床面高差,用不大于5‰的坡度顺接。(3)上碴整道顺序:每次上碴整道应先补充枕盒内部分道碴,然后起道、方枕、串碴、拔正轨道方向、捣固道床、回填清理道碴和稳定线路。轨道各部尺寸应在第二遍上碴整道后,经线路整修逐步达到验收规范要求。 (4)上碴整道作业 ①整道前应先设置水平桩用于起道时控制标高,水平桩在直线上每50米设一个,在曲线上每20米设一个。 ②上碴填盒:用K型自卸列车将道碴沿线均匀卸车。列车退出施工地段后,人工进行上碴填盒。 ③起道时按水平桩将一股轨面起至设计标高(第一遍按面碴厚度15cm控制标高),曲线先起内股,再用道尺调整另一股标高,左右均匀进行,校正好左右水平和前后高低,找平小洼。曲线外轨超高必须在缓和曲线全长范围内顺接,岔后附带曲线(无缓和曲线)超高必须在直线上按不大于2‰坡度顺接。不允许出现三角坑及反超高。 ④串碴:整节钢轨抬起后,立即向轨枕下面串碴,串满串实,没有悬空吊板现象,串碴时注意砼枕的中部必须留出一定宽度的凹坑。 ⑤拔道:先将线路中心桩处拨移到位,然后目视指挥拔直拔顺,曲线按中心桩拨道到位圆顺后,

【高速铁路】高速铁路桥梁工程CRTSⅢ型板式无砟轨道施工工法(工法)

高速铁路CRTSⅢ型板式无砟轨道施工工法 1.前言 CRTSⅢ型板式无砟轨道是在总结了我国既有无砟轨道研究与应用经验的基础上,结合无砟轨道技术再创新研发的具有完全知识产权的板式无砟轨道技术体系,该轨道技术改变了板式轨道的限位方式,扩展了板下填充材料,优化了轨道板结构,改善了轨道板弹性及完善了设计理论体系等,以于2009年在成都至都江堰(成灌)城际客运专线开展成套技术工程实验与设计创新,并取得了成功,于2010年12月正式定型为CRTSⅢ型轨道板,正式立项研究。 而武汉城市圈城际铁路是在总结成都至都江堰(成灌)城际客运专线的经验基础上,对CRTSⅢ型板式无砟轨道进行再次设计优化、进一步完善设计理论和设计方法后,研究出的新型CRTSⅢ型板式无砟轨道技术体系。 本工法主要依托于武汉城市圈新建武汉至黄石、新建武汉至咸宁城际铁路试验段工程对CRTSⅢ型板式无砟轨道三大关键部位施工进行开发,以形成一套完整的CRTSⅢ型板式无砟轨道施工工艺,总结形成《CRTSⅢ型板式无砟轨道施工工法》。 2014年4月23日,经天津市高新技术成果转化中心组织鉴定,关键技术达“国际先进”水平,成功创造了“一种自密实混凝土灌注料斗阀门(201420133839.8)、CRTSШ型板式无砟轨道自密实混凝土模板(201420131323.X)、CRTSШ型板式无砟轨道自密实混凝土压紧装置(201420133820.3)、一种CRTSШ型板式无砟轨道底座板伸缩缝模板(201420133896.6)、一种CRTSШ型板式无砟轨道底座板(201420133946.0)”五项实用新型专利。武黄、武咸城际铁路CRTSⅢ型板式无砟轨道铺设成功为CRTSⅢ型板整体技术体系的完善做了较好的基础积累,该技术可为后续施工及设计提供借鉴,意义重大。 2.工法特点 2.1 技术先进,精度高。CRTSⅢ型板式无碴轨道采用板间不连接的单元分块式结构, 并适应ZPW--2000轨道电路的结构型式;每块板有独立的数据文件,线路上位置的固定,采用精调软件控制、定位、精调爪、螺栓扳手和压紧装置固定轨道板,铺设位置准确、精度高。 2.2 底座板和自密实混凝土填充层内的钢筋焊网,采用工厂化统一加工,运至

桥梁墙式防撞护栏施工工法 (最终版)

连霍洛三(豫陕界)段改建工程TJ-**标段 桥梁墙式防撞护栏 施工工法 连霍洛三(豫陕界)段改建工程TJ-**标段项目经理部 2013年05月25日

目录 1.前言----------------------------------------------------------------------------------------------------------- 1 2.工法特点 ---------------------------------------------------------------------------------------------------- 1 3.适用范围 ---------------------------------------------------------------------------------------------------- 1 4.工艺原理 ---------------------------------------------------------------------------------------------------- 1 5.材料----------------------------------------------------------------------------------------------------------- 1 6.人员与机械设备 ------------------------------------------------------------------------------------------- 2 6.1人员-------------------------------------------------------------------------------------------------------- 2 6.2机械设备 ------------------------------------------------------------------------------------------------- 2 7.工艺流程和操作要点------------------------------------------------------------------------------------- 3 7.1、施工工艺流程 ---------------------------------------------------------------------------------------- 3 7.2、施工方法----------------------------------------------------------------------------------------------- 4 7.2.1、施工放样--------------------------------------------------------------------------------------------- 4 7.2.2、钢筋加工及安装----------------------------------------------------------------------------------- 4 7.2.3、支立护栏模板 -------------------------------------------------------------------------------------- 5 7.2.4、混凝土浇筑 ----------------------------------------------------------------------------------------- 6 7.2.5、拆模和切缝 ----------------------------------------------------------------------------------------- 6 7.2.6、养生 --------------------------------------------------------------------------------------------------- 6 7.3、施工注意事项 ---------------------------------------------------------------------------------------- 7 8.质量要求 ---------------------------------------------------------------------------------------------------- 7

移动模架施工工艺工法

移动模架施工工艺工法 1 前言 概况 移动模架系统(move support system)简称MSS,是桥梁施工的先进方法。移动模架系统是一种自带模板,利用承重梁支承模板,对混凝土梁进行逐孔现场浇注的施工机械。国外,最早在1969年由德国PZ公司研制在德国阿母辛克(Amsinck)桥正式使用。国内最早于1990年引进该类造桥设备施工了厦门高集海峡公路大桥。 移动模架承重部分类型常见的多为两组定型的钢箱主梁(图1),也有使用拆装式常备杆件改造后的桁梁(图2);定型钢箱主梁形式的移动模架系统一般为专门设计,对匹配梁型使用,梁跨20~40m范围均有应用;拆装式常备杆件形式的移动模架系统的优势在于平曲线半径较小、梁跨多种组合等定型移动模架无法适应的环境下,本工法主要内容为后者。 图1 钢箱主梁式移动模架构造图 图2 桁架主梁式移动模架构造图 该类移动模架体系由四部分组成:①固定于桥墩上部用来支承桁梁平台的支

承体系;②收折式桁梁平台;③平台转跨推进行走系统;④支架平台上的满堂支架体系。 工艺原理 1.2.1 整个支撑体系附着于支撑墩柱上,通过支撑键及预埋键盒,将施工荷载全部转移至墩柱之上,不再设置临时支墩。 1.2.2 每组桁梁通过可收折横联行成整体,作为现浇梁施工的支架平台。 1.2.3 支撑体系上设置横、纵移装置,完成横移及纵移。 2 工艺工法特点 无需地基处理,能对高度较大、无法或较难设置落地支架的现浇梁进行施工,减少了对环境的依赖和破坏,适用范围广。 使用常备杆件,可依具体施工条件进行组合,适应性强。牵引设备移动,操作简单,安全可靠。 采用倒三角及倒梯形加强承重杆系,为桁梁提供足够的抗弯能力及刚度;承重杆系为收折设计,满足平台向前行走。 标准化作业、施工周期快、质量好。 3 适用范围 高墩现浇箱梁施工。 复杂地形现浇梁施工。 水上多跨现浇梁施工。 4 主要技术标准 《铁路架桥机架梁规程》TB10213 《钢结构设计规范》GB50017 《钢结构工程施工质量验收规范》GB50205 《铁路混凝土工程施工技术指南》TZ210 《客运专线铁路桥涵工程施工技术指南》TZ213 5 移动模架施工方法 移动模架作为主要承重结构,利用桥墩为支点临时支承梁体自重,在移动模架上完成模板调整、预拱度设置、绑扎钢筋、浇筑混凝土、张拉预应力索筋等,

移动模架法

移动模架法 摘要:随着社会经济建设的飞速发展,桥梁建设水平也得到了很大的提高,山区的桥梁建设事在必行,现浇桥又以自身整体性好、结构形式多样等优点正在被广泛采用,那么高墩现浇技术也就成了施工重点和难点。现以某山区高墩现浇立交桥为例,简述一下移动模架法的施工,为以后此类工程的施工做一参考。 关键词:高墩移动模架 一、移动模架法方案选定 此立交区地形起伏较大,主线桥多为高墩高架连续梁桥,桥墩最大高度达50m。对于高墩现浇箱梁,采用传统的满堂红支架法,显然不合理,施工工期长、难度大、造价又高。鉴此地势情况采用移动架空平台施工较为合理。 主线桥桥墩多为双柱和三柱圆形墩,针对这种桥墩的特点,采取了在墩柱施工过程中预埋键盒,在键盒内安装支承键的方式支承平台的墩柱牛腿,牛腿由平梁、斜撑及抱箍构成,支承键则分为上支承键和下支承键,上支承键直接支承牛腿的横梁,下支承键则支承抱箍并通过抱箍和斜撑最终与上支承键共同支承牛腿横梁。 上部箱梁的标准桥宽为16.75m,平台由6组收折式桁梁及组间横联构成,异形段最大桥宽为28m,布置了10组收折式桁梁。不同桥宽平台桁梁的组数随之增减,左右线桥各采用一套3跨移动支承平台同步推进施工。

为了方便拆卸模板及设置纵横坡、竖曲线、预拱度等,在移动支架上预留一定高度(1.5-2.0m)搭设满堂支架,支架上的模板施工与满堂支架相同。内模采用组合钢模板或木胶板。 二、移动模架法施工工艺 1、在起始跨的桥墩柱上安装牛腿和横梁; 2、在横梁上安装架空平台; 3、在平台上铺模板系统; 4、在模板上安装主梁钢筋与预应力钢束; 5、用输送泵浇筑主梁砼; 6、浇水养生砼; 7、张拉预应力钢束; 8、落架(砂筒卸落); 9、预应力钢束灌浆; 10、平台推进行走(施工下一跨),详见下图:

济宁市府河大桥混合式叠合梁斜拉桥施工工法

混合式结合梁斜拉桥汽车吊悬臂吊装施工工法 中铁十局集团有限公司 汪晶王欣德齐运洪刘思斌支陆锋 1. 前言 济宁市太白楼东路洸府河大桥为双塔双索面混合式结合梁斜拉桥,采用塔梁固结、塔墩分离的支座体系。大桥全长1831米,其中主桥长600米,桥宽40米。边跨主梁采用预应力预应力混凝土边主梁结构。中跨主梁为结合梁,上层桥面板为预应力混凝土结构,下层钢梁由边箱、横梁、托架、小纵梁等组成框架结构。 本工法是根据该项目的实际施工条件所形成。本桥中跨需小角度斜跨三条铁路线,受铁路线影响,中跨钢梁杆件和预制桥面板没法通过船舶或其它设备运输至桥位处正下方。并且该桥桥面宽达40米,为了满足实际施工的需要,通过和设计单位一同全面分析该桥情况,不断进行结构受力的优化,注重各种施工工况的受力检算,最后成功地创造了一种全新的斜拉桥施工方法,并得到了实践的检验。 本工法是运梁车梁上运输构件,汽车吊上桥起吊并悬臂拼装,现浇混凝土湿接缝完成一个节段施工。见图1.1-1。 图1.1-1 斜拉桥结合梁汽车吊悬臂吊装示意

2. 工法特点 2.1适用于宽幅面结合梁桥梁 混合式结合梁斜拉桥在国内为数不多,原有的其中跨都是跨越江河或海峡,其中跨钢梁杆件和预制桥面板可通过船舶运输至桥位处正下方,由桥面吊机起吊并悬臂拼装。这种桥面吊机作业时固定在桥面中央的钢梁上,可沿固定的轨道往前走行,其拼装和拆卸较麻烦,且对桥面很宽的桥梁适应性差。汽车吊不同于桥面吊机,可偏心站位,这样吊装作业时可减小伸臂长度,从而对宽桥的适应性更好。 2.2 汽车吊作业方便灵活 汽车吊免去了桥面吊机的拼装和拆卸麻烦,站位在已施工成型的结合梁段上,使用时方便灵活,不需要在钢梁上设置轨道和锚固装置。 2.3降低施工费用 桥面吊机从中跨开始施工到主体结构完成一直要在桥上,而汽车吊仅在吊装作业的短时间内需租用上桥作业,可节省施工费用,获得较好的经济效益。 3. 适用范围 本发明是一种全新的斜拉桥施工方法,是根据实际施工条件的需要做出的。其适用于主梁采用了混合式结合梁结构的斜拉桥。当主梁跨越铁路、公路以及其它不方便通航的区域,可使用此工法。即使其跨越可通航的水道,当和常规的桥面吊机悬臂拼装方案进行综合比选有优势时,也可以考虑使用。 4. 工艺原理 此施工方法要求其边跨和引桥在中跨开始施工之前先行浇注完成。中跨钢梁杆件和预制混凝土桥面板通过运梁车从地面经引桥和边跨运输到中跨。汽车吊也从地面经引桥和边跨开行到中跨已施工完成的结合梁最前端,起吊运梁车上的构件进行悬拼施工,悬拼完成后汽车吊和运梁车均开下桥。然后施工桥面板湿接缝,形成本节段结合梁结构。中间穿插进行挂设斜拉索的工作,这样周而复始直至斜拉桥主体结构完成。此种施工方法的汽车吊及运输荷载较大,应特别注重主体结构的验算,使其满足各施工工况的受力需要。 5. 施工工艺流程及操作要点

移动模架施工安全专项方案

枫亭特大桥移动模架 制梁 施工安全专项方案 ——福厦铁路Ⅱ标段二工区 中铁九局集团福厦铁路工程指挥部二工区 2008年05月25日 一、安全保证体系 安全生产是工程项目重要的控制目标之一,也是衡量企业的施工管理水平的

重要标志。为确保施工作业安全,我们将建立、健全各项安全规章制度,做到依法办事;加强安全教育,提高广大职工的安全意识和防范安全事故的能力;及时开展安全生产大检查,消除事故隐患;建立高效精干的安全组织机构,制定切实可行的安全技术措施,在施工中严格执行;并从技术上入手,针对工程的实际情况,及时解决施工中的安全问题,以确保实现安全目标,创建安全生产标准化工地。 工程施工始终坚持“安全第一、预防为主”和坚持“管生产必须管安全”的原则,加强安全生产宣传教育,增强全员安全生产意识,建立健全各项安全生产的管理机构和安全生产管理制度,配备专职及兼职安全检查人员,有组织、有领导地开展安全生产活动。各级领导、工程技术人员、生产管理人员和具体操作人员,必须熟悉和遵守各项规定,做到生产与安全工作计划、布置、检查、总结和评比。建立、健全安全保证体系。 二、安全保证措施 (1)移动模架操作安全保证措施 A、进入现场必须遵守安全生产纪律。 B、吊装前应检查机械、索夹吊环等是否符合要求并应进行试吊。 C、吊装时必须有统一的指挥、统一的信号。 D、高空作业人员必须系安全带,安全带生根处应做到高挂低用及安全可靠。 E、高空作业人员上班前不得喝酒,在高空不得开玩笑。 F、高空作业穿着要灵便,禁止穿硬底鞋、高跟鞋、塑料底鞋和带钉的鞋。 G、吊车行走道路和工作地点应坚实平整,以防沉陷发生事故。 H、六级以上大风和雷雨、大雾天气,应暂停露天起重和高空作业。

移动模架逐孔施工工法

移动模架逐孔施工工法 1 前言 1.0特大桥南引桥设计为5m×40m的等截面预应力混凝土连续箱梁,采用等高度单箱单室斜腹板结构,箱梁高 2.4m,顶宽16m,底宽7m,梁长有32m、40m、48m三种,48m箱梁自重1590t。采用了下承式移动模架造桥机施工,施工安全可靠。采用ZQM1590移动模架造桥机制梁施工工法施工的32m、40m、48m跨度的梁片,具有箱梁整体性好,线形平顺美观的优点,受到业内人士的一致认可和好评,并在进一步完善工艺的基础上形成了本工法。 2 工法特点 2.0.1本工法操作方便,安全可靠,机械化程度高,劳动力投入少 ,缩短工期。 2.0.2本工法工作场地紧凑,桥位就地制梁,无需制梁、存梁场地和运梁、架梁设备。 2.0.3本工法荷载通过其自身的系统直接作用在桥墩或承台上,对原地面承载力等要求不高;模架在高处前移方便迅速,不妨碍桥下交通,对地形要求不高。 3 适用范围 适用于48m跨度以下,多孔相连且梁重在1590T以下的公路简支箱梁、连续箱梁的施工。使用本工法前需对墩台的结构受力进行计算,以保证该型造桥机架设后墩台的安全性。造桥机主要性能参数表见表3。

表3 造桥机主要性能参数表 4 工艺原理 4.0.1移动模架造桥机是一种自带模板,利用两组钢箱梁支承模板,通过自立行走、模板开合,

对混凝土梁进行逐孔原位现场浇筑的施工设备。 4.0.2 下承式移动模架造桥机自下而上可分为墩旁托架、支承台车、主梁、底模及横联、侧模及支撑、中扁担梁、防台风装置及液压系统等组成,具体见图4.0.2-1,图4.0.2-2。 4 3 11 图4.0.2-1 移动模架造桥机侧面结构图 图4.0.2-2 移动模架造桥机正面结构图 1——主梁;2——横联系统;3——前导梁;4——后导梁;5——墩旁托架6——支承台车;7——底模;8——侧模平台;9——侧模支撑;10——中扁担梁11——防风装置;12——托架支撑;13——配重;14——液压系统 4.0.3 造桥机工作时,整个模架在靠墩旁托架支撑的支承台车作用下,可通过竖移、横移、纵移分别实现脱模、模架横向分离或合拢、过孔。底模在横移油缸作用下,实现开合并可通过底模

移动模架逐孔施工工法模板

移动模架逐孔施工 工法

移动模架逐孔施工工法 1 前言 1.0特大桥南引桥设计为5m×40m的等截面预应力混凝土连续箱梁,采用等高度单箱单室斜腹板结构,箱梁高 2.4m,顶宽16m,底宽7m,梁长有32m、40m、48m三种,48m箱梁自重1590t。采用了下承式移动模架造桥机施工,施工安全可靠。采用ZQM1590移动模架造桥机制梁施工工法施工的32m、40m、48m跨度的梁片,具有箱梁整体性好,线形平顺美观的优点,受到业内人士的一致认可和好评,并在进一步完善工艺的基础上形成了本工法。 2 工法特点 2.0.1本工法操作方便,安全可靠,机械化程度高,劳动力投入少 ,缩短工期。 2.0.2本工法工作场地紧凑,桥位就地制梁,无需制梁、存梁场地和运梁、架梁设备。 2.0.3本工法荷载经过其自身的系统直接作用在桥墩或承台上,对原地面承载力等要求不高;模架在高处前移方便迅速,不妨碍桥下交通,对地形要求不高。 3 适用范围 适用于48m跨度以下,多孔相连且梁重在1590T以下的公路简

支箱梁、连续箱梁的施工。使用本工法前需对墩台的结构受力进行计算,以保证该型造桥机架设后墩台的安全性。造桥机主要性能参数表见表3。 表3 造桥机主要性能参数表

4 工艺原理 4.0.1移动模架造桥机是一种自带模板,利用两组钢箱梁支承模板,经过自立行走、模板开合,对混凝土梁进行逐孔原位现场浇筑的施工设备。 4.0.2 下承式移动模架造桥机自下而上可分为墩旁托架、支承台车、主梁、底模及横联、侧模及支撑、中扁担梁、防台风装置及液压系统等组成,具体见图4.0.2-1,图4.0.2-2。

铁路桥梁

铁路桥梁 【施工工艺流程】 施工准备—→基层处理—→涂刷配套基层处理剂—→弹基准线—→大面卷材铺贴[排气压实(钢辊滚压)—→接缝压实和边缘密封—→卷材防水系统终止收头固定和卷材密封膏封闭—→质检—→保护层施工。 “雨虹”RBW-1铁路桥专用SBS改性沥青卷材防水系统正是根据石油沥青的材料特点、以及铁路桥梁工程防水的特殊要求开发的专用防水系统。系统构造图如下: 系统周边终止收口做法: 雨水口做法:

【系统特点】 ●BPB-201基层处理 东方雨虹专门为路桥防水需要高粘结要求开发的特种基层处理剂,与水泥混凝土具有超强的粘结力、还能够渗透到混凝土表面孔隙、缝隙内,提高混凝土的 抗渗性能,又与SBS性改沥青具有非常优良的相容性。 BPB-201基层处理剂系特殊改性沥青制成,混凝土基层粘结强度高、且对混凝土微细孔洞、空隙具有超强的渗透性,具有增强混凝土表层抗渗功能、抗腐蚀 功能、提高RBW-卷材的基层粘结效果。 热熔工法铺贴 “雨虹”RBW-1铁路桥专用SBS改性沥青防水卷材采用完全热熔满粘铺设, 依靠熔融的液态改性沥青实现最佳状态下的粘附粘结、实现不平整混凝土表面的 渗透密实、最大限度地提高防水层的粘附粘结力。 ●能够有效传递行车荷载:“雨虹”RBW-1铁路桥专用SBS改性沥青防水卷材 在材料配方上最大限度地提升了改性沥青的力学模量,使得防水层能够有效承 受交通荷载(推移剪切荷载)。 ●抗施工损伤、运行损伤性能好:防水层铺设后,桥面施工车辆设备需要直接在 防水层上行走;交通运行过程中震动荷载作用下的粘接疲劳脱落、碎石穿刺损伤 等等不可避免。“雨虹”RBW-1铁路桥专用SBS改性沥青防水卷材充分发挥出 利用SBS改性沥青的压敏粘性、蠕变性能,将抗损伤能力最大程度地发挥出来。 桥面体系设计指标: 粘结强度σ(20℃):≥0.8MPa 粘结强度σ(50℃):≥0.25MPa 抗剪强度τ(20℃):≥0.5MPa 抗剪强度τ(50℃):≥0.15MPa RBW-1铁路桥专用SBS改性沥青卷材防水系统条件 【对结构基层的要求】: 1、强度等级C25以上、表面养护良好的混凝土基层均适合本系统。 2、桥梁结构混凝土随浇筑随抹平、不要压光;表面适度拉毛更好,拉毛深度 0.5~2mm为宜。 3、混凝土表面不允许存在水泥浮浆;当表面存在水泥浮浆、养护不足现象时, 需要通过机械打磨去除浮浆、松散层。 4、干燥的混凝土表面最适合铺设RBW-1卷材防水系统。当基层无法保证干燥 时,需采用BPB-203基层处理剂处理。 5、均匀、平顺过渡的宏观上的不平整,对RBW-1铁路桥专用SBS改性沥青卷 材防水系统铺贴无影响。 6、桥面基层不允许存在局部凹坑、凹槽;当凹坑、凹槽存在时,需要采用雨虹 专用基层快速修复砂浆修复。 7、基层表面凸起的突出物必须剔除\清除平整. 【不同材料间的衔接】 “雨虹”RBW-1铁路桥专用SBS改性沥青卷材防水系统具有施工方便、耐损伤性能好的特点,当工程中需要与其它材料(聚氨酯涂膜)衔接时,按下图节点大样实施:

相关主题