搜档网
当前位置:搜档网 › 石墨电极的应用

石墨电极的应用

石墨电极的应用
石墨电极的应用

石墨电极的应用

石墨是一种由碳元素组成的化合物,其原子结构按六边形蜂窝状结构排列,原子核外围的4个电子中的3个电子和邻近原子核的电子组成牢固稳定的共价键,多余的1个原子可沿网平面作自由运动,使其具有导电的特性.

& 石墨电极使用注意事项

1.防湿---

避免雨、水淋湿或潮湿,使用前须经烘干.

2.防撞---

要轻拿轻放,运输时防止冲击和碰撞的损坏.

3.防裂---

用螺栓紧固电极时,注意力度,防止受力爆裂.

4.防折断---

石墨性脆,特别是细小窄长电极,在外力作用时都易折断.

5.防尘---

机械加工时要有防尘装置,减少对人体和环境的影响.

6.防烟---

放电加工易产生大量的烟幕,须有通风装置.

7.防积炭---

石墨放电时易积炭,放电加工时要密切留意其加工状态

一,石墨与红铜电极的放电加工的比较(要求完全掌握)

1.机械加工性能好:切削阻力为铜的1/4,加工效率是铜的2-3倍,

2.电极抛光容易:表面处理容易、无毛剌:容易手工修整,用砂纸简单表面处理即可,极大避免电极形状和尺寸受外力造成的形状失真;

3.电极消耗小:导电性好,电阻率低,为铜的1/3~1/5,粗加工时可以达到无损耗放电;

4.放电速度快:放电速度为铜的2~3倍,粗加工的间隙可达0.5~0.8 m m,电流最大可达240A;正常使用为10~120A时电极损耗最小。

5.重量轻:比重为1.7~1.9,为铜的1/5,对于大型电极可以极大减少重量,降低机床负荷和人工调装难度;

6.耐高温:升华温度为3650℃,高温条件下电极不软化,避免薄壁工件的变形问题;

7.电极变形小:热膨胀系数<6CTEX10-6/℃,仅为铜的1/4,提高放电的尺寸精度;

8.电极的设计不同:石墨电极容易清角,可以将平时要由多个电极的工件设计成一个完整电极,提高模具的精确度,并减少放电时间。

A.石墨的机加工速度比铜快,在正确的使用条件下比铜快2-5倍.

B.无需像铜那样因为去毛刺而消耗大量工时;

C.石墨的放电速度快,粗放电加工为铜的1.5-3倍

D.石墨电极损耗小,能减少电极使用量

E.价格稳定,受市场价格波动影响小

F.耐高温,放电加工电极不变形

G.热膨胀系数小,模具精度高

H.重量轻,可满足大型和复杂模具的需要

I.表面易加工,容易得到合适的加工表面

物理特性:

A.石墨的熔点比铜高得多

石墨为:3650度,铜仅为1060度

B.单位面积能承受更大的电流

由于铜熔点低,其总电流量受限,而石墨总的电流量允许值却可以放得很大.因此石墨可以进行大电流放电加工.

化学特性:加工液中碳原子的补偿作用减少了石墨电极的损耗

二,石墨生产商介绍(基本认知)

目前全球知名的石墨供应商主要有五家:东洋、西格里、东海、罗兰和步高

常用的几种典型TOYO(日本东洋)石墨:

普通级: ---大型低损耗石墨如: ISEM-7、ISEM-8

用于压铸模、锻造模、橡胶模、塑料成型模.如汽车、摩托车塑料部件

特点是大电流加工(粗加工)速度快,损耗小,但表面光洁度较差.

中等级:---精密低损耗石墨如: ISO-63、TTK-50

用于塑料成型、注塑成型(外观塑料件)模、普通精密模具.如大小家电类产品模具,骨位电极.

特点是既保证加工速度,又保证表面光洁度.

高等级:---超微粒子高精度石墨如: TTK系列石墨

用于高端产品的精密模具、深窄型腔、硬质合金和高品质表面的部位.如电子产品模、IC 模、纹面加工和喇叭网类电极等.

特点是放电加工能得到相当高的表面光洁度和加工精度,是目前生产高端产品的必选电极材料.

三、加工机床(基本认知)

通常用常规的车削、铣削、磨削、钻削和线切割的方法可以满足加工简单形状的需求,但近年来对电极几何形状复杂性的要求持续增加,针对这类电极就必须采用高速加工。

石墨电极在机械加工时会产生大量的粉尘,为了避免石墨颗粒吸入机床主轴和丝杠,需要专门的防尘设计。目前解决方案主要有两种:专门的石墨加工机;或经过改装的CNC带专门的吸尘设备,也可采用火花油做冷却液来加工。

四、典型石墨电极加工实例(基本认知)

1.超大型电极

材料:ISO-63

尺寸:800×600mm,如果用铜电极进行EDM加工是很困难的。

2.喇叭网电极

材料:TTK-4

尺寸:970×100mm,电视机喇叭网模具表面火花纹要求高,用TOYO石墨做电极损耗小、加工出来的表面细腻均匀,棱角清晰。

3.手机模电极

材料:TTK-4

应用于特定表面火花纹要求的手机,具有模具量产寿命长,表面花纹CH22。

4.汽车模电极

材料:ISEM-7

尺寸:750×150×190mm,放电速度快,损耗少,成本低。

5.骨位电极

材料:ISEM-7

尺寸:450×350×50mm,众多筋条,一次成型,一次放电,放电时间缩短到原来的40%。

6.大型组合电极材料:ISO-63

尺寸:550×550×150m m,众多

筋条,一次成型,一次放电,放电时间缩短到原来的55%,并节省大量材料。

石墨电极对放电条件的要求

1,对脉冲电流(IP)的要求:(要求很好掌握)

脉冲电流的特点是:数值越大,放电加工速度越快,放电间隙越大,表面粗糙度越粗,电极损耗越小.

1). 脉冲电流受放电面积的影响, 即电流密度的影响.

石墨电极脉冲电流的选用原则以平均电流为标准

石墨电极大型时,电流密度通常设为10~12A/cm2;

石墨电极时,电流密度通常设为6~8A/cm2.

2). 脉冲电流受电极减寸量(火花位)大小的影响

若大面积用小火花位或小面积用大火花位都不适合石墨电极的正常放电加工.

电流的选用须由电极面积的大小来确定,这是最合理选用方法.

石墨电极的平均电流达到10A~120A时,电极损耗最小.随电流的增大电极损耗也增大. 2,对脉冲宽度(ON TIME、放电脉宽)的要求:(要求很好掌握)

脉宽的特点:数值越大,放电时间越长,加工速度越快,电极损耗越小,放电间隙越大,表面粗糙度越粗.加工稳定性越差.

石墨电极的脉宽取值范围为0~1000 us.

脉冲宽度较大时,加工速度随着脉宽的增大,加工不稳定,加工时间增加,加工速度减慢,并使工件表面烧蚀;其取值一般不超过420 us.当脉宽在100~300us时石墨电极损耗最小.

脉宽的选用要根据电流大小以及放电加工要求来确定,若放电面积较大或用作粗加工时,为提高加工速度,脉宽取大些;细小的面积或精加工时,考虑到表面粗糙度, 则脉宽取小些.

工件材料不同,加工极性不同,脉宽对加工效果的影响也不同.

不同的生产厂家、不同等级、不同批号的石墨材料,脉宽的影响也不同.

相同脉宽,石墨颗粒越小,电极损耗越小.

3,对脉冲间隔(OFF TIME 放电休止)的要求:(要求很好掌握)

脉冲间隔的作用是让放电自动辙消,消除电离, 让加工液介质清除杂物,并为下一次放电作准备.

脉冲间隔的特点:只影响放电加工速度和加工稳定性,而对其它影响较小.当其值越大,加工稳定性越好,加工速度相对较慢,但放电稳定却比不稳定要快;.

脉冲间隔的取值范围要比脉宽宽得多, 可在0~2500 us之间.脉冲间隔为100us时达到最小值,脉冲间隔再增加电极损耗反而增大.

石墨电极放电加工中常取脉冲间隔(OFF)=脉宽(ON),并视加工的稳定情况进行调整到脉宽的1/3~2/3.

当脉冲间隔合适时,随着脉冲间隔的增加,极间介质的消电离比较充分,有利于形成覆盖层(在电加工过程中蚀除产物和介质分解的含炭物附着在电极表面),因而电极损耗减小,但当脉冲间隔大于100us时,电极和工件表面冷却的时间过长,下一个脉冲就需要更多的能量形成放电通道,并且不利于覆盖层的形成,电极损耗反而增加。若脉冲间隔过小,电极和工件之间的消电离不充分,可能在电极表面和工件表面产生烧蚀现象。

休止时间一般只影响放电加工速度,而对电极损耗和加工表面粗糙度的影响不明显.

4 对间隙电压(SV)的要求:(要求很好掌握)

间隙电压的特点:值越大,加工稳定性越好,放电加工速度越快.放电间隙大小, 对电极损耗和表面粗糙度影响不大:

不同的火花机台,所设定的间隙电压的档级也不同,一般分为:

40~60V档,90~120V档, 150~190V档,200~250V档.

石墨电极的大电流加工要使用较大的间隙电压,可达200~250V. 而精加工中则用较小间隙电压(40~60V).

使用不档位的间隙电压,其加工电流也不同.

5 对加工极性的要求:(要求很好掌握)

在电火花加工中,脉冲电源极性决定了电流的方向,不同的电极极性直接影响电加工效果(电极损耗、加工速度和表面粗糙度).

在正极性加工时,石墨电极作为正极,随着电流的流过,温度上升,放出的热电子就增多.因此,工件被蚀除的部分就多,此时加工速度快.

加工模具钢时,石墨电极在负极性加工时与正极性加工比较:电极损耗大,加工速度慢,表面质量好。在较长脉宽时,如脉冲宽度为200us时,正极性加工的电极损耗几乎达到零,有时还会出现逆损耗,但表面粗糙度值增大,石墨电极粗加工时,用较长脉宽,如果着重考

虑电极损耗,应采用正极性加工(即石墨电极设为正极,工件设为负极),电极损耗小;如果首先考虑工件的加工速度,也采用正极性加工(即工件设为负极,石墨电极设为正极),加工速度快。

红铜电极在精加工或微精加工时,用较短脉宽应采用负极性加工,有利于获得较好的表面质量,但电极损耗较大:

不同的工件材料,石墨电极极性的选择也不同.一般工具钢、不锈钢、铜合金、铝合金、钨钢采用正极性加工,而钛合金多采用负极性加工

6 加工速度的调整:(要求很好掌握)

放电加工时,工具和工件同时受到不同程度的电蚀,单位时间内工件的电蚀去除量称之为加工速度,即生产率.

在电火花加工过程中,影响加工速度的因素很多,主要有加工极性、电参数、工件材料以及工作液等.提高加工速度常在在粗加工中优先考虑,通常是放电能量越大,加工速度越快,所以:

①.依靠较大的电流才能确保石墨电极的高速加工;

②.要保证足够的火花位才能使用较大的加工电流;

③.增加脉宽虽然也能提高加工速度,但在石墨电极放电加工中,过大的脉宽会使加工不稳定反而影响加工速度,且容易发生积炭的现象;

④.用较短的放电休止可以提高加工速度,但要注意加工稳定性;

⑤.用较大极间电压或高压电流对提高加工速度有利;

⑥.不同的电极材料、不同的工件材和不同的火花机台要选用不同的放电参数。

7 表面粗糙度的调整:(要求很好掌握)

表面粗糙度由脉冲宽度、峰值电流、电极材料和工件材料共同决定的.电火花加工的表面和机械加工的表面不同,它是由无方向性的无数小坑和硬凸边所组成,电火花加工表面粗糙度通常用微观轮廓平面度的平均算术偏差Ra表示。

表面粗糙度受石墨颗粒直径大小的影响, 颗粒越大其得到的表面粗糙度就越粗.通常选用细粒径的石墨来提高表面光洁度;

脉宽越大,单位时间内放电时间越长,放电蚀痕越深,其加工表面也越粗.石墨电极以较小的脉宽来完成放电过程,则形成较浅的蚀痕而利于抛光.铜电极为了损耗小用较长的脉宽来完成放电,其形成的蚀痕较深、表面硬度也大,从而导致抛光困难;

峰值电流越大,加工表面粗糙度, 其没有脉宽影响大,所以石墨电极的“大电流、小脉宽”原则也是降低加工表面粗糙度的特点.

主轴摇动加工方式也是降低表面粗糙度和获得均匀纹面的有效手段。

8 电极损耗的调整:(要求很好掌握)

放电加工时,单位时间内电极的蚀除量称之为损耗速度。在实际生产中,通常采用相对损耗作为衡量工具电极耐损耗的指标.

在电火花加工中存在4种损耗:整体损耗、角损耗、端面损耗和侧面损耗。由于角部损耗决定最后加工的精度,所以它的损耗率最重要,特别是电极精修时应重视角损耗。

石墨电极放电加工时,电流越大,电极损耗越小,

正常情况下,脉宽越大,电极损耗越小.但在石墨电极放电加工中过大的脉宽会导致石墨电极

出现毛刺的负损现象,所以石墨电极的最大脉宽一般不超过420μs,且随着放电面积的越小,其脉宽值也越小;

合理配合脉宽,也可减少电极损耗,当IP=10A~120A、ON=100μs~300μs时,是石墨电极放电加工无损耗条件。

9. 放电参数的常规调整方法: (普通机台)

非放电参数对石墨电极的影响

1 电极减寸量的影响:

特点:值越大,所允许的放电能量越大,其加工速度越快.表面粗糙度越大,电极损耗越小。

通常情况石墨电极粗加工的电极减寸量要留得大些,精加工的要留得小些,若粗加工电极减寸量过大或精工电极减寸量过小, 都会造成粗加工时留给精加工的余量过多, 导致精加工电极的损耗,势必影响精加工的精度;

电极减寸量要根据电极面积的大小和火花机台承受能力来确定.

石墨电极放电加工的电极减寸量取值要比铜电极大,通常是粗加工电极减寸量在铜电极的基础上增加30~40%.精加工电极减寸量取粗加工电极减寸量的1/2.

2 加工液的影响:

加工液的作用是:形成火花击穿的放电通道,并在放电结束后迅速恢复间隙的绝缘状态,对放电通道产生压缩作用;帮助抛出和排除电蚀物;冷却电极和工件等。

在所有放电加工中,充足的冲洗是很重要的。在使用石墨电极时,磨损颗粒可能会因重量特别轻而悬浮在放电液中,造成加工不稳定.所以要特别注意冲洗和过滤。

加工液的流动率是影响有效冲洗的重要因素,而不是冲洗压力。液体加压冲洗法是最常使用的方法,因为去除的颗粒必须沿着电极表面放电,精确度将取决于侧面的腐蚀.

加工液的质量和干净程度,也是影响石墨电极损耗的关键因素,由于加工液中也存在着大量的碳原子,其在高温放电的作用下,加工液中的碳原子被分离出来,并转移粘附在石墨电极的表面而形成一层保护膜,从而补偿了石墨电极的损耗,这也是石墨电极为什么比铜电极损耗少的原因之一.

3 火花机台的影响:

同使用铜电极加工一样,电火花机床本身(主轴性能、脉冲电源及智能控制、冲洗方式和加工液)对石墨电极的加工性能有重要的影响,它直接影响加工表面粗糙度、电极损耗和加工精度.

对于目前市场上的火花机台,归纳为两大类:

一类是高精密数控火花机,主轴性能、脉冲电源都是电脑智能控制,并拥有比较完善的石墨电极放电参数,,所以能达到高效率(加工速度比铜快2~3倍)、低损耗(电极损耗率可在1%以下)、光洁度高(光洁度可达到Ra0.1um)的加工效果.如: MAKINO(牧野) 、MITSUBISHI(三菱) 、SODICK(沙迪克) 、CHARMILLES(夏米尔)

另一类是普通火花机, 此类机台种类繁多,且其主轴的性能、脉冲电源智能控制和电参数的设定各有差异,其特点是石墨电极放电参数不完善,必须人为设定其参数才能确保石墨电极正常放电.

目前所有火花机台生产商都在改进工艺,目的是使火花机台既能用铜电极加工,也能用石墨电极加工,这是石墨电极应用发展趋向.

放电加工常见问题及处理

1 开始加工放电不稳定

产生原因:

石墨电极电加工开始阶段,由于工件接触面积小,或存有切削屑、毛刺,导致集中放电;并且由于放电能量大(峰值电流高,脉冲宽度宽),而脉冲间隔过窄,喷流压力太大,导致开始加工时放电不稳定,甚至拉弧现象。

解决方案:

1.加工前先完全除掉附着在工件上的切削屑、毛刺,并且去除因工件热处理所产生

的氧化膜、涂料、锈等. 开始时把电流设定在一个较小的值.

2.然后逐步增加到峰值电流,并把喷流压力设定的小一些.

2 产生粒状突起物

产生的原因:

1.脉冲宽度设定的过大,电极的边角部生成颗粒状突起物,因此引起短路,导致

电弧放电;

2.电蚀产物加工屑过多,来不及排出;加工液喷嘴的角度设定的不对,加工液不

能充分喷入间隙中,电蚀产物加工屑无法充分排出;加工深度过深时,加工屑不能充分排出,滞留在底部.

解决的方案:

1.缩短脉冲宽度Ton,延长脉冲间隔Toff,抑制粒状突起物的产生和电蚀产物加

工屑的生成.

2. 尽量将喷嘴设在电极的侧面;如果加工深度过深时,

3.提高电极的跳动次数,加快跳动速度, 缩短放电时间.

3 加工底面产生凹陷

产生原因:

在电火花加工过程中,脉冲间隔过小,电极上下跳动速度慢,喷流压力弱,致使电蚀产物加工屑不能充分排出,并且许多电蚀产物粘结在电极底面,形成炭化物块,在电极上下运动过程中容易脱离,在加工底面产生凹陷

解决方案:

1.延长脉冲间隔.

2.提高电极跳动速度.

3.增加喷流压力.

4.用毛刷清理电极端面和加工底面的加工屑.

4 底面粗糙度不均匀,弯曲

产生原因:

由于脉冲间隔过小,特别使喷流压力不均匀,极间间隙过小,电蚀产物不能充分排出,并且在加工底面不均匀分布,这样随着加工不断进行,在底面产生弯曲,或者造成加工底面的粗糙度不均匀.

解决方案:

1.加大脉冲间隔,设定恒定的喷流压力,

2.增大极间间隙,经常检查排屑情况。

多谢合作!

石墨电极的原料及制造工艺

石墨电极的原料及制造工艺 一、石墨电极的原料 1、石墨电极 是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。2、石墨电极的原料 生产石墨电极的原料有石油焦、针状焦和煤沥青 (1)石油焦 石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑多孔,主要元素为碳,灰分含量很低,一般在%以下。石油焦属于易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 石油焦按硫分的高低区分,可分为高硫焦(含硫%以上)、中硫焦(含硫%%)、和低硫焦(含硫%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 (2)针状焦 针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在以上),在偏光显微镜下可观察到各向异性的纤维状结构,因而称之为针状焦。 针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。 (3)煤沥青 煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为-cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。 煤沥青在炭素工业中作为粘结剂和浸渍剂使用,其性能对炭素制品生产工艺和产品质量影响极大。粘结剂沥青一般使用软化点适中、结焦值高、β树脂高的中温或中温改质沥青,浸渍剂要使用软化点较低、 QI低、流变性能好的中温沥青。 二、石墨电极的制造工艺

石墨矿基本知识要点

石墨本为无名鼠辈,然2010年的诺贝尔物理学奖,使石墨一夜扬名四海,风光无限。 借着石墨矿的传说与光环,中国宝安股上窜下跳,令人心惊肉跳,欲仙欲死。 石墨矿究有何种神奇,请听我说! 一、石墨特性、分类及用途 (一)石墨基本性质 关于石墨的发现和利用,有案可据的,当首推《水经注》,书中载“洛水侧有石墨山。山石尽黑,可以书疏,故以石墨名山矣。”考古发现,早在3000多年前商代,中国就有用石墨书写的文字,一直延续至东汉末年(公元220年),石墨作为书墨才被松烟制墨所取代。清朝道光年间(公元1821-1850年),湖南郴州农民开采石墨做燃料,称之为“油碳”。

石墨英文名Graphite,源于希腊文“graphein”,意为“用来写”。由德国化学家和矿物学家A.G.Werner 于1789命名。 石墨分子式为C,分子量为12.01。天然石墨呈铁黑色、钢灰色,条痕亮黑色,金属光泽,不透明。晶体属复六方双锥晶类,沿{0001}呈六方板状晶体,常见单形有平行双面、六方双锥、六方柱,但完好晶形少见,一般呈鳞片状或板状。晶胞参数:a0=0.246nm, c0=0.670nm。典型的层状结构,碳原子成层排列,每个碳与相邻的碳之间等距相连,每一层中的碳按六方环状排列,上下相邻层的碳六方环通过平行网面方向相互位移后再叠置形成层状结构,位移的方位和距离不同就导致不同的多型结构。上下两层的碳原子之间距离比同一层内的碳之间的距离大得多(层内C-C间距=0.142nm,层间C-C间距=0.340nm)。具{0001}完全解理,比重2.09-2.23,比表面积5-10m2/g。硬度具异向

性,垂直解理面为3-5,平行解理面为1-2。集合体常为鳞片状,块状和土状。石墨薄片具良好的导电性和导热性。矿物薄片在透射光下一般不透明,极薄片能透光,呈淡绿灰色,一轴晶,折射率1.93~2.07,在反射光下呈浅棕灰色,反射多色性明显,Ro灰色带棕,Re深蓝灰色,反射率Ro23(红),Re5.5(红),反射色、双反射均显著,非均质性强,偏光色为稻草黄色。鉴定特征铁黑色,硬度低,一组极完全解理,具挠性,有滑感,易污手。若将硫酸铜溶液润湿的锌粒放在石墨上,则可析出金属铜斑点,而与之相似的辉钼矿则无此反应。 石墨是元素碳的一种同素异形体(其它同素异形体有金刚石、碳60、碳纳米管和石墨烯),每个碳原子的周边连结著另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。由于每个碳原子均会放出一个电子,那些电子能够自由移动,

石墨烯基材料做电极材料的机遇与挑战

石墨烯基材料做电极材料的机遇与挑战近年来,高性能电化学储能装置的需求量大幅上升,于是很多学者都开始投入到对更卓 越电极材料的开发和研究中。在这方面,石墨烯基材料吸引了大量目光。由于能提升现有设备性能,并使下一代设备更实用,石墨烯基材料被看作是前景深远的高性能电极材料。 碳材料广泛应用于不同的储能设备,并发挥着非常重要的作用。然而,由于多孔碳材料和纳米碳材料密度低,高碳含量电极的存储密度也总是很低,因而造成体积能量密度低。 尽管石墨烯也面临同样问题,甚至情况更严重,但经过石墨烯和电极结构设计的可控组合,还是可以得到高密度石墨烯基电极。此外,在许多情况下,组装的集成石墨烯基电极不含任何导电剂和粘结剂,因此能进一步帮助提升体积能量密度。

作为电化学储能装置的潜在电极材料,石墨烯具有许多其他传统碳材料和纳米碳材料所没有的优越性。石墨烯物理结构稳定、比表面积大、导电性良好,对大多数电化学储能装置来说,它几乎是一种完美材料。 此外,石墨烯的输出性能也取得了很多令人瞩目的进步:利用二维层状结构能构建出各种三维结构,还具备可调节的孔隙结构。我们在论文中综述了石墨烯基材料在液态锂离子电池、锂硫电池、锂氧电池、NIB和SC等方面的应用。我们研究发现,将石墨烯应用于这些装置,能大大提高其性能。 石墨烯的几个显著优势如下: 1.石墨烯在实际应用于非碳材料时,是一种有利的碳基材。它应用容易,比表面积大,使得在其表面实现其他活性成分的杂交和均匀散布更加容易,这也极大提高了这些成分的利用率。此外,利用石墨烯在两个活性粒子甚至是整个电极间构建互联的导电网络也是轻而易举。这样的网络有助于提高电极的循环稳定性。 2.通过在装置中使用石墨烯代替传统碳材料,能实现高体积能量密度。石墨烯为高体积能量密度装置的组装提供了潜在解决方案。 3.柔性石墨烯有望制造柔性储能装置。使用石墨烯及其组件可以制备出具有高度柔韧性的集流体,为我们提供了一种取代脆性金属集流体的方法。此外,利用石墨烯还能制备出集成柔性电极,有助于解决在反复弯曲过程中集流体活性材料分离的问题。 除了以上几点,石墨烯相较于传统碳材料还具有多种优越性能,可能有助于促进各种新型电池系统的实际应用。新近研究报告指出,高能室温钠硫电池通过碳/硫复合材料作为电极。我们可以预料,石墨烯可以进一步帮助提升这类电池的性能。还有研究发现,石墨烯基复合材料可作为锌空气电池的高效电催化剂。在种种结果之上,我们不难看出,石墨烯在未来能源储存装置应用中的巨大潜力。

一份低调的电炉钢石墨电极产业链深度报告,请您斧正!

一份低调的电炉钢石墨电极产业链深度报告,请您斧正! 钢铁行业2017年中期策略报告:后钢铁时代,电炉钢和石墨电极全面崛起不止是钢货6月14日 【备注:本文节选自光大证券钢铁王招华/杨华/王凯/沈继富团队今日发布的深度报告,未获当事人授权、不保证内容的准确性;如需本报告的PDF版全文,请转发本微信文章、并获得20个点赞后,发送截屏至微信号“1842204974”,我们将在24小时内发送给您,谢谢!】 石墨电极产业链12家企业调研:四、五月份已显著消耗掉前期库存,供求更紧张的日子很快就会来到 1)后钢铁时代板块难有大的投资机会。从人均钢产量和钢铁积蓄量等多个维度来看,中国的钢铁消费峰值在2013年已经达到;参考美国和日本的经验,钢铁峰值过后的10年内,市场化的兼并重组并没有展开,产销量降20%-50%,从业人口减半,整个板块几无大的投资机会。我们认为供给侧改革有助于改善中国钢铁板块的投资机会,但不能改变大趋势;中国钢铁板块的大机会只能寻找结构性的细分领域。 2)电炉钢产业链的战略机遇已到:市场和政策双重共振。2016年10月开始的轰轰烈烈清零地条钢的供给侧改革使得废钢价格大跌,进而引发电炉钢和高炉-转炉钢经济效益的

比较出现了拐点,我们认为这一红利能持续1-2年,随后中国步入废钢折旧周期,将继续推动电炉钢步入一个新的更长的成长周期。电炉钢相对于高炉-转炉钢更加节能、环保和低碳,预计其占整个钢产量的比重有望由2016年的6%提升至2030年的30%。 3)石墨电极行业迎来供给和需求双重驱动的景气趋势。一方面,全国石墨电极46%的产能受到“2+26”大气污染防治强化督查影响,产能利用率难有提升甚至面临下降,21%的产能则受制于常年亏损和资金匮乏影响,复产之路漫长;另一方面,石墨电极55%用在电炉钢,而电炉钢产量今年有望增长70%,未来10-20年有望翻4番以上。在目前高利润驱使下电炉钢复产成趋势,而石墨电极全产业低库存、生产周期4.5个月,新建产能周期2-3年,因此行业的景气趋势有望继续。 4)主要原材料针状焦的供求紧张局面有望逐步趋缓。一方面,虽然针状焦价格年内已涨77%,但并没有阻碍石墨电极盈利的改善,以500mm超高功率石墨电极为例,1-5月价格累计上涨2.23万元(涨幅150%),而税前利润则上涨 1.90万元;另一方面,在针状焦国产化已有55%的背景下,2017年6月开始,11万吨(相当于2016年全年全国表观消费量的76%)针状焦将步入逐步投产期,有助于缓解供不应求的局面。

石墨矿情况介绍

石墨矿情况介绍 一、石墨简介 (一)石墨概念 石墨(graphite)是有机成因的碳质物变质而成,最常见于大理岩、片岩或片麻岩中。煤层可经热变质作用部分形成石墨,而少量石墨则是火成岩的原生矿物。石墨由于其特殊结构,具有耐高温性、抗热震性、导电性、润滑性、化学稳定性以及可塑性等众多特性,一直是军工与现代工业及高、新、尖技术发展中不可或缺的重要战略资源,石墨应用范围广泛,国际曾有专家预言“20世纪是硅的世纪,21世纪将是碳的世纪”。 石墨鉴定特征:1、铁黑色,硬度低,一组极完全解理,有滑感和染手。2、石墨是在高温下形成。3、石墨最常见于大理岩、片岩或片麻岩中,是有机成因的碳质物变质而成。煤层可经热变质作用部分形成石墨。少量石墨是火成岩的原生矿物。石墨也常见于陨石中,一般为团块状,以一定方位关系组成立方体外形的多晶集合体称方晶石墨。 (二)石墨的分类 1、天然石墨 按石墨结晶形态和工艺特性,将天然石墨分为三类: (1)致密结晶状石墨

致密结晶状石墨又叫块状石墨。此类石墨结晶明显,晶体肉眼可见。颗粒直径大于0.1毫米,比表面积范围集中在0.1-1m2/g,晶体排列杂乱无章,呈致密块状构造。这类石墨矿品位很高,一般含碳量为60~65%,有时达80~98%,但其可塑性和滑腻性不如鳞片石墨好。 (2)鳞片石墨 鳞片石墨晶体呈鳞片状;这是在高温高压下变质而成的,有大鳞片和细鳞片之分。此类石墨矿品位不高,一般在2~3%,或10~25%之间。它是自然界中可浮性最好的矿石之一,经过多磨多选可得高品位石墨精矿。这类石墨的可浮性、润滑性、可塑性均比其他类型石墨优越,因此其工业价值最大。 (3)隐晶质石墨 隐晶质石墨又称微晶石墨或土状石墨,这种石墨的晶体直径一般小于1微米,比表面积范围集中在1-5m2/g,是微晶石墨的集合体,只有在电子显微镜下才能见到晶形。此类石墨的特点是表面呈土状,缺乏光泽,润滑性比鳞片石墨稍差。品位较高,一般固定碳含量60~85%。少数高达90%以上。一般应用于铸造行业比较多。主要蕴藏在湖南郴州鲁塘。随着石墨提纯技术的提高,土状石墨的应用将越来越广泛。 2、人造石墨

石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用石墨烯(Graphene)是一种仅由碳原子以sp2杂化轨道组成六角型晶格的平面薄膜,亦即只有一个碳原子厚度的二维材料。相比其他炭材料如碳纳米管,石墨烯具有独特的微观结构,这使得石墨烯具有较大的比表面积和蜂窝状空穴结构,具有较高的储锂能力。此外,材料本身具有良好的化学稳定性、高电子迁移率以及优异的力学性能,使其作为电极材料具有突出优势。与碳纳米管类似,纯石墨烯材料由于首次循环库仑效率低、充放电平台较高以及循环稳定性较差等缺陷并不能取代目前商用的炭材料直接用作锂离子电池负极材料。随着制备技术的发展,通过控制石墨烯片层间的间距,防止固体电介质层的形成大量消耗锂离子,并合理平衡缺陷结构与“死锂”的产生也许是石墨烯材料进一步向实用化材料发展的方向之一。 1.硅-石墨烯基复合材料在锂电池负极材料中的应用 石墨烯也是对硅负极进行改性的重要骨架材料。它能够提供自由空间来缓冲充放电过程中的体积效应,保证脱嵌锂过程中材料结构的完整性;同时,石墨烯片层间能形成稳定的导电网络,从而提高电极的储锂性能。Lee等将纳米硅颗粒高度分散在石墨烯薄片上,然后进行热处理还原得到硅-石墨烯复合材料,电化学测试表明,该复合材料经过50个循环后,容量大于2200mA·h/g,200个循环后容量大于1500mA·h/g,每个循环的衰减率小于0.5%。该复合材料优异的电化学性能得益于纳米硅颗粒均匀分散在柔韧的石墨烯层间,不仅改善了硅的电子电导,而且有效缓冲了硅的体积效应。 高鹏飞通过喷雾干燥技术将二维的石墨烯加工成具有三维结构的导电网络,同时将纳米硅粉包裹在其内部空腔内,得到了一种“包裹型”硅碳复合材料。该材料具有高达1525mA·h/g 的比容量和较好的循环稳定性。这得益于硅与石墨烯的协同效应,纳米硅粒可分隔石墨烯层,防止其堆叠失效;而石墨烯层可以缓冲硅的体积效应,其导电网络结构可改善活性硅颗粒的电接触,维持材料结构稳定。Ma等通过喷雾干燥法合成具有浴花形状的硅-石墨烯复合材料(见图1)。电化学测试表明,该复合材料的首次充放电容量分别为2174mA·h/g和1252mA·h/g,经过30个循环后,可逆容量仍保持在1500mA·h/g以上。其优异的电化学性能归因于这种特殊的浴花状结构以及石墨烯与纳米硅颗粒之间的协同作用,石墨烯提供足够的空间来缓冲充放电过程中硅的体积变化,并防止硅颗粒的聚集。此外,高导电性的石墨烯包裹活性纳米硅颗粒,从而保持其循环过程中稳定的电接触。

石墨电极的生产工艺流程和质量指标的及消耗原理知识讲解

石墨电极的生产工艺流程和质量指标的及 消耗原理

目录 一、石墨电极的原料及制造工艺 二、石墨电极的质量指标 三、电炉炼钢简介及石墨电极的消耗机理 石墨电极的原料及制造工艺 ●石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混 捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。生产石墨电极的原料有石油焦、针状焦和煤沥青 ●石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑 多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于 易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 ●石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟 焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 ●石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中 硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 ●针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石 墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结 构,因而称之为针状焦。 ●针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具 有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 ●针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青 原料生产的煤系针状焦。 ●煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合 物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。

石墨电极

石墨电极 石墨电极(graphite electrode) 以石油焦、沥青焦为颗粒料,煤沥青为黏结剂,经过}昆捏、成型、焙烧、石墨化和机械加工而制成的一种耐高温的石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温为热源,使炉料熔化进行炼钢,其他一些电冶炼或电解设备也常使用石墨电极为导电材料。2000年全世界消耗石墨电极100万t左右,中国2000年消耗石墨电极25万t左右。利用石墨电极优良的物理化学性能,在其他工业部门中也有广泛的用途,以生产石墨电极为主要品种的炭素制品工业已经成为当代原材料工业的重要组成部门。 简史早在1810年汉佛莱?戴维(Humphry Davy)利用木炭制成通电后能产生电弧的炭质电极,开辟了使用炭素材料作为高温导电电极的广阔前景,1846年斯泰特(Stair)和爱德华(Edwards)用焦炭粉及蔗糖混合后加压成型,并在高温下焙烧从而制造出另一种炭质电极,再将这种炭质电极浸在浓糖水中以提高其体积密度,他们获得了生产这种电极的专利权。1877年美国克利夫兰(Cleveland)的勃洛希(C.F.Brush)和劳伦斯(https://www.sodocs.net/doc/1e14669186.html,wrence)采用煅烧过的石油焦研制低灰分的炭质电极获得成功。1899年普利查德(O.G.Pritchard)首先报道了用锡兰天然石墨为原料制造天然石墨电极的方法。1896年卡斯特纳(H.Y.Gastner)获得了使用电力将炭质电极直接通电加热到高温,而生产出比天然石墨电极使用性能更好的人造石墨电极的专利权。1897年美国金刚砂公司(Carborundum Co.)的艾奇逊(E.G.Acheson)在生产金刚砂的电阻炉中制造了第一批以石油焦为原料的人造石墨电极,产品规格为22mm×32m mX380mm,这种人造石墨电极当时用于电化学工业生产烧碱,在此基础上设计的“艾奇逊”石墨化炉将由石油焦生产的炭质电极及少量电阻料(冶

石墨烯基超级电容器电极材料研究进展..

**大学研究生课程考试(查)论文2014——2015学年第二学期 《石墨烯基超级电容器电极材料研究进展》 课程名称:材料化学 任课教师: 学院: 专业: 学号: 姓名: 成绩:

石墨烯基超级电容器电极材料研究进展 摘要:超级电容器是目前研究较多的新型储能元件,其大的比电容、高的循环稳定性以及快速的充放电过程等优良特性,使其在电能储存及转化方面得到广泛应用。超级电容器的电极材料是它的技术核心。石墨烯作为一种新型的纳米材料,具有良好的导电性和较大的比表面积,可作为超级电容器的电极材料。利用其他导电物质对石墨烯进行改性和复合,可以在保持其本身独特优点的同时提高作为电极材料的导电率、循环稳定性等其他性能。本文对近年来石墨烯基电极材料在两种不同类型超级电容器中的应用研究进行了综述。 关键词:超级电容器;石墨烯;导电聚合物;金属氧化物 随着人类社会赖以生存的环境状况的日益恶化,过多的CO2排放造成气候变化不稳定,人们对能源的开发和研究重点已经转移到绿色能源(如太阳能、风能等)上面[1, 2],但是它们是靠大自然的资源来储能和转化能量的,其发电能力极大程度要受到自然环境以及季节变化的影响,如果被广泛应用于日常生活,有很多不稳定性,这也是目前太阳能、风能领域的瓶颈。超级电容器,又称作电化学电容器,是一种既稳定又环保的新型储能元件。它具有充电时间短、使用寿命长、功率密度高、安全系数高、节能环保、低温特性好等优点。超级电容器在现代科技、工业、航天事业方面的应用都十分广泛,它代表了高储能技术的一次突破。目前,国内在相关方面做了许多研究,并实现了商业化生产。但是,它们的广泛应用还存在,例如,能量密低、成本过高等问题。 从原理出发,超级电容器可分为双电层电容器和法拉第赝电容器两类。两者均是由多孔双电极、电解质、集流体、隔离物4部分所构成(超级电容器结构如图1所示)。为了减小接触电阻,要求电解质和电极材料紧密接触;隔离物的电子电导要低,离子电导要高,以保证电解质离子顺利穿透。双电层电容器是利用双电极和电解质组成的双电层结构来实验充放电储能的。当在两电极上施加电压,电解质被电离产生正负离子,由于电荷补偿,正离子移向负电极,负离子移向正电极,这样就在电极与电解质界面处产生双电层。由于这个双电层是由相反电荷层构成,如同普通平板电容器一样,但是此双电层间距很小,是原子尺寸量

石墨电极知识

石墨电极 1、石墨电极,主要以、为原料,作结合剂,经、配料、混捏、压型、焙烧、石墨化、机加工而制成,是在电弧炉中以电弧形式释放电能 对炉料进行加热熔化的导体,根据其质量指标高低,可分为普通功率、高功率和超高功率。 2、使用说明 (1)受潮湿的石墨电极,使用前要烘干。 (2)去除备用石墨电极孔上的泡沫塑料保护帽,检查电极孔内螺纹 是否完整。 (3)用不含油和水的压缩空气清理备用石墨电极表面和孔内螺纹; 避免用钢丝团或金属刷砂布清理。 (4)将接头小心地旋入备用石墨电极一端(不建议将接头直接装入 炉上撤换下来的电极)的电极孔内,不得碰撞螺纹。 (5)将电极吊具(建议采用石墨材质的吊具)拧入备用电极另一端的 电极孔内。 (6)起吊电极时,垫松软物到备用电极装接头一端的下面,以防止 地面碰损接头;用吊钩伸入吊具的吊环后吊起,吊运电极要平稳,防 止电极由B端松脱或与其它的固定装置碰撞。 (7)将备用电极吊到待接电极上方,对准电极孔后慢慢落下;旋转 备用电极,使螺旋吊钩与电极一起转动下降;在两支电极端面相距 10-20mm时,再次用压缩空气清理电极两个端面和接头的裸露部分; 在最后完全下放电极时,不可过猛,否则因猛烈碰撞,会导致电极 孔和接头的螺纹受损。 (1)用力矩扳手拧备用电极,直到两支电极的端面紧密接触为止 (电极和接头的正确连接夹缝小于0.05mm)。 石墨在大自然中非常普遍,并且石墨烯是人类已知强度最高的物质,但科学家可能仍然需要花费数年甚至几十年时间,才能找到一种将 石墨转变成大片高质量石墨烯"薄膜"的方法,从而可以用它们来为 人类制造各种有用的物质。据科学家称,石墨烯除了异常牢固外,

石墨电极的原料及制造工艺

石墨电极的原料及制造工艺

石墨电极的原料及制造工艺 一、石墨电极的原料 1、石墨电极 是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。 2、石墨电极的原料 生产石墨电极的原料有石油焦、针状焦和煤沥青 (1)石油焦 石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 (2)针状焦 针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结构,因而称之为针状焦。 针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。 (3)煤沥青 煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。 煤沥青在炭素工业中作为粘结剂和浸渍剂使用,其性能对炭素制品生产工艺和产品质量影响极大。粘结剂沥青一般使用软化点适中、结焦值高、β树脂高的中温或中温改质沥青,浸渍剂要使用软化点较低、 QI低、流变性能好的中

石墨矿资源概述

石墨矿资源概述 石墨是碳元素的结晶矿物之一,具有润滑性、化学稳定性、耐高温、导电、特殊的导热性和可塑性、涂敷性等优良性能,其应用领域十分广泛。石墨在冶金工业中主要用作耐火材料;在铸造业中用作铸模和防锈涂料;在电气工业中用于生产碳素电极、电极碳棒、电池,制成的石墨乳可用作电视机显像管涂料,制成的碳素制品可用于发电机、电动机、通讯器材等诸多方面;在机械工业中用作飞机、轮船、火车等高速运转机械的润滑剂;在化学工业中用于制造各种抗腐蚀器皿和设备;在核工业中用作原子反应堆中的中子减速剂和防护材料等;在航天工业中可做火箭发动机尾喷管喉衬,火箭、导弹的隔热、耐热材料以及人造卫星上的无线电连接信号和导电结构材料。此外,石墨还是轻工业中玻璃和造纸的磨光剂和防锈剂,制造铅笔、墨汁、黑漆、油墨和人造金刚石的原料。随着现代科学技术和工业的发展,石墨的应用领域还在不断拓宽,已成为高科技领域中新型复合材料的重要原料,在国民经济中具有重要的作用。 一、矿石矿物原料特点 石墨的化学成分为碳(C)。天然产出的石墨很少是纯净的,常含有10%~20%的杂质,包括SiO2、Al2O3、MgO、CaO、P2O5、CuO、V2O5、H2O、S、FeO以及H、N、CO2、CH4、NH3等。石墨矿物呈铁黑、钢灰色,条痕光亮黑色;金属光泽,隐晶集合体光泽暗淡,不透明;解理{0001}完全,硬度具异向性,垂直解理面为3~5,平行解理面为1~2;质软,密度为2.09~2.23g/cm3,有滑腻感,易污染手指。矿物薄片在透射光下一般不透明,极薄片能透光,呈淡绿灰色,一轴晶,折射率1.93~2.07,在反射光下呈浅棕灰色,反射多色性明显,Ro灰色带棕,Re深蓝灰色,反射率Ro23(红),Re5.5(红),反射色、双反射均显著,非均质性强,偏光色为稻草黄色。石墨属复六方双锥晶类,沿{0001}呈六方板状晶体,常见单形有平行双面、六方双锥、六方柱,但完好晶形少见,一般呈鳞片状或板状,集合体呈致密块状、土状或球状。 石墨晶体具典型的层状结构,碳原子排列成六方网状层,面网结点上的碳原子相对于上下邻层网格的中心。重复层状为2的是石墨2H多型,属六方晶系,即通常所指的石墨;若重复层状为3的则为石墨3 R多型,属三方晶系,但在天然石墨结构中不能单独分离出来。在石墨晶体结构中,层内碳原子的配位数为3,具共价金属键,间距0.142nm,层与层间以分子键相连,间距为0.340nm,此种特殊的晶体结构和化学键性使石墨具有一些特殊的工艺性能。 由于碳原子在石墨结晶格子的原子层中排列紧密,热振动困难,因而石墨能耐高温并具特殊的热性能。石墨的熔点为3850℃,沸点为4250℃,吸热量6.9036×107J/kg,经高温电弧灼烧重量损失极小,在2500℃时其强度比常温时提高1倍,热膨胀系数小(1.2×10-6),温度骤变时其体积变化不大。由于石墨晶体中存在容易流动的电子,因此其导电、导热性能不亚于金属。但随温度升高,导热系数反而减少,在极高温度下趋于不导热状态。石墨的化学稳定性好,不受酸、碱及有机溶剂的侵蚀。石墨的润滑性能类似于二硫化钼和四氟化烯,摩擦系数在润滑介质中小于0.1,尤以鳞片状石墨的润滑性更好。此外,石墨还具涂敷性和可塑性,将其涂敷在固体物体表面,可形成薄膜牢固粘附而起保护固体作用,并可制成任何复杂形状的制品。 由于石墨的工艺性能及用途主要决定于其结晶程度,据此,中国工业上将石墨矿石主要分为晶质(鳞片状)石墨矿石和隐晶质(土状)石墨矿石两种工业类型。晶质(鳞片状)石墨矿石中,石墨晶体直径大于1μm,呈鳞片状;矿石品位较低,但可选性好;与石墨伴生的矿物常有云母、长石、石英、透闪石、透辉石、石榴子石和少量黄铁矿、方解石等,有的还伴生有金红石及钒等有用组分;矿石呈鳞片状、花岗鳞片或粒状变晶结构,片状、片麻状或块状构造。隐晶质(土状)石墨矿石中,石墨晶体直径小于1μm,呈微晶的集合体,在电子显微镜下才能见到晶形;矿石品位高,但可选性差;与石墨伴生的矿物常有石英、方解石等;矿石呈微细鳞片-隐晶质结构,块状或土状构造。中国石墨矿石绝大多数为晶质(鳞片状)矿石,约占总保有石墨矿石储量的98%,分布于区域变质型及岩浆热液型石墨矿床中;隐晶质(土状)石墨矿石则主要分布于接触变质型矿床中。实际上石墨矿石中的石墨片径是参差不齐的,所谓晶质石墨矿石中,也可能含隐晶质

我国石墨电极行业研究

我国石墨电极行业研究 (一)行业发展概况 炭素材料是指以碳元素为主要成分的材料的总称。炭素制品根据生产工艺大致可分为石墨制品、炭制品、炭素新材料和其他炭素产品四大类,其中石墨制品主要包括石墨电极、特种石墨。 石墨电极以石油焦、针状焦为骨料,煤沥青作结合剂,经混捏、压型、焙烧、石墨化、机加工等工序制成。石墨电极根据允许使用电流密度大小,可分为普通功率石墨电极、高功率石墨电极、超高功率石墨电极,具体如下: 石墨电极是钢铁生产所需的重要耗材。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温为热源,使炉料熔化进行炼钢,其他一些电冶炼或电解设备也常使用石墨电极作为导电材料。电弧炉炼钢石墨电极的消耗量既取决于电极的质量,也与炼钢操作及管

理水平有关。 十九世纪末美国公司发明了以石油焦为原料的人造石墨电极,开启了工业化制造石墨电极的历史,开辟了使用炭素材料作为高温导电电极的广阔前景。随着石墨电极的优良性能以及制造工艺的不断改进,大规格石墨电极的大批量生产以及超高功率石墨电极的研发成功,电炉炼钢工业逐步开始大规模使用人造石墨电极。 中国石墨电极工业起步较晚但发展较快。石墨电极行业起步于国家“一五”期间建设的156项工程,20世纪50年代末我国从苏联引进技术建设首条电极生产线,奠定了我国石墨电极产业发展的基础。到20世纪80年代及90年代中国各地相继建成的炭素企业有上百家。20世纪90年代初我国已经掌握了代表国际先进水平大规格大直径超高功率石墨电极的生产技术。进入二十一世纪以来,在国民经济较快增长和钢铁行业快速发展的带动下,我国石墨电极产业得到了快速发展。 目前我国已成为全球主要的石墨电极产销国之一,中国石墨电极已出口超过80多个国家和地区,由于价格合适、质量可靠,国际化经营已初具规模,在全球炭素行业具有较大的影响力。根据中国炭素行业协会的不完全统计,2018年中国石墨电极类产品产量为64.97万吨,同比增长17.83%,其中超高功率石墨电极产量26.90万吨,同比增长47.53%;2018年石墨电极类产品销售量58.73万吨,同比增长6.77%,其中超高功率石墨电极26.24万吨,同比增长37.04%。

电解池知识点归纳

电解池 第1课时 电解原理 学习目标 1、理解电解原理,初步掌握一般电解反应两极反应物、产物的判断方法,能写出电极反应式和电解化学方程式。 知识归纳 1、电解:使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的过程,叫做电解。其实质是电解质溶液导电的过程。 电解池:把电能转化为化学能的装置,叫做电解池。 2、电极:(与电极材料无关)阳极:与电源的正极相连,发生氧化反应; 阴极:与电源的负极相连,发生还原反应。 3、构成条件:“三电一回路”①直流电源;②阴、阳电极;③电解质溶液或熔融电解质;④形成闭合回路。 4、(1)影响离子放电能力的因素:①离子得失电子的能力;②离子的浓度。 (2)离子的放电顺序:(物质在电解池的阴、阳两极发生反应的过程叫放电) 阴极:氧化性强的离子先得电子 Ag +>Hg 2+>Fe 3+>Cu 2+>H +(酸溶液)>Pb 2+>Sn 2+>Fe 2+>Zn 2+>H +(水溶液)>Al 3+>Mg 2+>Na +>Ca 2+>K + 阳极:阳极金属或还原性强的离子先失电子 活性电极>S 2->I ->Br ->Cl ->OH ->N>S>F - 5、分析总结书写电解池电极反应的一般思路 ? 6、原电池和电解池的区别 负较活泼金属阳与电源正极相连正不活泼金属或非金属导体阴与电源负极相连三个①活动性不同的两个电极①两个电极原电池 电解池一个概念 将化学能转变为电能的装置将电能转变为化学能的装置两个电极 极—失电子—发生氧化反应极—失电子—发生氧化反应极—得电子—发生还原反应极—得电子—发生还原反应流向电子负极→外电路→正极阳极→外电路→阴极 电流正极→外电路→负极阴极→外电路→阳极 离子阳离子→正极,阴离子→负极阳离子→阴极,阴离子→阳极 四个条件 ②电解质溶液③闭合电路④自发进行的氧化还原反应②电解质溶液③闭合电路④外加直流电源相同点氧化还原反应

石墨坩埚分类以及主要用途

石墨坩埚分类以及主要用途 石墨具有独特的有限,在工业中被应用于不同的领域,就石墨坩埚来说,坩埚是以结晶形天然石墨为主体原料,可塑性耐火粘土作粘结剂,经与不同类型熟料配合而制成的主要应用于冶炼特种合金钢、熔化有色金属及其合金的耐火石墨坩埚。根据信瑞达石墨对石墨的了解,就产品的性能、用途而言,石墨坩埚分类以及主要用途 石墨具有独特的有限,在工业中被应用于不同的领域,就石墨坩埚来说,坩埚是以结晶形天然石墨为主体原料,可塑性耐火粘土作粘结剂,经与不同类型熟料配合而制成的主要应用于冶炼特种合金钢、熔化有色金属及其合金的耐火石墨坩埚。就产品的性能、用途而言,石墨坩埚是耐火材料的一个组成部分。 坩埚可分为石墨坩埚、粘土坩埚和金属坩埚三大类。在石墨坩埚中,又有普型石墨坩埚与异型石墨坩埚及高纯石墨坩埚三种。各种类型的石墨坩埚,由于性能、用途和使用条件不同,所用的原料、生产方法、工艺技术和产品型号规格也都有所区别。石墨坩埚的主体原料,是结晶形天然石墨。故它保持着天然右墨原有的各种理化特性。即:具有良好的热导性和耐高温性,在高温使用过程中,热膨胀系数小,对急热、急冷具有一定抗应变性能。对酸,碱性溶液的抗腐蚀性较强,具有优良的化学稳定性。 坩埚的型号规格较多,在应用时不受生产规模、批量大小和熔炼物质品种的限制,可任意选择,适用性较强,并可保证被熔炼物质的纯度。石墨坩埚,因具有以上优良的性能,所以在冶金、铸造、机械、化工等工业部门,被广泛用于合金工具钢的冶炼和有色金属及其合金的熔炼。并有着较好的技术经济效果。坩埚的种类大体分为三大类:第一类炼铜坩埚,其规格“号”,;第二类为炼铜合金坩埚,特圆形有100个号,圆形有100个号,第三种炼钢用的坩埚,有100个号。 坩埚规格(大小),通常是用顺序号大小表示的,1号坩埚具有能熔化1000g黄铜的容积,其重量为180g。坩埚在熔炼不同金属或合金时熔化量计算,可以坩埚的容重规格号,乘上相应金属和合金系数。坩埚的生产原料,可概括为三大类型。一是结晶质的天然石墨,二是可塑性的耐火粘土,三是经过煅烧的硬质高岭土类骨架熟料。近年来,开始采用耐高温的合成材料,如:碳化硅、氧化铝金刚砂及硅铁等做坩埚的骨架熟料。这种熟料对提高坩埚产品质量,增强坩埚密度和机械强度有着显著效果。坩埚的成型,有三种方法,较原始古老的成型方法是手塑成型。第二种是旋塑成型法第三种是压型成型法. 石墨坩埚系采用天然鳞片石墨、腊石、碳化硅等原料制成的高级耐火器皿,供冶炼、熔铸铜、铝、锌、铅、金、银以及各种稀有金属之用。 1、用后放置干燥处,切忌雨水侵入;使用前须缓慢烘烤到500摄氏度方可使用。 2、应根据坩埚容量加料,忌挤得太紧,以免金属发生热膨胀胀裂坩埚。 3、取出金属熔液时,最好用勺子舀出,尽量少用卡钳,若用卡钳等工具应与坩埚形状相符,避免局部受力过大而缩短使用寿命。

【石墨产业】全球及中国石墨矿资源分布概况(最新、最全、最详细)

【石墨产业】全球及中国石墨矿资源分布概况(最新、最全、 最详细) 一、全球石墨矿资源概况 1、全球石墨资源储量 全球石墨资源分布既广泛又相对集中,据USGS资料显示,2013年全球石墨总储量约1.3亿吨矿物量。巴西、中国、印度和墨西哥的石墨储量合计占全球总储量的92.77%。中国石墨基础储量约占世界的33%,仅次于巴西(约占世界的38%)。巴西新发现的Almenara石墨矿为罕见的超大型石墨矿,使其石墨总储量由之前的36万吨增加到近5800万吨,位居世界首位。印度石墨矿储量为1100万吨,墨西哥石墨储量为310万吨。 2015年世界主要石墨国家基础储量对比图 2、国外石墨矿床类型 (1)石墨呈浸染鳞片状分布在火山岩、硅质沉积岩中,此类矿床石墨鳞片大,矿石质量高,有著名的马达加斯加大鳞片晶质石墨矿; (2)含石墨矿石呈脉状充填在断裂裂隙和洞穴中,此类矿床石墨品位高,典型的矿床是斯里兰卡的脉状石墨矿;(3)由中酸、酸性花岗岩侵入大理岩中形成热液交代接触变质矿床,此类矿床矿石质量较好,在俄罗斯和朝鲜等国家

有分布; (4)煤或富碳沉积物中的变质石墨矿床矿石中的石墨多为隐晶质,墨西哥、印度及澳大利亚的大部分石墨矿床均属此类型。 3、各国石墨资源概况 巴西 巴西石墨矿分布在MinasGerais、Ceara和Bahia地区,PedraAzul地区拥有巴西最好的鳞片石墨矿,石墨矿石储量已探明2.5亿吨,品位20-25%。新发现的奥门纳拉石墨矿石资源量近5700万吨,碳含量4-10%。 印度印度石墨矿床多为煤或富碳沉积物的变质石墨矿床,主要分布在奥瑞萨邦和拉贾斯坦邦,奥瑞萨邦的石墨矿床赋存于寒武纪地层中,有三个石墨矿带,即:博兰吉尔-桑巴尔普尔矿带、普尔巴尼-长拉汉迪矿带和登卡纳尔矿带,其中最大的矿床延伸达6.4-11.3公里,矿体厚120米。 墨西哥 墨西哥已发现的石墨矿床绝大多数为隐晶质石墨矿床。其石墨矿床主要分布在格雷罗州、索诺拉州和伊达尔戈州。世界上超大型的高质量的隐晶质石墨矿床就位于索诺拉州。该矿床矿体赋存在含煤的深灰红色石英岩之间,矿体厚7.3米,矿体的平均品位非常高,矿石一般品位为80%,最高品位可达95%。

2019年石墨电极企业发展战略和经营计划

2019年石墨电极企业发展战略和经营计划 2019年4月

目录 一、行业发展趋势 (3) 二、公司发展战略 (4) 三、公司经营计划 (4) 1、积极开拓国内外市场 (4) 2、启动公司ERP升级、规范业务流程 (5) 4、加大人才培养和扩充 (5) 5、进一步完善治理结构,优化管理体系 (6) 6、加强成本控制,全面提升生产能力 (6) 四、风险因素 (7) 1、宏观经济和产业政策波动风险 (7) 2、经营管理风险 (7) 3、产品研发、技术创新风险 (8) 4、原材料价格波动风险 (8)

一、行业发展趋势 公司将以石墨电极为主,石墨设备为辅的模式努力壮大,健康科学持续发展。 石墨电极:随着中国电炉炼钢的推广以及新型钢企规模化要求、环保条件的要求等,对于石墨电极的需求突然暴增,中国现有石墨电极产能已无法满足钢厂需求。公司在2018 年新建产能3 万吨直径600mm 超高功率石墨电极项目新增太重研发制造吨压机以及配套的中碎、电子配料、混捏系统,可满足最大生产直径800mm 超高功率石墨电极,为公司生产大规格高端石墨电极产品打下坚实的基础。另外,新建一条隧道窑生产线,配套浸渍设备,增加二次焙烧产能,同时释放现有环室焙烧炉产能给一次焙烧。 公司现在已于国内外多家知名钢铁企业达成合作供货关系,如大冶特钢、青岛钢铁、兴澄特钢、太钢不锈钢、通化钢铁、河北钢铁、鞍钢集团、塔塔钢铁、安裕钢铁、南达线材、金狮钢铁、三菱商事、美国GES 集团、德国恒施克公司等钢铁企业和专业石墨电极销售代理公司。 石墨设备:公司通过6 年发展,已拥有稳定的石墨设备用户,并在行业内小有名气。继续维持现有客户,通过多种渠道推广,承揽设计、生产、维修、更换配件的业务。参与项目投标,争取拿到更多项目订单。

石墨烯透明电极

柔性光电子器件,如有机发光二极管与太阳能电池,已经引起了越来越多研究者的关注。而其中用到的电极材料也需要具备柔性,轻便,低成本等特点,同时可以大批量地生产。 目前主导光电子器件的氧化铟锡(ITO)电极由于机械稳定性差,而且铟资源的日益缺少导致其成本的不断提高。所以急需寻求一些可替代的环保的电极材料。过去几十年研究者们尝试了大量的新型电极材料,比如纳米碳管、金属网格与金属纳米线网等。最近,由于其高导电性、透明性、可弯曲性、空气与高温稳定性,石墨烯作为一种新型的柔性电子学与电极材料得到广泛认同。 迄今为止制备石墨烯透明电极有两种方法:一种是把石墨烯氧化物溶液旋涂在基底上,然后在高温下还原;另一种是利用化学气相沉积法(CVD)的方法在金属镍或者铜表面催化生长石墨烯,然后再转移到不同的基底上。前一种方法很容易制成薄膜,但是需要1000℃高温,所以对很多基底都不合适,像玻璃与聚对苯二甲酸乙二醇酯(PET)分别在500℃与250℃左右就开始融化。后一种方法尽管不需要太高温度,却要使用复杂的CVD设备,同时还需要转移石墨烯膜的额外程序。因此开发一种低成本、高产出,同时不需高温处理、真空设备与膜转移步骤的方法来制备石墨烯透明柔性电极很有必 要。 香港理工大学纺织制衣系郑子剑教授的研究组与陶晓明教授合作,发展了一种简便的制备高质量石墨烯复合电极(graphene composite electrode, GCE)的方法。他们首先制备磺酸化修饰的石墨烯氧化物,再进行原位水合肼还原,得到大量(克级)径向尺寸大于50微米、并具有良好水溶性的石墨烯片。将此石墨烯的溶液进一步用导电聚噻吩(poly(3,4-ethylenedioxythiophene): polystyrenesulfonate,PEDOT: PSS)掺杂所得到的石墨烯复合溶液,能够很好地旋涂在玻璃或者PET 的基底上。然后只需要在150℃下退火,便可以得到高导电率(80 Ω sq ? 1)和高透光率(80%)的石墨烯复合材料透明电极。在1000次弯曲测试中,电极显示了极好的稳定性,导电性没有明显降低。 使用该电极制备的有机发光二极管在发光效果上也比基于ITO电极的器件高出2倍。

相关主题