搜档网
当前位置:搜档网 › 老厂房混凝土柱加钢吊车梁牛腿结构施工图

老厂房混凝土柱加钢吊车梁牛腿结构施工图

老厂房混凝土柱加钢吊车梁牛腿结构施工图

吊车梁设计

吊车梁系统结构组成 吊车梁设计 吊梁通常简单地支撑(结构简单,施工方便且对轴承不敏感) 常见形式为:钢梁(1),复合工字梁(2),箱形梁(3),起重机桁架(4)等。 吊车梁上的负载 永久载荷(垂直) 具有横向和横向方向的动载荷具有重复作用的特征,并且容易引起疲劳破坏。因此,对钢的高要求,除抗拉强度,伸长率,屈服点等常规要求外,还要确保冲击韧性合格。 吊车梁结构系统的组成 1.吊梁 2.制动梁或制动桁架 吊车梁的负载 吊车梁直接承受三个载荷:垂直载荷(系统重量和重量),水平载荷(制动力和轨道夹紧力)和纵向水平载荷(制动力)。 吊车梁的设计不考虑纵向水平荷载,而是根据双向弯曲进行设计。 垂直载荷,横向水平载荷和纵向水平载荷。 垂直载荷包括起重机及其重量以及起重机梁的自重。 当起重机通过导轨时,冲击将对梁产生动态影响。设计中采用增加车轮压力的方法。 横向水平载荷是由轨道夹紧力(轨道不平整)产生的,它会产生

横向水平力。 起重机负荷计算 根据载荷规范,起重机水平横向载荷的标准值应为横向小车的重力g与额定起重能力的Q之和乘以以下百分比: 软钩起重机:Q≤100kN时为20% 当q = 150-500kn时为10% Q≥750kn时为8% 硬钩起重机:20% 根据GB 50017的规定,重型工作系统起重机梁(工作高度为a6-a8)由起重机摆动引起的作用在每个车轮压力位置上的水平力的标准值如下: 吊车梁的内力计算 计算吊车梁的内力时,吊车荷载为移动荷载, 首先,应根据结构力学中影响线的方法确定每种内力所需的起重机负载的最不利位置, 然后,计算在横向水平载荷作用下的最大弯曲力矩及其相应的剪切力,支座处的最大剪切力和水平方向上的最大弯曲力矩。 在计算吊车梁的强度,稳定性和变形时,应考虑两台吊车; 疲劳和变形的计算采用起重机载荷的标准值,而不考虑动力系数。 1.首先,根据影响线法确定载荷的最不利位置; 2.其次,计算吊车梁的最大弯矩和相应的剪力,支座处的最大剪力以及横向水平荷载下的最大弯矩。

钢结构节点图

门式刚架横梁与立柱连接节点,可采用端板竖放、平放和斜放三种形式(图、b 、c )。斜梁与刚架柱连接节点的受拉侧,宜采用端板外伸式,与斜梁端板连接的柱的翼缘部位应与端板等厚度;斜梁拼接时宜使端板与构件外边缘垂直(图),应采用外伸式连接,并使翼缘内外螺栓群中心与翼缘中心重合或接近。 屋面梁与摇摆柱连接节点应设计成铰接节点,采用端板横放的顶接连接方式(图)。 屋面梁与混凝土柱采用锚栓连接(图),该连接节点应为铰接节点,锚栓及底板设计同铰接柱脚。 吊车梁承受动力荷载,其构造和连接节点须满足以下规定: 4 吊车梁与制动梁的连接,可采用高强度摩擦型螺栓连接或焊接。吊车梁与刚架上柱的 连接处宜设长圆孔(图);吊车梁与牛腿处垫板采用焊接连接(图);吊车梁之间应采用高强螺栓连接。 (a)端板竖放 (b)端板平放 (c)端板斜放 (d)斜梁拼接 图 刚架连接节点 图 屋面梁和混凝土柱连接节点 (a) (b) (a) (b) (c) 图 屋面梁和摇摆柱连接节点

用于支承吊车梁的牛腿可做成等截面,当也可做成变截面(图);柱在牛腿上下翼缘的相应位置处应设置横向加劲肋;为保证传力均匀,在牛腿上翼缘吊车梁支座处应设置垫板,垫板与牛腿上翼缘连接采用围焊;为避免较大的局部承压应力,在吊车梁支座对应的牛腿腹板处应设置横向加劲肋。 牛腿与柱连接处承受剪力V 和弯矩M=Ve 作用,其截面强度和连接焊缝应按现行钢结构设计规范GB50017进行计算。 在设有夹层的结构中,夹层梁与柱可采用刚接,也可采用铰接(图)。当采用刚接连接时,夹层梁翼缘与柱翼缘应采用全熔透焊接,而腹板可采用高强螺栓与柱连接。柱在与夹层梁上下翼缘相应处应设置横向加劲肋。 山墙柱与刚架横梁宜采用铰接,若山墙柱仅传递水平风荷载,可采用图所示的弹簧片连接方图 夹层梁与柱连接节点 (a)梁与边柱刚接 (b)梁与边柱铰接 (c)梁与中柱刚接 (d)梁与中柱铰接 图 牛腿节点 (a)等截面牛腿 (b)变截面牛腿

吊车梁钢结构专项施工方案样本

太钢第二炼钢厂离线维修车间跑道梁更换工程 吊车梁吊装专项方案 编制: 审核: 批准: 山西钢建金结公司 /7/20 目录

1、方案编制目的1 2、方案编制依据 1 3、工程概况 1 4、施工人员、机械配置2 5、施工准备2 6、吊装工艺16 7、安全技术措施18 8、质量控制措施18 吊装专项方案

一、编制本施工组织的目的 为了顺利、安全、按时完成太钢第二炼钢厂离线维修车间跑道梁更换工程, 特编制本方案。 二、编制本施工组织的规范和标准 《建筑结构设计统一标准》( GBJ68-84) 《建筑结构荷载规范》( GBJ17-88) 《钢结构设计规范》( GBJ17-88) 《钢结构工程施工及验收规范》( GB50205-95) 《钢结构工程质量检验评定标准》( GB50221-95) 《建筑钢结构焊接规程》( GBJ81-91) 三、工程概况 该工程为山西太钢不锈钢股份有限公司硅钢冷连轧配套技术改造项目、二钢南区连铸离线维修车间天车跑道梁改造项目及拆除和安装工程。天车梁的改造更换共分两个区域: 一区为6#门F、G、H跨厂房内部, 其中F列100~104线将原有12米吊车梁共四套改为24米吊车梁两套; 对G列99~101线间和104~106线间的24米双肩吊车梁共四根进行改造; 对H列101~102线间的屋面支撑结构进行改造。二区为炼钢车间四号转炉B列7~8线间的18米吊车梁拆除及安装项目。 四、施工人员、机械设备 劳动力需用计划 管理人员: 3人, 安装操作人员: 40人, 电工: 1人, 电焊工20人, 合计64

人。 现场安装主要施工机具表 五、施工准备 1、技术准备 经过现场调查, 了解场地、设备、人员情况, 合理分配加工构件的数量, 场地道路及供电情况, 确定合理的吊装方案。 2、组织准备 落实现场管理班子和安装队, 保证劳动力充分、技术熟练。做好各项技术安全交底工作, 保证施工人员安全。专业人员需提供专业证件, 施工单位需提供施工相关资质。 3、施工条件 ( 1) 吊装现场准备 在钢结构正式吊装前, 需对建筑物的定位轴线、基础轴线和标高等进行检查, 确保安装定位的精度。

钢结构节点图

10.2.3 门式刚架横梁与立柱连接节点,可采用端板竖放、平放和斜放三种形式(图10.2.3a 、b 、c )。斜梁与刚架柱连接节点的受拉侧,宜采用端板外伸式,与斜梁端板连接的柱的翼缘部位应与端板等厚度;斜梁拼接时宜使端板与构件外边缘垂直(图10.2.3d ),应采用外伸式连接,并使翼缘内外螺栓群中心与翼缘中心重合或接近。 10.2.8 屋面梁与摇摆柱连接节点应设计成铰接节点,采用端板横放的顶接连接方式(图10.2.8)。 10.2.9 屋面梁与混凝土柱采用锚栓连接(图10.2.9),该连接节点应为铰接节点,锚栓及底板设计同铰接柱脚。 10.2.11 吊车梁承受动力荷载,其构造和连接节点须满足以下规定: 4 吊车梁与制动梁的连接,可采用高强度摩擦型螺栓连接或焊接。吊车梁与刚架上柱的 连接处宜设长圆孔(图10.2.11-3a );吊车梁与牛腿处垫板采用焊接连接(图10.2.11-3b );吊车梁之间应采用高强螺栓连接。 (a)端板竖放 (b)端板平放 (c)端板斜放 (d)斜梁拼接 图10.2.3 刚架连接节点 图10.2.9 屋面梁和混凝土柱连接节点 (a) (b) (a) (b) (c) 图10.2.8 屋面梁和摇摆柱连接节点

10.2.12 用于支承吊车梁的牛腿可做成等截面,当也可做成变截面(图10.2.12);柱在牛腿上下翼缘的相应位置处应设置横向加劲肋;为保证传力均匀,在牛腿上翼缘吊车梁支座处应设置垫板,垫板与牛腿上翼缘连接采用围焊;为避免较大的局部承压应力,在吊车梁支座对应的牛腿腹板处应设置横向加劲肋。 牛腿与柱连接处承受剪力V 和弯矩M=Ve 作用,其截面强度和连接焊缝应按现行钢结构设计规范GB50017进行计算。 10.2.13 在设有夹层的结构中,夹层梁与柱可采用刚接,也可采用铰接(图10.2.13)。当采用刚接连接时,夹层梁翼缘与柱翼缘应采用全熔透焊接,而腹板可采用高强螺栓与柱连接。柱在与夹层梁上下翼缘相应处应设置横向加劲肋。 图10.2.11-3 吊车梁连接节点 (a) 吊车梁与上柱连接 (b) 吊车梁与牛腿连接 图10.2.13 夹层梁与柱连接节点 (a)梁与边柱刚接 (b)梁与边柱铰接 (c)梁与中柱刚接 (d)梁与中柱铰接 图10.2.12 牛腿节点 (a)等截面牛腿 (b)变截面牛腿

钢结构厂房吊车梁设计

吊车梁设计 3.3.1设计资料 吊车 小车 轨道 吊车梁 牛腿 轮压P 轮压P 额定起重量10吨 图3-1 吊车轮压示意图 吊车总重量:8.84吨,最大轮压:74.95kN ,最小轮压:19.23kN 。 3.3.2吊车荷载计算 吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为 竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=??=??= 横向荷载设计值 0.10() 0.108.849.8 1.4 3.032 Q Q g H kN n γ?+??==? = 3.3.3内力计算 3.3.3.1吊车梁中最大弯矩及相应的剪力 如图位置时弯矩最大

a 2 a 2 P P B C A a1 3000 3000P 图2-2 C 点最大弯矩Mmax 对应的截面位置 考虑吊车来那个自重对内力的影响,将内力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为: 2 22.max 274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ?? ∑- ? ????-??==?=????? 2max ()2110.18(30.125) 2 1.0387.07.5 c w l P a V kN l β-??-==?=∑ 3.3.3.2吊车梁的最大剪力 如图位置的剪力最大 P B A a1 6000 6000P w C P

图2-3 A 点受到剪力最大时截面的位置 3.5 1.03110.18( 1)179.606 A R kN =??+=,max 179.69V kN =。 3.3.3.3水平方向最大弯矩 max 3.3312.688.6110.18 c H H M M kN m P = =?=?。 3.3.4截面选择 3.3. 4.1梁高初选 容许最小高度由刚度条件决定,按容许挠度值(500 l v = )要求的最小高度为:6min 0.6[][]0.6600050020010360l h f l mm v -≥=????=。 由经验公式估算梁所需要的截面抵抗矩 6 33max 1.2 1.2312.68101876.0810200 M W mm f ??===? 梁的经济高度为:37300563.34h W mm =-=。取600h mm =。 3.3.4.2确定腹板厚度 0600214576h mm =-?=。 按抗剪强度要求计算腹板所需的厚度为: 3 max 01.2 1.2179.6910 2.34576160 w v V t mm h f ??===?? 0576 2.40 3.5 3.5 w h t mm = ==。取6w t mm =。 3.3.4.3确定翼缘尺寸 初选截面时: 01111 (~)(~)576115.2~1925353 b h mm ≈=?=

钢吊车梁制作安装施工方案 (1)

第二节主要机械及设备用量及计划┈┈┈┈┈┈┈4 1 第四节吊车梁安装起重设备选择┈┈┈┈┈┈┈┈┈┈12第五节吊车梁安装┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈12第六节安装检查验收┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈14

5 第一节钢结构施工安全要求┈┈┈┈┈┈┈┈┈┈┈17 第一章概况 第一节编制说明 本施工方案是根据柳州市东城投资开发有限公司柳东新区标准厂房C区I标段-5#楼/6#楼、施工图纸及参照图集<<钢吊车梁>>(03SG520-1)79页来编制的。方案中着重考虑钢梁制作、吊装、焊接、等各工序的施工方法以及质量、环境、安全等保证措施,同时考虑钢结构工程配合土建等相关专业施工,确保质量及工期。 编制依据 施工图纸、图集<<钢吊车梁>>(03SG520-1) 执行的规范、规程、标准:

《碳素结构钢》GB/T 700—2006; 《焊接H型钢》YB3301-2005; 《六角头螺栓--C级》GB/T5780-2000; 《六角螺母--C级》GB/T41-2000; 《平垫圈C级》GB/T95-2002; 《非合金钢及细晶粒钢焊条》GB/T5117-2012; 《焊接用钢丝》GB/T14957-1994; 《埋弧焊用碳钢焊丝和焊剂》GB/T5293-1999 《钢结构工程施工质量验收规范》GB50205-2001; 《气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口》—2008; 《埋弧焊的推荐坡口》—2008; 《钢结构用高强度大六角螺栓》GB/T1228-2006; 《混凝土结构工程施工质量验收》GB50204-2002; 第二节工程概况 工程概况:

吊车梁形式与设计

吊车梁形式与设计 在设计中经常遇到吊车梁的设计,本文主要从吊车梁所承受的荷载、吊车梁的形式、吊车梁的设计等方面简单谈一下。 标签:吊车梁荷载截面设计稳定性验算制动结构 0引言 在工业工程项目中,设计时经常遇到吊车梁,下面我简要谈谈我在这方面的总结,主要包括;吊车梁所承受的荷载、吊车梁的形式、吊车梁的设计等方面。 1吊车梁所承受的荷载 吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载、横向水平荷载和沿吊车梁纵向的水平荷载。纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。吊车沿轨道运行、起吊、卸载以及工件翻转时将引起吊车梁振动,特别是当吊车越过轨道接头处的空隙时还将发生撞击,因此在计算吊车梁及其连接强度时吊车竖向荷载应乘以动力系数。对悬挂吊车(包括电动葫芦)及工作级别A1~A5的软钩吊车,动力系数可取1.05:对工作级别A6~A8的软钩吊车、硬钩吊车和其他特种吊车,动力系数可取为1.1。 横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。手动吊车及电动葫芦可不考虑水平荷载。 计算重级工作制吊车梁及其制动结构的强度、稳定性以及连接(吊车梁、制动结构、柱相互间的连接)的强度时,由于轨道不可能绝对平行、轨道磨损及大车运行时本身可能倾斜等原因,在轨道上产生卡轨力,因此钢结构设计规范规定应考虑吊车摆动引起的横向水平力,此水平力不与小车横行引起的水平荷载同时考虑。 2吊车梁的形式 吊车梁一般设计成简支梁,设计成连续梁固然可节省材料,但连续梁对支座沉降比较敏感,因此对基础要求较高。吊车梁的常用截面形式,可采用工字钢、H型钢、焊接工字钢、箱型梁及桁架做为吊车梁。桁架式吊车梁用钢量省,但制作费工,连接节点在动力荷载作用下易产生疲劳破坏,故一般用于跨度较小的轻中级工作制的吊车梁。一般跨度小起重量不大(跨度不超过6米,起重量不超过30吨)的情况下,吊车梁可通过在翼缘上焊钢板、角钢、槽钢的办法抵抗横向水平荷载,对于焊接工字钢也可采用扩大上翼缘尺寸的方法加强其侧向刚度。

吊车及吊车梁设计

钢结构设计规范(新规范)GB50017-2003中表A.1.1 手动吊车梁和单梁吊车(包括悬挂吊车)L/500 轻级工作制桥式吊车L/800 中级工作制桥式吊车L/1000 重级工作制和起重量Q≥50的中级工作制桥式吊车L/1200 风荷载控制柱顶位移,1/500,1/400; 吊车作用下,仅重级工作制控制梁顶处节点位移,1/1250;中级可以放松吊车下位移,有PKPM 计算的图籍为例吊车下位移(1/800). A1-A3 轻级如:安装,维修用的电动梁式吊车.手动梁式吊车. A4-A5中级如:机械加工车间用的软钩桥式吊车 A6-A7 重级如:繁重工作车间软钩桥式吊车 A8超重级如:冶金用桥式吊车,连续工作的电磁,抓斗桥式吊车 吊车轻重级别不能片面的根据工作频繁程度分,但是和吨位无关系。 如前帖所说,按照载荷状态和利用等级两个指标来分。 1、载荷状态:是一个概率分布参数,通俗的说,就是这台吊车在整台吊车的寿命期间内(如20年),吊额定载荷的次数和所有的吊装次数的百分比。分轻、中、重、特重4级。 举例来说,对于港口的抓斗,它在自己的寿命内,每吊一次都是额定载荷,属于特重,而有些车间的检修桥吊,它一辈子只吊额定载荷只有几次,其余只吊额定载荷的几分之一。就属于轻。 2、利用等级:整个寿命期间的工作循环数,通俗的说,就是一辈子的吊多少次。从U0~U9分为10个级别,U0是1.6E+4,也就是少于16000次,U9为4E+6,也就是多于400万次。 3、根据上述2个指标,列表后,X方向为利用等级,Y为载荷状态,根据对角线原则再确定。如果载荷状态为轻,但是利用等级为U9,也是特重;如果载荷状态为特重,但是利用等级为U0,也是轻级。 有关吊车荷载主要有以下几种: 1、吊车竖向荷载标准值应采用吊车最大轮压或最小轮压。(《荷规》5.1.1) Pmax与Pmin关系: Pmin= (Q总+Q)/n-Pmax Dmax与Dmin根据影响线求出:Dmax与Dmin同时出现,一端出现Dmax时,对应另一端出现Dmin。 吊车梁计算时,先确定最大弯矩(Mc)出现的截面和极限荷载Pk,根据截面C处的弯矩影响线,求出吊车梁绝对最大弯矩标准值。并注意吊车梁计算时应乘以动力系数(轻中级区1.05,重级1.1)和分项系数。 排架计算时,通过支座反力的影响线,确定极限荷载的位置,求出支座反力最大值,即为吊车对排架产生的竖向荷载Dmax,和Dmin. 2、吊车纵向水平荷载应按作用在一边轨道上所有的刹车轮的最大轮压之和的10%采用;作用点位于刹车轮与轨道的接触点,其方向与轨道方向一致。 单侧所有刹车轮的纵向水平荷载标准值: Tv=0.1 *Pmax*2/n N表示吊车的单侧轮数 3、吊车横向水平荷载应取横行小车与吊重之和的某个百分数。

钢结构厂房吊车梁设计

吊车梁设计 设计资料 P 轮压P 图3-1 吊车轮压示意图 吊车总重量:吨,最大轮压:,最小轮压:。 吊车荷载计算 吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为 竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=??=??= 横向荷载设计值 0.10()0.108.849.8 1.4 3.032 Q Q g H kN n γ?+??==?= 内力计算 吊车梁中最大弯矩及相应的剪力 如图位置时弯矩最大

A 图2-2 C 点最大弯矩Mmax 对应的截面位置 考虑吊车来那个自重对内力的影响,将内力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为: 2 22.max 274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ?? ∑- ? ????-??==?=??? ?? 2max ()2110.18(30.125)2 1.0387.07.5 c w l P a V kN l β-??-==?=∑ 吊车梁的最大剪力 如图位置的剪力最大 图2-3 A 点受到剪力最大时截面的位置 3.5 1.03110.18( 1)179.606 A R kN =??+=,max 179.69V kN =。

水平方向最大弯矩 max 3.3312.688.6110.18 c H H M M kN m P ==?=?。 截面选择 梁高初选 容许最小高度由刚度条件决定,按容许挠度值(500 l v = )要求的最小高度为:6min 0.6[][]0.6600050020010360l h f l mm v -≥=????=。 由经验公式估算梁所需要的截 面抵抗矩 6 33max 1.2 1.2312.68101876.0810200 M W mm f ??===? 梁的经济高度为:300563.34h mm ==。取600h mm =。 确定腹板厚度 0600214576h mm =-?=。 按抗剪强度要求计算腹板所需的厚度为: 3 max 01.2 1.2179.6910 2.34576160 w v V t mm h f ??===?? 2.40w t mm = ==。取6w t mm =。 确定翼缘尺寸 初选截面时: 01111 (~)(~)576115.2~1925353 b h mm ≈=?= 上翼缘尺寸取35014mm mm ?,下翼缘尺寸取24014mm mm ?。 初选截面如下图所示:

钢结构节点图

钢结构节点图 Document number:PBGCG-0857-BTDO-0089-PTT1998

门式刚架横梁与立柱连接节点,可采用端板竖放、平放和斜放三种形式(图、b 、c )。斜梁与刚架柱连接节点的受拉侧,宜采用端板外伸式,与斜梁端板连接的柱的翼缘部位应与端板等厚度;斜梁拼接时宜使端板与构件外边缘垂直 (图),应采用外伸式连接,并使翼缘内外螺栓群中心与翼缘中心重合或接近。 屋面梁与摇摆柱连接节点应设计成铰接节点,采用端板横放的顶接连接方式(图)。 屋面梁与混凝土柱采用锚栓连接(图),该连接节点应为铰接节点,锚栓及底板设计同铰接柱脚。 吊车梁承受动力荷载,其构造和连接节点须满足以下规定: 4 吊车梁与制动梁的连接,可采用高强度摩擦型螺栓连接或焊接。吊车梁与刚架上柱的 (a) 端板竖放 (b)端板平放 (c)端板斜放 (d)斜梁拼接 图 刚架连接节点 图 屋面梁和混凝土柱连接节点 (a) (b) (a) (b) (c) 图 屋面梁和摇摆柱连接节点

连接处宜设长圆孔(图);吊车梁与牛腿处垫板采用焊接连接(图);吊车梁之间应采用高强螺栓连接。 用于支承吊车梁的牛腿可做成等截面,当也可做成变截面(图);柱在牛腿上下翼缘的相应位置处应设置横向加劲肋;为保证传力均匀,在牛腿上翼缘吊车梁支座处应设置垫板,垫板与牛腿上翼缘连接采用围焊;为避免较大的局部承压应力,在吊车梁支座对应的牛腿腹板处应设置横向加劲肋。 牛腿与柱连接处承受剪力V 和弯矩 GB50017 在设有夹层的结构中,夹层梁与柱可采用刚接,也可采用铰接(图)。当采用刚接连接时,夹层梁翼缘与柱翼缘应采用全熔透焊接,而腹板可采用高强螺栓与柱 图 吊车梁连接节点 (a) 吊车梁与上柱连接 (b) 吊车梁与牛腿连接 图 牛腿节点 (a)等截面牛腿 (b)变截面牛腿

吊车梁设计

吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载、横向水平荷载和沿吊车梁纵向的水平荷载。纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。吊车沿轨道运行、起吊、卸载以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应乘以动力系数。对悬挂吊车(包括电动葫芦)及工作级别A1~A5的软钩吊车,动力系数可取1.05;对工作级别A6~A8的软钩吊车、硬钩吊车和其他特种吊车,动力系数可取为1.1。 吊车的横向水平荷载由小车横行引起,其标准值应取横行小车重量与额定起重量之和的下列百分数,并乘以重力加速度: 1)软钩吊车:当额定起重量不大10吨时,应取12%;当额定起重量为16~50吨时,应取10%;当额定起重量不小于75吨时,应取8%。 2)硬钩吊车:应取20%。 横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。手动吊车及电动葫芦可不考虑水平荷载。 计算重级工作制吊车梁及其制动结构的强度、稳定性以及连接 (吊车梁、制动结构、柱相互间的连接)的强度时,由于轨道不可能绝对平行、轨道磨损及大车运行时本身可能倾斜等原因,在轨道上产生卡轨力,因此钢结构设计规范规定应考虑吊车摆动引起的横向水平力,此水平力不与小车横行引起的水平荷载同时考虑。 二、吊车梁的形式 吊车梁应该能够承受吊车在使用中产生的荷载。竖向荷载在吊车梁垂直方向产生弯矩和剪力,水平荷载在吊车梁上翼缘平面产生水平方向的弯矩和剪力。吊车的起重量和吊车梁的跨度决定了吊车梁的形式。吊车梁一般设计成简支梁,设计成连续梁固然可节省材料,但连续梁对支座沉降比较敏感,因此对基础要求较高。吊车梁的常用截面形式,可采用工字钢、H 型钢、焊接工字钢、箱型梁及桁架做为吊车梁。桁架式吊车梁用钢量省,但制作费工,连接节点在动力荷载作用下易产生疲劳破坏,故一般用于跨度较小的轻中级工作制的吊车梁。一般跨度小起重量不大(跨度不超6米,起重量不超过30吨)的情况下,吊车梁可通过在翼缘上焊钢板、角钢、槽钢的办法抵横向水平荷载,对于焊接工字钢也可采用扩大上翼缘尺寸的方法加强其侧向刚度。对于跨度或起重量较大的吊车梁应设置制动结构,即制动梁或制动桁架;由制动结构将横向水平荷载传至柱,同时保证梁的整体稳定。制动梁的宽度不宜小于1~1.5米,宽度较大时宜采用制动桁架。吊车梁的上翼缘充当制动结构的翼缘或弦杆,制动结构的另一翼缘或弦杆可以采用槽钢或角钢。制动结构还可以充当检修走道,故制动梁腹板一般采用花纹钢板,厚度6~10毫米。对于跨度大于或等于12米的重级工作制吊车梁,跨度大于或等于18米的轻中级工作制吊车梁宜设置辅助桁架和下翼缘(下弦)水平支撑系统,同时设置垂直支撑,其位置不宜设在发生梁或桁架最大挠度处, 以免受力过大造成破坏。对柱两侧均有吊车梁的中柱则应在两吊车梁间设置制动结构。二、吊车梁的设计1、吊车梁钢材的选择吊车梁承受动态载荷的反复作用,因此,其钢材应具有良好的塑性和韧性,且应满足钢结构设计规范GB50017条款3.3.3—3.3.4的要求。 2、吊车梁的内力计算由于吊车荷载为移动载荷,计算吊车梁内力时必须首先用力学方法确定使吊车梁产生最大内力(弯矩和剪力)的最不利轮压位置,然后分别求梁的最大弯矩及相应的剪力和梁的最大剪力及相应弯矩,以及横向水平载荷在水平方向产生的最大弯矩。计算吊车梁的强度及稳定时按作用在跨间荷载效应最大的两台吊车或按实际情况考虑,并采用载荷设计值。计算吊车梁的疲劳及挠度时应按作用在跨间内载荷效应最大的一台吊车确

钢吊车梁施工工艺

九、钢吊车梁的安装 一)钢吊车梁安装前准备 1、钢柱吊装完成,经校正固定于基础上并办理预检手续。 2、在钢柱牛腿上及柱侧面弹好吊车梁、制动桁架中心轴线、安装位置线及标高线;在钢吊车梁及制动桁架两端弹好中轴线。 3、对起重设备进行保养、维修、试运转、试吊,使保持完好状态;备齐吊装用的工具、连接料及电气焊设备。 4、搭设好供施工人员高空作业上下的梯子、扶手、操作平台、栏杆等。 二)钢吊车梁安装的主要机具准备 1、设备:起重设备:20吨汽车吊2台,8 吨汽车一台倒运;交流电焊机10 台、气割设备 2 套、喷涂设备 2 套。 2、机具:钢丝绳、吊索具、钢板夹、卡环、棕绳、倒链、千斤顶、鎯头、扳手、撬杆、钢卷尺、经纬仪、水平仪、冲子等。 三)钢吊车梁安装操作工艺: 1、钢吊车梁安装前,将两端的钢垫板先安装在钢柱牛腿上,并标出吊车梁安装的中心位置。 2、钢吊车梁绑扎一般采用两点对称绑扎,在两端各拴一根溜绳,以牵引就和防止吊装时碰撞钢柱。 3、钢吊车梁吊起后,旋转起重臂杆使吊车梁中心线与牛腿的定位轴线对准,并将与柱子连接的螺栓上齐后,方可卸钩。 4、钢吊车梁的校正,可按厂房伸缩缝分区分段进行校正,或在全部吊车梁安装完毕后进一次总体校正。 5、校正包括:标高、垂直度、平面位置(中心轴线)和跨距。一般除标高外,应在钢柱校正和屋盖吊装完成并校正固定后进行,以避免因屋架吊装校正引起的钢柱跨间移位。

(四)质量控制与检验标准 1、质量控制分主控项目与一般项目,主控项目是指对材料、构配件、设备或建筑工程项目的施工质量起决定性作用的检验项目,一般项目是指对施工质量起不到决定性作用的检验项目的。 2、检验标准执行国家标准GB50205规程。 3、钢吊车梁安装的允许偏差应符合表下的规定。 钢吊车梁安装的允许偏差和检验方法

钢结构厂房吊车梁设计

吊车梁设计 3.3.1设计资料 P 轮压P 图3-1 吊车轮压示意图 吊车总重量:8.84吨,最大轮压:74.95kN ,最小轮压:19.23kN 。 3.3.2吊车荷载计算 吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为 竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=??=??= 横向荷载设计值 0.10()0.108.849.8 1.4 3.032 Q Q g H kN n γ?+??==?= 3.3.3力计算 3.3.3.1吊车梁中最大弯矩及相应的剪力 如图位置时弯矩最大

A 图2-2 C 点最大弯矩Mmax 对应的截面位置 考虑吊车来那个自重对力的影响,将力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为: 2 22.max 274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ?? ∑- ? ????-??==?=???? ? 2max ()2110.18(30.125) 2 1.0387.07.5 c w l P a V kN l β-??-==?=∑ 3.3.3.2吊车梁的最大剪力 如图位置的剪力最大

图2-3 A 点受到剪力最大时截面的位置 3.5 1.03110.18( 1)179.606 A R kN =??+=,max 179.69V kN =。 3.3.3.3水平方向最大弯矩 max 3.3312.688.6110.18 c H H M M kN m P = =?=?。 3.3.4截面选择 3.3. 4.1梁高初选 容许最小高度由刚度条件决定,按容许挠度值(500 l v = )要求的最小高度为:6min 0.6[][]0.6600050020010360l h f l mm v -≥=????=。 由经验公式估算梁所需要的截面抵抗矩 6 33max 1.2 1.2312.68101876.0810200 M W mm f ??===? 梁的经济高度为:300563.34h mm ==。取600h mm =。 3.3.4.2确定腹板厚度 0600214576h mm =-?=。 按抗剪强度要求计算腹板所需的厚度为: 3 max 01.2 1.2179.6910 2.34576160 w v V t mm h f ??===?? 2.40 3.5 w t mm ===。取6w t mm =。 3.3. 4.3确定翼缘尺寸 初选截面时: 01111 (~)(~)576115.2~1925353 b h mm ≈=?=

钢结构厂房吊车梁设计

吊车梁设计 3、3、1设计资料 轮用p 轮圧P 3500 图3-1吊车轮压示意图 吊车总重量:8、84吨,最大轮压:74、95kN,最小轮压:19、23kN。3、3、2吊车荷载计算 吊车荷载动力系数a = 1.05,吊车荷载.分项系数北=1.40 则吊车荷载设计值为 竖向荷载设计值P = ?化狀=1.05xl.4x74.95 = 110.18RN 横向荷载设计值H = °10 (g + ^ = 1 .4X0-10X8-84X9-8 = 3.03W n 2 3、3、3内力计算 3、3、3、1吊车梁中最大弯矩及相应得剪力 如图位置时弯矩最大

图2-2 C 点最大弯矩Mmax 对应得裁面位置 考虑吊车来那个自重对内力得影响,将内力乘以增大系数J3W = 1.03,则最大 弯矩好剪力设计值分别为: V 虛=A 工片"=1.O3X 2汕。叫(3-0」25)=咖N 3. 3、3. 2吊车梁得最大剪力 如图位置得剪力最大 al 6000 3000 >p al 3000 2x74.95x(3.75 —1?875尸 7.5 x 0㈢=73.1ORN ?加 7.5 6000

图2-3 A 点受到剪力最大时戒面得位置 /?4 =1.03x110.18x(一 + 1) = 179.60W , V^ax = 179.69RN 。 6 3、3、3、3水平方向最大弯矩 IT O O M H = — M ; = ——— x 312.68 = 8.6W ? m 。 P max 110.18 3、3、4截面选择 3. 3、 4. 1梁高初选 容许最小高度由刚度条件决定,按容许挠度值(v = —)要求得最小高度 500 为:^nun > o.6[ /]/[-] = 0.6 X 6000 X 500 X 200 X1 O'6 = 360/7/nz 。 v 由经验公式估算梁所需要得截而抵抗矩 = L2X312-68X , °6 =1876.08x10-^ 200 梁得经济高度为M = 7卿- 300 = 563.34mm 。取h = 600mm 。 3. 3、 4. 2确定腹板厚度 //0 = 600-2x14 = 576mm 。 按抗剪强度要求计算腹板所需得厚度为: = 1.2X 179.69X 10^234_ 576x160 3> 3、4. 3确定翼缘尺寸 初选截面时: Z??~ —)/?0 ~ —)x576 = 115.2 ~ 192mm 处= 2.40加叫 3.5 取 / = 6/77/7? o 3.

钢结构厂房吊车梁设计

吊车梁设计 设计资料 P 轮压P 图3-1 吊车轮压示意图 吊车总重量:吨,最大轮压:,最小轮压:。 吊车荷载计算 吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为 竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=??=??= 横向荷载设计值 0.10()0.108.849.8 1.4 3.032 Q Q g H kN n γ?+??==?= 内力计算 吊车梁中最大弯矩及相应的剪力 如图位置时弯矩最大

A 图2-2 C 点最大弯矩Mmax 对应的截面位置 考虑吊车来那个自重对内力的影响,将内力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为: 2 22.max 274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ?? ∑ - ? ????-??==?=????? 2max ()2110.18(30.125) 2 1.0387.07.5 c w l P a V kN l β-??-==?=∑ 吊车梁的最大剪力 如图位置的剪力最大

图2-3 A 点受到剪力最大时截面的位置 3.5 1.03110.18( 1)179.606 A R kN =??+=,max 179.69V kN =。 水平方向最大弯矩 max 3.3312.688.6110.18 c H H M M kN m P = =?=?。 截面选择 梁高初选 容许最小高度由刚度条件决定,按容许挠度值(500 l v = )要求的最小高度为:6min 0.6[][]0.6600050020010360l h f l mm v -≥=????=。 由经验公式估算梁所需要的截面抵抗矩 6 33max 1.2 1.2312.68101876.0810200 M W mm f ??===? 梁的经济高度为:300563.34h mm ==。取600h mm =。 确定腹板厚度 0600214576h mm =-?=。 按抗剪强度要求计算腹板所需的厚度为: 3 max 01.2 1.2179.6910 2.34576160 w v V t mm h f ??===?? 2.40w t mm = ==。取6w t mm =。 确定翼缘尺寸 初选截面时: 01111 (~)(~)576115.2~1925353 b h mm ≈=?= 上翼缘尺寸取35014mm mm ?,下翼缘尺寸取24014mm mm ?。

钢结构厂房的吊车梁如何设计

吊车梁系统结构的组成 吊车梁设计 吊车梁一般是简支的(构造简单施工方便对支座沉降不敏感) 常见的形式有:型钢梁(1)、组合工字型梁(2)、箱形梁(3)、吊车桁架(4)等。 吊车梁所受荷载 永久荷载(竖向) 动力荷载,其方向有横向、水平向,特点是反复作用,容易引起疲劳破坏。因此,对钢材的要求较高,除了对抗拉强度、伸长率、屈服点等常规要求外,要保证冲击韧性合格。 吊车梁结构系统的组成

1、吊车梁 2、制动梁或者制动桁架 吊车梁的荷载 吊车梁直接承受三个方向的荷载:竖向荷载(系统自重和重物)、横向水平荷载(刹车力及卡轨力)和纵向水平荷载(刹车力)。 吊车梁设计不考虑纵向水平荷载,按照双向受弯设计。

竖向荷载、横向水平荷载、纵向水平荷载。 竖向荷载包括吊车及其重物、吊车梁自重。 吊车经过轨道接头处时发生撞击,对梁产生动力效应。设计时采取加大轮压的方法加以考虑。横向水平荷载由卡轨力产生(轨道不平顺),产生横向水平力。 吊车荷载计算 荷载规范规定,吊车横向水平荷载标准值应取横行小车重力g与额定起重量的重力Q之和乘 以下列百分数: 软钩吊车:Q≤100kN时取20% Q=150~500kN时取10% Q≥750kN时,取8% 硬钩吊车:取20% GB50017规定,重级工作制(工作级别为A6~A8)吊车梁,由于吊车摆动引起的作用于每 个轮压处的水平力标准值为:

吊车梁的内力计算 计算吊车梁的内力时,由于吊车荷载为移动荷载, 首先应按结构力学中影响线的方法确定各内力所需吊车荷载的最不利位置, 再按此求出吊车梁的最大弯矩及其相应的剪力、支座处最大剪力、以及横向水平荷载作用下在水平方向所产生的最大弯矩。 计算吊车梁的强度、稳定和变形时,按两台吊车考虑; 疲劳和变形的计算,采用吊车荷载的标准值,不考虑动力系数。 1、移动荷载作用下的计算,首先根据影响线方法确定荷载的最不利位置; 2、其次,求出吊车梁的最大弯矩及相应剪力、支座处最大剪力,横向水平荷载作用下的最大弯矩 3、进行强度和稳定计算时,一般按两台吊车的最不利荷载考虑;疲劳计算时则按一台最大吊车考虑。 吊车梁的截面验算 截面设计 求出吊车梁最不利的内力之后,根据第5章组合梁截面选择的方法试选吊车梁截面. 截面验算 截面验算时,假定竖向荷载由吊车梁承受,横向水平荷载由加强的吊车梁上翼缘、制动梁或制动桁架承受,并忽略横向水平荷载所产生的偏心作用。 整体稳定验算 连有制动结构的吊车梁,侧向弯曲刚度很大,整体稳定得到保证不需验算。加强上翼缘的吊车梁整体稳定公式: 刚度验算 验算吊车梁的刚度时,应按效应最大的一台吊车的荷载标准值计算,且不乘动力系数。 吊车梁竖向挠度近似计算公式

吊车梁设计总结

吊车梁设计总结[转贴] 一、吊车梁所承受的荷载 吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载、横向水平荷载和沿吊车梁纵向的水平荷载。纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。吊车沿轨道运行、起吊、卸载以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应乘以动力系数。对悬挂吊车(包括电动葫芦)及工作级别A1~A5的软钩吊车,动力系数可取1.05;对工作级别A6~A8的软钩吊车、硬钩吊车和其他特种吊车,动力系数可取为1.1。 吊车的横向水平荷载由小车横行引起,其标准值应取横行小车重量与额定起重量之和的下列百分数,并乘以重力加速度: 1)软钩吊车:当额定起重量不大于10吨时,应取12%;当额定起重量为16~50吨时,应取10%;当额定起重量不小于75吨时,应取8%。 2)硬钩吊车:应取20%。 横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。手动吊车及电动葫芦可不考虑水平荷载。 计算重级工作制吊车梁及其制动结构的强度、稳定性以及连接(吊车梁、制动结构、柱相互间的连接)的强度时,由于轨道不可能绝对平行、轨道磨损及大车运行时本身可能倾斜等原因,在轨道上产生卡轨力,因此钢结构设计规范规定应考虑吊车摆动引起的横向水平力,此水平力不与小车横行引起的水平荷载同时考虑。 二、吊车梁的形式 吊车梁应该能够承受吊车在使用中产生的荷载。竖向荷载在吊车梁垂直方向产生弯矩和

钢结构节点图

10.2.3门式刚架横梁与立柱连接节点,可采用端板竖放、平放和斜放三种形式(图10.2.3a、b、c)。斜梁与刚架柱连接节点的受拉侧,宜采用端板外伸式,与斜梁端 板连接的 柱的翼缘 部位应与 端板等厚度;斜梁拼接时宜使端板与构件外边缘垂直(图10.2.3d),应采用外伸式连接,并使翼缘内外螺栓群中心与翼缘中心重合或接近。 10.2.8屋面梁与摇摆柱连接节点应设计成铰接节点,采用端板横放的顶接连接方式(图10.2.8)。 10.2.9 10.2.11 4 连接处宜设长圆孔(图10.2.11-3a);吊车梁与牛腿处垫板采用焊接连接(图10.2.11-3b);吊车梁之间应采用高强螺栓连接。 10.2.12);受剪力V GB50017进行计算。 (a) 图10.2.9屋面梁和混凝土柱连接节点 (a)(b) (a)

10.2.13在设有夹层的结构中,夹层梁与柱可采用刚接,也可采用铰接(图10.2.13)。当采用刚接连接时,夹层梁翼缘与柱翼缘应采用全熔透焊接,而腹板可采用高强螺 若山墙、c ),当圆钢直径大于25mm 或腹板厚度不大于5mm 时,应对支承孔周围进行加强。圆钢端部应设丝扣,待校正定位后宜采用花篮螺栓张紧。 2型钢支撑与刚架梁柱连接宜用连接板连接(图10.2.14d );受力较大时,可设置双片柱间支撑,并双片柱间支撑间沿支撑的长度方向每隔一定距离设置连接板焊于柱间支撑。 10.2.15系杆与刚架梁柱连接应设计成铰接节点,可采用普通螺栓连接(图10.2.15)。 对于钢管系杆,钢管端部应设置封头板,对于双角钢系杆,应沿系杆长度方向每隔一定距离设置垫块以保证其协调工作。 10.2.16隅撑与刚架构件腹板夹角不宜小于 45,宜采用单角钢制作。隅撑可连接在刚架构件受压侧附近的腹板上(图10.2.16a );也可连接在受压翼缘上(图10.2.16b );也可在靠受压侧设置连接板,隅撑连接在连接板上(图10.2.16c )。隅撑与刚架和檩条连接可采用普通螺栓,每端可设置一个螺栓。 圆钢 连接板圆钢角钢垫块 圆钢楔形垫块 连接板型钢图10.2.14支撑与刚架梁柱连接节点 (a)圆钢用连接板连接(b)圆钢用角钢垫块连接(c)圆钢用楔形垫块连接(d)型钢用连接板连接 图10.2.12牛腿节点 (a)等截面牛腿(b)变截面牛腿 图10.2.14山墙柱与刚架连接节点 (a)山墙柱用弹簧片连接(b)山墙柱腹板开长孔(c)山墙刚架连接 图10.2.15系杆与刚架梁柱连接节点 (a)钢管系杆(b)单角钢系杆(c)双角钢系杆

相关主题