搜档网
当前位置:搜档网 › 为什么电机启动电流大与启动后电流又小了

为什么电机启动电流大与启动后电流又小了

为什么电机启动电流大与启动后电流又小了
为什么电机启动电流大与启动后电流又小了

电机启动电流到底有多大?

电机的启动电流是额定电流的多少倍说法不一,很多都是根据具体情况来

说的。如说十几倍的、6~8倍的、5~8倍的、5~7倍的等。

一种是说法说在启动瞬间(即启动过程的初始时刻)电机的转速为零时,这时的电流值应该是它的堵转电流值。其中5.5kW电机的堵转电流与额定电流之比

的规定值如下:同步转速 3000 时,堵转电流与额定电流之比为7.0;同步转

速 1500 时,堵转电流与额定电流之比为7.0;同步转速 1000时,堵转电流与额定电流之比为6.5;同步转速 750 时,堵转电流与额定电流之比为6.0。

5.5kW电机功率比较大,功率小些的电动机启动电流和额定电流比值要小些,

所以电工教材和很多地方都是说异步电动机启动电流是额定工作电流的4~7倍。

为什么电机起动电流大?起动后电流又小了呢?

这里我们有必要从电机启动原理和电机旋转原理的角度来理解:

当感应电动机处在停止状态时,从电磁的角度看,就像变压器,接到电源

去的定子绕组相当于变压器的一次线圈,成闭路的转子绕组相当于变压器被短

路的二次线圈;定子绕组和转子绕组间无电的的联系,只有磁的联系,磁通经

定子、气隙、转子铁芯成闭路。

当合闸瞬间,转子因惯性还未转起来,旋转磁场以最大的切割速度——同

步转速切割转子绕组,使转子绕组感应起可能达到的最高的电势,因而,在转

子导体中流过很大的电流,这个电流产生抵消定子磁场的磁能,就象变压器二

次磁通要抵消一次磁通的作用一样。

而定子方面为了维护与该时电源电压相适应的原有磁通,遂自动增加电流。因为此时转子的电流很大,故定子电流也增得很大,甚至高达额定电流的4~7倍,这就是启动电流大的缘由。

启动后电流为什么小:随着电动机转速增高,定子磁场切割转子导体的速

度减小,转子导体中感应电势减小,转子导体中的电流也减小,于是定子电流

中用来抵消转子电流所产生的磁通的影响的那部分电流也减小,所以定子电流

就从大到小,直到正常。

减小电动机启动电流的方法有哪些?

常见减小电动机启动电流的启动方法有直接启动,串电阻启动,自耦变压器启动,星三角减压启动及变频器启动的方法来减小对电网的影响。

直接启动

直接启动就是将电机的定子绕组直接接入电源,在额定电压下起动,具有起动转矩大、起动时间短的特点,也是最简单、最经济和最可靠的起动方式。全压起动时电流大,而起动转矩不大,操作方便,起动迅速,但是这种启动方式对电网容量和负载要求比较大,主要适用于1W以下的电机启动。

串电阻启动

电机串电阻启动,也就是降压启动的一种方法。在启动过程中,在定子绕组电路中串联电阻,当启动电流通过时,就在电阻上产生电压降,减少了加在定子绕组上面的电压,这样就可以达到减小启动电流目的。

自耦变压器启动

利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%,并且可以通过抽头调节起动转矩。

星三角减压启动

对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击。这样的启动方式称为星三角减压起动,或简称为星三角启动。采用星三角启动时,启动电流只是原来按三角形接法直接启动时的

1/3。在星三角启动时,启动电流才2-2.3倍。

这就是说采用星三角启动时,启动转矩也降为原来按三角形接法直接起动

时的1/3。适用于无载或者轻载启动的场合。并且同任何别的减压启动器相比较,其结构最简单,价格也最便宜。除此之外,星三角启动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。此时,额定转矩与负载可

以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。

变频器启动

变频器是现代电动机控制领域技术含量最高,控制功能最全、控制效果最

好的电机控制装置,它通过改变电网的频率来调节电动机的转速和转矩。因为

涉及到电力电子技术,微机技术,因此成本高,对维护技术人员的要求也高,

因此主要用在需要调速并且对速度控制要求高的领域。

电动机过热的原因及处理方法

电动机过热的原因及处理方法 根据多年来从事电动机维护与检修的经验,总结出电动机常见的过热原因及处理方法。 1、负荷过大。应减轻负荷或换大容量的电动机。 2、绕组局部短路或接地,轻时电动机局部过热,严重时绝缘烧坏,散发焦味甚至冒烟。应测量绕组各相的直流电阻,或寻找短路点,用兆欧表检查绕组是否接地。 3、电动机外部接线错误,有一下两种情况: (1)应当△接法误接成Y接法,以致空载时电流很小,轻载时虽然可带动负荷,但电流超过额定值,使电动机发热。 (2)应当Y接法误接成△接法以致空载时电流可能大于额定电流,使电动机温度迅速升高。 如属上述原因,可按正确方法更改接线。 4、电源电压波动太大,应将电源电压波动范围控制在-5~10%之间,否则要控制电动机的负荷。 5、大修后线圈匝数错误或某极、相、组接线错误,可通过测量电动机三相电流与铭牌或本身三相电流比较,发现问题予以解决。 6、大修后导线截面比原来截面小,要降低负荷或更换绕组。 7、定、转子铁芯错位严重,虽然空载电流三相平衡,但大于规定值,应校正铁芯位置并设法固定。 8、电动机绕组或接线一相断路,使电动机仅两相工作。应检查三相电流,并立即切除电源,找出断路点并重新结好。

9、鼠笼转子断条或存在缺陷,电动机运转1~2h,铁芯温度迅速上升,甚至超过绕组温度,重载或满载时,定子电流超过额定值。应查出故障点,重焊或更换转子。 10、绕线式电动机的转子绕组焊接点脱焊,或检查时焊接不良,致使转子过热,转速和转矩明显下降。可检查转子绕组的直流电阻和各焊接点,重新焊接。 11、电动机绕组受潮,或有灰尘、油污等附着在绕组上,以致绝缘降低,应测量电动机的绝缘电阻并进行清扫、干燥。 12、电动机在短时间内启动过于频繁。应限制启动次数,正确选用热保护。 13、定子、转子相碰,电动机发出金属撞击声,铁芯温度迅速上升,严重时电动机冒烟,甚至线圈烧毁。应拆开电动机,检查铁芯上是否有扫膛的痕迹,找出原因,进行处理。 14、环境温度太高,应改善通风、冷却条件或更换耐热等级更高的电动机。 15、通风系统发生故障,应检查风扇是否损坏,旋转方向是否正确,通风孔道是否堵塞。 电动机发热的原因可能还有其他方面,但是我们平时要严格按照操作规程正确使用电动机,正确维护电动机,使电动机表明清洁,电流不超过额定值,振动值在范围之内,运行声音正常,轴承正切维护等,电动机的使用寿命一定会延长的。

大功率电动机启动的问题

大功率电动机启动的相关问题? 一般功率在11KW以下的采用直接启动,在30KW和11KW间采用星三角启动,超过就要用变频或软启动。所以30KW以上电机肯定不推荐使用星三角启动。 1.当负载对电动机启动力矩无严格要求又要限制电动机启动电流且电机满足380VY/Δ接线条件才能采用星三角启动方法; 2.该方法是:在电机启动时将电机接成星型接线,当电机启动成功后再将电机改接成三角型接线; 3.因电机启动电流与电源电压成正比,此时电网提供的启动电流只有全电压启动电流的1/3 ,但启动力矩也只有全电压启动力矩的1/3。 星三角启动,属降压启动他是以牺牲功率为代价来换取降低启动电流来实现的。所以不能一概而以电机功率的大小来确定是否需采用星三角启动,还的看是什么样的负载,一般在需要启动运行时负载重尚可采用星三角启动,一般情况下鼠笼型电机的启动电流是运行电流的5—7倍,而对电网的电压要求一般是正负10%,为了不形成对电网电压过大的冲击所以要采用星三角启动,一般要求在鼠笼型电机的功率超过变压器额定功率的10%时就要采用星三角启动。只有鼠笼型电机才采用星三角启动 在实际使用过程中,需星三角降压启动的电机从11KW开始就有需要的,如风机、在启动时11KW电流在7-9倍(100)A左右,按正常配置的热继电器根本启动不了,(关风门也没用)热继电器配大了又起不了保护电机的作用,所以建议用降压启动。而在一些启动负荷较小的电机上,由于电机到达恒速时间短,启动时电流冲击影响较小,所以在30KW左右的电机,选用1.5倍额定电流的断路器直接启动,长期工作一点问题都没有。 交流接触器、热继电器、断路器的容量是根据电机的功率来选择的。电机的输出功率是泵的功率的1.2~1.4倍左右 交流接触器、热继电器、断路器的容量根据泵的功率因数怎样选择: 首先要是的是这些电气元件的选型主要是根据泵的功率来进行选型,功率因数只是一个选型的因素,而不是主要因素! 其次要根据泵的容量计算出工作电流,也就是泵铭牌上标出的额定电流(这个电流值是满负荷工作的电流值)! 接下来根据额定电流的值进行选型! 接触器一般根据泵的额定功率的2倍进行选! 热继电器根据泵的额定功率的(1.8--2.1)倍进行选,但是其参数要在泵投入运行前整定为1.2倍的工作电流比较合理! 断路器则要根据泵的输入功率的1.5-2倍进行选型; 各种功率电机星三角启动接触器的选用如下: 1、11KW电机星三角启动电路,请问要用多大的主接触器,副接触器,热保护多大,启动时间设多少? 主接触器25A2只,副接触器12A1只, AC380v热继电器用14~17A 开关用40A/3P的 2、22KW电机星三角启动电路,请问要用多大的主接触器,副接触器,热保护多大,启动时间设多少? 主接触器32A2只,副接触器18A1只, AC380v热继电器用14~17A 开关用40A/3P的

电动机缺相运行的现象与原因

电动机缺相运行的现象与原因 1)电动机缺相现象 振动增大,有异常声响,温度升高,转速下降,电流增大,启动时有强烈的嗡嗡声无法启动。2)造成电动机缺相运行的原因有: ①保险丝选择不当或压合不好,使熔丝断一相。 ②开关发触器的触头接触不良。 ③导线接头松动或断一根线。 ④有一相绕组开路。 3)电动机缺相运行的电磁、转矩关系 电机缺相运行时,定子的旋转磁场严重不平衡,定子会产生负序电流,负序磁场和转子发生电磁感应出近100HZ的电势,使转子电流剧增,会引起转子严重发热,缺相时电机带载能力急剧下降,电机会吸收大量有功,导致定子电流急剧增加,发热由于磁场严重不均匀,会使电机震动严重增加,从而破坏轴承和机座,所以带额定负载的缺相运行电机会立马停下来,若保护不及时动作,电机就会被烧毁,一般电机都有缺相保护。 在运转时缺相,绕组产生的磁场也可分为两个大小相等\方向相反的旋转磁场.但与电动机转向相反的旋转磁场与转子间的相对转速很大,在转子中产生的感应电动势和电流的频率差不多是电源频率的几倍,转子的感抗很大,故决定转矩大小的电流有功分量很小,所以逆向转矩远小于正向转矩,因此,电动机能继续运行. 但是,应注意, 在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。电动机一相断线明确规定不能运行,因为电动机断线后定子线圈不会产生旋转磁场,只会产生脉动磁场,不会带动电动机旋转,但由于运行中还有惯性,所以会旋转,但由于负荷大使电动机旋转逐渐变慢,另外由于转子旋转慢造成转子切割磁力线增多,定子电流逐渐增大,时间长会烧毁电动机。 电动机运行中一相断线不能长期运行,因为电动机断线后定子线圈产生椭圆磁场,只会产生脉动磁势,由于转子旋转慢造成转子切割磁力线增多,定子电流逐渐增大,时间长会烧毁电动机。另外负序磁场将烧坏转子! 4)电动机缺相启动 如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。

三相电机的电流计算公式

三相电机的电流计算公式 如果一台排风扇是三相电机,它的标签上只写了电压380V,功率是4KW,还有转速,那么怎么计算它的电流呢? 公式是什么呢 A=KW/(1.732*0.38*COS) COS=功率因数 第 2.0.1条电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度进行分级,并应符合下列规定: 一、符合下列情况之一时,应为一级负荷: 1.中断供电将造成人身伤亡时。 2.中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。 3.中断供电将影响有重大政治、经济意义的用电单位的正常工作。例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经

常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。 在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。 二、符合下列情况之一时,应为二级负荷: 1.中断供电将在政治、经济上造成较大损失时。例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等。 2.中断供电将影响重要用电单位的正常工作。例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱。 三、不属于一级和二级负荷者应为三级负荷。 第2.0.2条一级负荷的供电电源应符合下列规定: 一、一级负荷应由两个电源供电;当一个电源发生故障时,另一个电源不应同时受到损坏。 二、一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统。 第2.0.3条下列电源可作为应急电源:

电机的启动电流是额定电流的多少倍

电机的启动电流是额定电流的多少倍 电机的启动电流是额定电流的多少倍说法不一,很多都是根据具体情况来说的。如说十几倍的、6~8倍的、5~8倍的、5~7倍的等。 一种说法是说在启动瞬间(即启动过程的初始时刻)电机的转速为零时,这时的电流值应该是它的堵转电流值。 对最经常使用的Y系列三相异步电动机,在JB/T10391—2002《Y系列三相异步电动机》标准中就有明确的规定。 其中5.5KW电机的堵转电流与额定电流之比的规定值如下: 同步转速3000时,堵转电流与额定电流之比为7:0 同步转速1500时,堵转电流与额定电流之比为7:0 同步转速1000时,堵转电流与额定电流之比为6:5 同步转速750时,堵转电流与额定电流之比为6:0 5.5KW电机功率比较大,功率小些的电动机启动电流和额定电流比值要小些,所以电工教材和很多地方都是说异步电动机启动电流是额定工作电流的4~7倍。 为什么电机启动电流大?启动后电流又小了呢? 这里我们有必要从电机启动原理和电机旋转原理的角度来理解: 当感应电动机处在停止状态时,从电磁的角度看,就象变压器,接到电源去的定子绕组相当于变压器的一次线圈,成闭路的转子绕组相当于变压器被短路的二次线圈;定子绕组和转子绕组间无电的联系,只有磁的联系,磁通经定子、气隙、转子铁芯成闭路。当合闸瞬间,转子因惯性还未转起来,旋转磁场以最大的切割速度——同步转速切割转子绕组,使转子绕组感应起可能达到的最高的电势,因而,在转子导体中流过很大的电流,这个电流产生抵消定子磁场的磁能,就象变压器二次磁通要抵消一次磁通的作用一样。 而定子方面为了维护与该时电源电压相适应的原有磁通,遂自动增加电流。因为此时转子的电流很大,故定子电流也增得很大,甚至高达额定电流的4~7倍,这就是启动电流大的

磨煤机电机电流大的原因

1磨煤机情况概述 沙角C 电厂磨煤机是ABB -CE 生产的HP983型碗式中速 磨煤机(图1),额定容量:65.455t /h ;煤粉细度:75%(通过200目的筛子);磨碗直径:2.49m ;设计煤种出力:53.084t /h ;额定一次风量:98.182t /h ;磨煤机电机电源:3kV /50Hz ;输出功率:448kW ;配佛兰德KMP280齿轮箱,电机输入端转速975r /min ,输出端转速35.63r /min ,功率435.4kW 。 HP 磨煤机的磨碗由电动机带动齿轮减速装置驱动回转,磨碗内沿周均匀布置着3个磨辊。磨辊与磨盘之问留有一定的间隙。3个由独立弹簧加载的磨辊相隔120°。 2电机电流大的原因分析 2011年以来,经常由于磨煤机电机电流大,而限制磨煤机 出力,从而影响机组负荷。磨煤机电机电流大可能的原因有:(1)磨碗间隙过小;(2)弹簧加载力过大;(3)煤湿;(4)出口温度低;(5)风量过小;(6)折向门开度太小(煤粉过细);(7)电机过载;(8)给煤率不准确;(9)煤的可磨性指数小;(10)煤质差(石头多、泥多、水分大);(11)磨辊头与加载弹簧间隙调整不准。 对以上原因逐一进行分析:第1项,如果磨碗间隙过小,导致磨碗与磨辊煤层过小,且不够均匀,就会造成冲击,从而使电机功率升高。第2项、第11项,弹簧加载力过大,将增加磨辊对煤层的作用力,增加助力。磨辊头与加载弹簧间隙调整过小,当遇到大煤块和石头时,限制了加载弹簧缓冲,也会造成电机功率过高。 第3项、第4项,煤湿和出口温度低都使煤得不到干燥而增加阻力。第6项、第7项,风量过小和折向门开度太小使煤出不去,在磨煤机内停留时间过长,反复在磨煤机内重磨。第8项,给煤率不准确,很好理解。 现在重点分析第7项、第9项和第10项(其实第9项和第10项本质上是一样的,就是煤质差、煤难磨)。正是电机过载和煤质差造成磨煤机电机电流大。煤种差和煤种好时磨煤机电流分别如图2、 图3所示。2.1磨煤机电机功率偏小(电机过载) 磨煤机电机在投产初期就已经过改造,功率由最初的448kW 提升至500kW 。与同类型磨煤机电机相比较,功率仍然偏小。同类型磨煤机电机功率如表1所示。 台山电厂和靖海电厂的机组容量均为600kW ,它们的磨煤机电机功率为520kW 。若它们的机组容量提高10%(即容量 表1 同类型磨煤机电机功率对比表 项目沙角C 电厂 台山电厂靖海电厂机组容量/MW 660600600每台机组磨煤机数量/台666磨煤机电机功率/kW 500 520 520 1—杂物排放管2—煤粉出口管 3—落煤管 4—折向挡板调节装置5—分离器锥体6—磨辊 7—密封风进口管 8—磨碗转体 9—侧机体10—弹簧加载装置 11—文丘里出口管 12—分离器顶部13—分离室外壳 14—风环叶片 15—减速箱 图1 HP983磨煤机示意图 1 2 3 4 5 6789 10 111213 1415图3 煤种好时的磨煤机电流 设备管理与改造◆Shebeiguanli yu Gaizao 60

为什么电机启动电流大与启动后电流又小了

电机启动电流到底有多大? 电机的启动电流是额定电流的多少倍说法不一,很多都是根据具体情况来 说的。如说十几倍的、6~8倍的、5~8倍的、5~7倍的等。 一种是说法说在启动瞬间(即启动过程的初始时刻)电机的转速为零时,这时的电流值应该是它的堵转电流值。其中5.5kW电机的堵转电流与额定电流之比 的规定值如下:同步转速 3000 时,堵转电流与额定电流之比为7.0;同步转 速 1500 时,堵转电流与额定电流之比为7.0;同步转速 1000时,堵转电流与额定电流之比为6.5;同步转速 750 时,堵转电流与额定电流之比为6.0。 5.5kW电机功率比较大,功率小些的电动机启动电流和额定电流比值要小些, 所以电工教材和很多地方都是说异步电动机启动电流是额定工作电流的4~7倍。 为什么电机起动电流大?起动后电流又小了呢? 这里我们有必要从电机启动原理和电机旋转原理的角度来理解: 当感应电动机处在停止状态时,从电磁的角度看,就像变压器,接到电源 去的定子绕组相当于变压器的一次线圈,成闭路的转子绕组相当于变压器被短 路的二次线圈;定子绕组和转子绕组间无电的的联系,只有磁的联系,磁通经 定子、气隙、转子铁芯成闭路。 当合闸瞬间,转子因惯性还未转起来,旋转磁场以最大的切割速度——同 步转速切割转子绕组,使转子绕组感应起可能达到的最高的电势,因而,在转 子导体中流过很大的电流,这个电流产生抵消定子磁场的磁能,就象变压器二 次磁通要抵消一次磁通的作用一样。 而定子方面为了维护与该时电源电压相适应的原有磁通,遂自动增加电流。因为此时转子的电流很大,故定子电流也增得很大,甚至高达额定电流的4~7倍,这就是启动电流大的缘由。 启动后电流为什么小:随着电动机转速增高,定子磁场切割转子导体的速 度减小,转子导体中感应电势减小,转子导体中的电流也减小,于是定子电流 中用来抵消转子电流所产生的磁通的影响的那部分电流也减小,所以定子电流 就从大到小,直到正常。

电机的启动电流怎么算

电机的启动电流怎么算 [ 标签:电机, 启动电流]ㄨ只④我不配2011-06-01 08:43 满意答案好评率:100% 电动机启动冲击电流,与负载性质(恒转矩、恒功率、通风机类)和启动方式(直接启动、自藕降压启动、星三角、延边三角、频敏变阻、变频启动)有关。 通常,以星三角启动380/3交流异步电动机为例,可以这样估算: 110KW电动机,额定工作电流约200A(也可以按功率的2倍估算), 直接启动时,电流按6倍额定电流估算,约1200A; 星三角启动时,启动电流为直接启动方式时的1/3,则为400A。 200KW电动机的断路器开关额定电流选多大 三相异步电机额定电流的估算: 额电电压~660V I≈ ~380V I≈2P ~220V I≈ P-电动机额定功率KW 主开关电流选择:主开关额定电流=设备额定电流(分支额定电流总和)*~ 既(200*2)*=520A选型时选600A

11千瓦电动机启动热过载电流是多少 11千瓦电动机启动热过载电流是多少 匿名提问 2009-08-24 09:54:43 发布 工程学术 2个回答 oncsqufpi| 2009-08-24 09:54:53 有0人认为这个回答不错 | 有0人认为这个回答没有帮助 根据用电设备的功率,算出总功率以后,I=P/U按公式后在乘的系数~!

如果比较麻烦的话就是一个千瓦2个安培的电流~!是最通用的,里面包括了抛出的电流容量。1KW=2A 选择电缆也有方法 按电流计算,下面给出的比较简单的选择算法以铝芯线为计算项目 十下五:百上二:二五三五四三界,七零九五两倍半~!这个是口诀 十平方毫米以下的BLV线电流可以承载线径的五倍~! 一百平方毫米以上的BLV线电流承载线径的二倍。 25mm2和35mm2的BLV电流承载在4倍和3倍的分割线。 70mm2和95mm2的电流容量是线径的倍。 除此内容以外,有铜芯线的按照铝线的升级倍数来算,也就是说BV-10mm2按照BLV-16mm2的电流来算其他的也如此 导线在穿塑料管或是PVC管,算出的电流要乘上的系数 导线在穿钢管的情况下,计算的电流在乘上 导线在高温的场所通过,计算的电流结果在乘上 如果导线在以上三种情况都有的话先乘在乘或者直接打到也可以

三相电机电流过高的7种情况

1电源问题 电源方面使电动机发生过热的原因,有以下几种: 1、电源电压过高 当电源电压过高时,电动机反电动势、磁通及磁通密度均随之增大。由于铁损耗的大小与磁通密度平方成正比,则铁损耗增加,导致铁心过热。而磁通增加,又致使励磁电流分量急剧增加,造成定子绕组铜损增大,使绕组过热。因此,电源电压超过电动机的额定电压时,会使电动机过热。 2、电源电压过低 电源电压过低时,若电动机的电磁转矩保持不变,磁通将降低,转子电流相应增大,定子电流中负载电源分量随之增加,造成绕线的铜损耗增大,致使定、转子绕组过热。 3、电源电压不对称 当电源线一相断路、保险丝一相熔断,或闸刀起动设备角头烧伤致使一相不通,都将造成三相电动机走单相,致使运行的二相绕组通过大电流而过热,及至烧毁。因此,对于三相电机一般不适用熔断器进行保护。 4、三相电源不平衡 当三相电源不平衡时,会使电动机的三相电流不平衡,引起绕组过热。 由上述可见,当电动机过热时,应首先考虑电源方面的原因(软启动、变频器、伺服驱动器亦可看作是电源)。确认电源方面无问题后,再去考虑其他方面因素。 2负载问题 负载方面使电动机过热原因有以下几种: 1、电动机过载运行 当设备不配套,电动机的负载功率大于电动机的额定功率时,则电动机长期过载运行(即小马拉大车),会导致电动机过热。维修过热电动机时,应先搞清负载功率与电动机功率是否相符,以防盲无目的的拆卸。 2、拖动的机械负载工作不正常 设备虽然配套,但所拖动的机械负载工作不正常,运行时负载时大时小,电动机过载而发热。 3、拖动的机械有故障 当被拖动的机械有故障,转动不灵活或被卡住,都将使电动机过载,造成电动机绕组过热。故检修电动机过热时,负载方面的因素不能忽视。 3电机本身问题 1、电动机绕组断路

电机启动电流大小原因和控制

电机启动电流大小原因和控制 电机启动电流到底有多大? 电机的启动电流是额定电流的多少倍说法不一,很多都是根据具体情况来说的。如说十几倍的、6~8倍的、5~8倍的、5~7倍的等。 一种是说法说在启动瞬间(即启动过程的初始时刻)电机的转速为零时,这时的电流值应该是它的堵转电流值。对最经常使用的Y系列三相异步电动机,在JB/T 10391 《Y系列三相异步电动机》标准中就有明确的规定。其中5.5kW 电机的堵转电流与额定电流之比的规定值如下:同步转速3000 时,堵转电

流与额定电流之比为7.0;同步转速1500 时,堵转电流与额定电流之比为7.0;同步转速1000时,堵转电流与额定电流之比为6.5;同步转速750 时,堵转电流与额定电流之比为6.0。5.5kW电机功率比较大,功率小些的电动机启动电流和额定电流比值要小些,所以电工教材和很多地方都是说异步电动机启动电流是额定工作电流的4~7倍。 为什么电机起动电流大?起动后电流又小了呢?这里我们有必要从电机启动原理和电机旋转原理的角度来理解: 当感应电动机处在停止状态时,从电磁的角度看,就像变压器,接到电源去的定子绕组相当于变压器的一次线圈,成闭路的转子绕组相当于变压器被短路的二次线圈;定子绕组和转子绕组间无电的的联系,只有磁的联系,磁通经定子、气隙、转子铁芯成闭路。当合闸瞬间,转子因惯性还未转起来,旋转磁场以最大的切割速度——同步转速切割转子绕组,使转子绕组感应起可能达到的最高的电势,因而,在转子导体中流过很大的电流,这个电流产生抵消定子磁场的磁能,就象变压器二次磁通要抵消一次磁通的作用一样。 而定子方面为了维护与该时电源电压相适应的原有磁通,遂自动增加电流。因为此时转子的电流很大,故定子电流也增得很大,甚至高达额定电流的4~7倍,这就是启动电流大的缘由。启动后电流为什么小:随着电动机转速增高,定子磁场切割转子导体的速度减小,转子导体中感应电势减小,转子导体中的电流也减小,于是定子电流中用来抵消转子电流所产生的磁通的影响的那部分电

各种电机电流计算方法

各种电机额定电流的计算 1、电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号3 UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 三相的计算公式: P=1.732×U×I×cosφ (功率因数:阻性负载=1,感性负载≈0.7~0.85之间,P=功率:W) 单相的计算公式: P=U×I×cosφ 空开选择应根据负载电流,空开容量比负载电流大20~30%附近。P=1.732×IU×功率因数×效率(三相的) 单相的不乘1.732(根号3) 空开的选择一般选总体额定电流的1.2-1.5倍即可。

经验公式为: 380V电压,每千瓦2A, 660V电压,每千瓦1.2A, 3000V电压,4千瓦1A, 6000V电压,8千瓦1A。 3KW以上,电流=2*功率;3KW及以下电流=2.5*功率 2功率因数(用有功电量除以无功电量,求反正切值后再求正弦值)功率因数cosΦ=cosarctg(无功电量/有功电量) 视在功率S 有功功率P 无功功率Q 功率因数cosΦ 视在功率S=(有功功率P的平方+无功功率Q 的平方)再开平方 而功率因数cosΦ=有功功率P/视在功率S 3、求有功功率、无功功率、功率因数的计算公式,请详细说明下。(变压器为单相变压器) 另外无功功率的降低会使有功功率也降低么?反之无功功率的升高也会使有功功率升高么? 答:有功功率=I*U*cosφ即额定电压乘额定电流再乘功率因数 单位为瓦或千瓦 无功功率=I*U*sinφ,单位为乏或千乏. I*U 为容量,单位为伏安或千伏安. 无功功率降低或升高时,有功功率不变.但无功功率降低时,电流要降低,线路损耗降低,反之,线路损耗要升高. 4、什么叫无功功率?为什么叫无功?无功是什么意思?

电机运行时温度过高的原因

电机运行时温度过高的 原因 Hessen was revised in January 2021

电机运行时温度过高的原因,大致归纳为如下几个方面: (1)修过程中身故障引起的原因 ①定子绕组匝间或相间有短路故障,电流增大而发热。个别线圈局部有故障可以重新包扎绝缘,如果绕组整体绝缘老化发黑,必须重绕大修。 ②定子绕组有短路或并联绕组中某支路短线,泰州电机维修过程中引起三相电流不平衡增大损耗造成绕组过热。 ③将Δ形接成Y形,或Y形接成Δ形,在额定负载运行时,会使电机过热,要改正过来。 ④笼型转子段条引起电流过大而发热,建议改为铜笼或补焊。 ⑤定、转子扫膛、相擦,引起电机发热,因扫膛或相擦等于增加点击负载。解决办法是检查轴承,损坏的轴承要更新,另外检查电机装配质量,必要时要重新进行装配 (2)电方面引起的原因 ①电源电压高,超过电机额定电压的10%以上,引起电机铁损耗增加,使电机发热。 ②电源电压过低,低于电机额定电压的5%以上,电机在额定负载运行时会发热。泰兴电机维修解决办法是调整变压器分接开关的档次,把电源电压调整到正常的范围内。 ③过程中三相电源电压不平衡,相间电压不平衡度超过5%,引起三相电流不平衡而使电机发热。 ④缺相运行。 (3)负载方面 ①如果因为负载过大,泰州电机维修提醒应减轻负载或更换容量合适的电机。 ②启动过于频繁。 ③机械负载有故障。 (4)通风散热不良方面 ①电机通风道堵塞,应及时清扫。 ②绕组表面有灰尘和油污,影响散热,应及时清理。 ③风机故障。 ④环境温度过高,应采取降温措施。 电机过热处理办法: 1、负载过重。减轻负载或更换大的电机。 2、电机风扇损坏。更换。 3、电机轴承缺油或损坏,造成阻力增大或转子扫堂。加油或更换。

电机常用计算公式及说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N × Ae)B=F/ILu磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)} 三相的计算公式:

三相电机电流过高的主要原因【详解】

三相电机电流过高的主要原因 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 电源问题 电源方面使电动机发生过热的原因,有以下几种: 1、电源电压过高 当电源电压过高时,电动机反电动势、磁通及磁通密度均随之增大。由于铁损耗的大小与磁通密度平方成正比,则铁损耗增加,导致铁心过热。而磁通增加,又致使励磁电流分量急剧增加,造成定子绕组铜损增大,使绕组过热。因此,电源电压超过电动机的额定电压时,会使电动机过热。 2、电源电压过低 电源电压过低时,若电动机的电磁转矩保持不变,磁通将降低,转子电流相应增大,定子电流中负载电源分量随之增加,造成绕线的铜损耗增大,致使定、转子绕组过热。 3、电源电压不对称 当电源线一相断路、保险丝一相熔断,或闸刀起动设备角头烧伤致使一相不通,都将造成三相电动机走单相,致使运行的二相绕组通过大电流而过热,及至烧毁。因此,对于三相电机一般不适用熔断器进行保护。 4、三相电源不平衡 当三相电源不平衡时,会使电动机的三相电流不平衡,引起绕组过热。

由上述可见,当电动机过热时,应首先考虑电源方面的原因(软启动、变频器、伺服驱动器亦可看作是电源)。确认电源方面无问题后,再去考虑其他方面因素。 负载问题 负载方面使电动机过热原因有以下几种: 1、电动机过载运行 当设备不配套,电动机的负载功率大于电动机的额定功率时,则电动机长期过载运行(即小马拉大车),会导致电动机过热。维修过热电动机时,应先搞清负载功率与电动机功率是否相符,以防盲无目的的拆卸。 2、拖动的机械负载工作不正常 设备虽然配套,但所拖动的机械负载工作不正常,运行时负载时大时小,电动机过载而发热。 3、拖动的机械有故障 当被拖动的机械有故障,转动不灵活或被卡住,都将使电动机过载,造成电动机绕组过热。故检修电动机过热时,负载方面的因素不能忽视。 电机本身问题 1、电动机绕组断路 当电动机绕组中有一相绕组断路,或并联支路中有一条支路断路时,都将导致三相电流不平衡,使电动机过热。 2、电动机绕组短路 当电动机绕组出现短路故障时,短路电流比正常工作电流大得多,使绕组铜损耗增加,导致绕组过热,甚至烧毁。 3、电动机星角接法错误

电机电流计算

已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数” 显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV 电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。(3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安

交流接触器选型根据电动机的启动电流来选

交流接触器选型根据电动机的启动电流来选,一般取启动电流的1.5倍比较合适 55KW在三角形接法运行电流是80A左右,因此该接触器选120A的即可 而你采用的是星型启动,那么星型的接触器就要考虑到启动电流 55KW在星型接法运行电流是80A的1/3,即27A左右;另外启动电流一般按7倍的运行电流计算,因此该接触器选200A的即可。 电动机配套使用的交流接触器,应该考虑到电动机的启动电流,选择大于电动机额定电流3-5倍的。交流接触器过小,其触点容易产生火花、发热,甚至烧坏。交流接触器的说明书上有使用要求,你参考选择使用就可以了。 其他答案 1。电机1.1,1.5,2.2,3,4,5.5,7.5,10,11,15,18.5,22,30。 2。接触器cjx2(cj20)9A,9A,12A,16A,25A,40A,40A,50A,63A,65A,65A(100A),100A, 每一千瓦的工作电流为两安左右,我喜欢用两到三倍的,比较耐用性能又好,价钱也贵不了多少。 依据电动机功率选择接触器,如7.5千瓦电动机电流15A,接触器选择电流为20A的.2.2千瓦电动机电流5A,接触器选择电流为10A的. 电动机如何选择交流接触器、空开、过热继电器 电动机如何选择交流接触器、空开、过热继电器 电机如何配线选用断路器热继电器 如何根据电机的功率考虑电机的额定电压电流配线选用断路器热继电器 三相二百二电机千瓦三点五安培。 常用三百八电机一个千瓦两安培。 低压六百六电机千瓦一点二安培。 高压三千伏电机四个千瓦一安培。 高压六千伏电机八个千瓦一安培。 一台三相电机除知道其额定电压以外还必须知道其额定功率及额定电流比如一台三相异步电 机7.5KW4极常用一般有2、4、6级级数不一样其额定电流也有区别其额定电路约为 15A 。 1、断路器一般选用其额定电流1.5-2.5倍常用DZ47-60 32A 2、电线根据电机的额定电流15A选择合适载流量的电线如果电机频繁启动选相对粗一点的 线反之可以相对细一点载流量有相关计算口决这里我们选择4平方 3、交流接触器根据电机功率选择合适大小就行 1.5-2.5倍,一般其选型手册上有型号这里我们 选择正泰CJX2--2510还得注意辅助触点的匹配不要到时候买回来辅助触点不够用。 4、热继电器其整定电流都是可以调整一般调至电机额定电流1-1.2倍。 断路器继电器电机配线 电机如何配线 1多台电机配导线把电机的总功率相加乘以2是它们的总电流。 2在线路50米以内导线截面是总电流除4.再适当放一点余量 3线路长越过50米外导线截面总电流除3.再适当放一点途量 4120平方以上的大电缆的电流密度要更低一些 断路器

电机启动电流与配电变压器的选择

电机的启动方法与配电变压器的选择 1.问题的提出: 电机启动时的电流一般是电机额定电流的2~7倍,这对电网有较大的影响,国家标准电能质量供电电压允许偏差(GB 12325—90)规定10kV及以下三相供电电压允许偏差为额定电压的±7%。国家标准GB-T-3811-2008 起重机设计规范7.2.1.2规定电压波动不得超过额定值的±10%,这样,如何选择配电站的降压变压器呢? 2.单电动机直接启动场合的降压变压器容量的选择: 2.1由于电机采用直接启动的方法电路简单,价格低廉,对于主要运行设备是风机(泵类)的企业,采用直接启动的方案,无疑会减少该企业的综合投资费用。拖动风机(泵类)的电动机一般都是四极(或二极)鼠笼型电动机,它们的直接启动电流时额定电流的6倍,如果只有一台380V三相鼠笼电机直接启动,电网电压下降15%——已经超过了最大±10%的标准,则电动机启动电流Iq的安培数与降压变压器次级容量S2的KVA数由下式计算可见:S2=√3[380V-15%380V]Iq/1000 cosФ=1.732(380-57) Iq /0.85*1000=1.73*323*Iq /850= 559.436Iq/850=0.66Iq 则有: S2= 0.66Iq 式(1) 由于变压器的平均功耗为7.5%,则变压器容量S与S2的关系为: S=(100+7.5)% S2=1.075S2 则有: S= 1.075S2 式(2) 根据上述式(1)、式(2),我们选择电动机直接启动的方案时电动机功率P与变压器容量S配备见下表(1) 2.2.数台电动机直接启动场合的降压变压器容量的选择 当用户有N台电机同时启动时,则有: S=1.075*N*S2*=N*(1.075*0.66)Iq=0.71*N*Iq, 通常,电动机直接启动时:Iq(A)=12*P(KW), 则有: S(Kva)=0.71*N*Iq=0.71*N*12P=8.52*N*P(KW) 式(3) 假设,有2台30KW的电动机直接启动,需要配备多大的降压变压器呢? 根据式(3)有 S(Kva)=8.52*N*P=8.52*2*30=511.2KVa

电机的耗电量的公式计算

电机的耗电量以以下的公式计算: 耗电度数=(根号3)X 电机线电压X 电机电流X 功率因数) X 用电小时数/1000 电机的额定功率是750W,采用星形接法,接在三相380伏的电源上,用变频器监测电流是1.1A;我又用钳形电流表进行测量,测得每相电流为1.1A,这就说明变频器和钳形电流表测得的电流是一致的。 因为电机是星形接法,线电压是相电压的倍,线电流等于相电流,电机实际消耗的功率:380×× = 724 W,这样电机实际消耗的功率就接近于电机的额定功率。 如果电机是三角形接法,线电压等于相电压,线电流是相电流的倍,电机实际消耗功率的计算是一样的。 这就说明:三相交流电机实际消耗的功率就等于线电压× 线电流。 电机额定功率为450kW,功率因数为,电机效率为%,现运行中发现电流为40A,电压为6000V,那么怎么正确计算电机的各项功率以及电机有功及无功的损耗

高压电机一般为三相电机. 视在功率=×6000×40= 有功功率=×6000×40×= 无功功率=(视在功率平方减有功功率平方开根二次方) 有功损耗=有功功率×%)=×= 无功损耗=无功功率×%)=×= 注明:电机不运行于额定状况,效率及功率因数是有偏差的,上述数值只能为理论值,可能与实际会有点小偏差。 因为铭牌上所标的额定功率是电机能输出的机械功率, 所以不等于电压和电流的乘积 就象一个10KW的电动机,他能输出的机械功率是10KW,但它所消耗的电功率要大于10KW, 三相电动机的功率计算公式: P=*U*I*cosΦ . 三相异步电动机功率因数 异步电动机的功率因数不是一个定数,它与制造的质量有关,还与负载率的大小有关。为了节约电能,国家强制要求电机产品提高功率因数,由原来的到提高到了现在的到,但负载率就是使用

由于电动机起动时要产生较大冲击电流一般为le的5—8倍

由于电动机起动时要产生较大冲击电流(一般为le的5—8倍),同时由于起动机械应力较大,使负载设备的使用寿命降低。 过去人们多采用Y/△转换,自藕降压,磁控降压等方式来实现。这些方法虽然可以起到一定的限流作用,但由于电压有级调节、仍存在电流冲击没有从根本上解决问题,随着电力电子技术的快速发展,软起动器(又称为soft starter)可以实现在整个起动过程中无冲击而平滑的起动电机,而且可根据电动机负载的特性来调节起动过程中的参数,如限流值、起动时间等。此外,它还具有多种对电机保护功能,这就从根本上解决了传统的降压起动设备的诸多弊端。 电机软启动器有那些用途? 软启动器可以解决以下常见问题:启动电流太大,引起开关跳闸;启动时造成电网电压突降引起其它设备运行异常;启动时超过用电的适配容量;负载不允许突然加大力矩和加速太快;损坏易碎的负载传动系统(如传送带、齿轮等);启动电流过大造成电动机烧毁。Powerboss节电宝已内置软启动装置。 电机软启动器的特点? 1、限制起动电流,避免起动时供电线路瞬间电压跌落。 2、降低供电设备容量,新建项目节省投资。 3、防止起动时产生的转矩冲击,减少风机、压缩机、搅拌机等设备在起动时对齿轮箱及传动皮带的应力,杜绝电机轴及传动轴扭 伤和断轴事故的发生,延长其使用寿命。 4、可以解决水泵电动机起动与停止时管道内的水压波动问题,有效地避免"水锤效应"。防止起动和停止时的水压冲击造成泵体和 管道涨裂。 5、可以防止配备传送带的设备、起重滑车、纺织机械等骤然起动或停止造成产品损坏。 6、可以较频繁地起动电动机而电动机不至于过热或烧坏。 7、可以延长电动机供电的自动开关、接触器的使用寿命,既提高了设备的可靠性又减少了设备的维修费用。 8、对于特定的机械,可实现高转矩软起动。 9、设备的外部接线与自耦降压启动器完全相同,但大大增加了电机的保护功能。 摘要:本文论述了对于鼠笼型三相异步电动机在智能控制中的几种起动方式及其优缺点,同时给出通过调研和本人在应用中的切身体会。 一、前言 随着国民经济的飞速发展,科学技术的日新月异,智能控制系统得到了广泛的应用。如:智能大厦、无人值守泵站、无人值守供热站、各种遥控调度系统、生产作业自动化等等。这正是国家实现科学技术现代化的重要标志,也是每一个技术人员肩负的重要责任。 智能控制技术的应用,给我们提出了很多要求。如电网的波动性,执行机构的智能配套等,都要求越来越严格。作为重要驱动执行机构的电动机来说,它的控制方式受到广大技术人员的高度重视。既要为智能控制打下良好基础,又要降低电动机起动时对电网的冲击。所以,不得不在电动机的起动设备上做工作。 鼠笼型异步电动机电子软启动器的诞生给技术人员解决了这个问题。它既能改变电动机的起动特性保护拖动系统,更能保证电动机可靠起动,又能降低起动冲击,而且配有计算机通讯接口实现智能控制。 二、电动机起动方式的选择 作为应用最广泛的鼠笼型异步电动机,它采用降压起动的条件:一是电动机起动时,机械不能承受全压起动的冲击转矩;二是电动机起动时,其端电压不能满足规范要求;三是电动机起动时,影响其他负荷的正常运行。

相关主题