搜档网
当前位置:搜档网 › 湖南省湘潭凤凰中学平面向量及其应用经典试题(含答案)百度文库

湖南省湘潭凤凰中学平面向量及其应用经典试题(含答案)百度文库

湖南省湘潭凤凰中学平面向量及其应用经典试题(含答案)百度文库
湖南省湘潭凤凰中学平面向量及其应用经典试题(含答案)百度文库

一、多选题

1.若a →,b →,c →

是任意的非零向量,则下列叙述正确的是( ) A .若a b →→

=,则a b →→

= B .若a c b c →→→→?=?,则a b →→

= C .若//a b →→,//b c →→,则//a c →→

D .若a b a b →

+=-,则a b →→

2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ?≤

B .若a b c b ?=?且0b ≠,则a c =

C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向

D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是

5,3??-+∞ ???

3.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,

2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )

A .//P

B CQ B .21

33

BP BA BC =

+ C .0PA PC ?<

D .2S =

4.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( )

A .::sin :sin :sin a b c A

B

C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >

D .

sin sin sin +=+a b c A B C

5.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .0PA PB += B .0PB PC += C .PA AB PB += D .0PA PB PC ++=

6.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两

解的是( )

A .10,45,70b A C ==?=?

B .45,48,60b c B ===?

C .14,16,45a b A ===?

D .7,5,80a b A ===? 7.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C

B .在AB

C 中,若sin 2A =sin 2B ,则a =b

C .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立

D .在ABC 中,

sin sin sin +=+a b c

A B C

8.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( ) A .直角三角形

B .等腰三角形

C .等腰直角三角形

D .等边三角形

9.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .11

22AD AB AC =+ B .0MA MB MC ++= C .2133

BM BA BD =

+ D .12

33

CM CA CD =

+

10.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =

B .a b =

C .a 与b 的方向相反

D .a 与b 都是单位向量

11.有下列说法,其中错误的说法为( ).

A .若a ∥b ,b ∥c ,则a ∥c

B .若PA PB PB P

C PC PA ?=?=?,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向

D .若a ∥b ,则存在唯一实数λ使得a b λ=

12.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b +=

B .a b ⊥

C .()

4a b b +⊥ D .1a b ?=-

13.点P 是ABC ?所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ?的形状不可能是( ) A .钝角三角形

B .直角三角形

C .等腰三角形

D .等边三角形

14.下列命题中正确的是( ) A .单位向量的模都相等

B .长度不等且方向相反的两个向量不一定是共线向量

C .若a 与b 满足a b >,且a 与b 同向,则a b >

D .两个有共同起点而且相等的向量,其终点必相同15.题目文件丢失!

二、平面向量及其应用选择题

16.在梯形ABCD 中,//AD BC ,90ABC ∠=?,2AB BC ==,1AD =,则

BD AC ?=( )

A .2-

B .3-

C .2

D .5

17.若点G 是ABC 的重心,,,a b c 分别是BAC ∠,ABC ∠,ACB ∠的对边,且

3

0aGA bGB cGC ++

=.则BAC ∠等于( ) A .90°

B .60°

C .45°

D .30°

18.O 为ABC ?内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知

0a OA b OB c OC ?+?+?=,且tan tan tan 0A OA B OB C OC ?+?+?=,若a =边BC 所对的ABC ?外接圆的劣弧长为( ) A .

23

π B .

43

π C .

6

π D .

3

π 19.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为

S ,且222()S a b c =+-,则tan C =( )

A .4

3-

B .34

-

C .

3

4

D .43

20.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,

则下列各等式中不正确...的是( ) A .23

BG BE = B .2CG GF = C .1

2

DG AG =

D .0GA GB GC ++=

21.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )

A .33A

B A

C HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+

D .24AB AC HM MO +=-

22.在ABC ?中,601ABC A b S ?∠=?=,,则2sin 2sin sin a b c

A B C

-+-+的值等于

( )

A .

3

B C D .23.已知1a =,3b =,且向量a 与b 的夹角为60?,则2a b -=( )

A B .3

C

D 24.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ?=?≠,则a b =

C .若,,,A B C

D 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件

D .若0a b ?>,则a 与b 的夹角为锐角;若0a b ?<,则a 与b 的夹角为钝角 25.如图,在ABC 中,点D 在线段BC 上,且满足1

2

BD DC =

,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )

A .m n +是定值,定值为2

B .2m n +是定值,定值为3

C .

11

m n +是定值,定值为2 D .

21

m n

+是定值,定值为326.题目文件丢失!

27.如图所示,设P 为ABC ?所在平面内的一点,并且11

42

AP AB AC =+,则BPC ?与ABC ?的面积之比等于( )

A .

2

5

B .

35

C .

34

D .

14

28.在ABC ?中,60A ∠=?,1b =,3ABC S ?,则2sin 2sin sin a b c

A B C

++=++( )

A 239

B .

263

3

C 83

D .2329.已知1a b ==,1

2

a b ?=

,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为

( ) A .(

32-∞

B .)

32,?+∞?

C .(

32-∞

D .)

32,?+∞?

30.已知平面向量a ,b ,c 满足2a b ==,()()

20c a c b ?--=,则b c ?的最大值为( ) A .

5

4

B .2

C .

174

D .4

31.在ABC 中,AB AC BA BC CA CB →→→→→→

?=?=?,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形

D .不确定

32.已知ABC 中,1,3,30a b A ?===,则B 等于( )

A .60°

B .120°

C .30°或150°

D .60°或120°

33.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )

A .

32

B .

22

C .

31

2

- D .

2

12

-34.题目文件丢失!

35.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得

45BDC ∠=?,则塔AB 的高是(单位:m )( )

A .2

B .106

C .103

D .10

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.ACD 【分析】

根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】

对应,若,则向量长度相等,方向相同,故,故正确; 对于,当且时,,但,可以不相等,故错误; 对应,若,,则方向相同

解析:ACD 【分析】

根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】

对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反, 故,a c 的方向相同或相反,故//a c ,故C 正确;

对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,

∴0a b =,∴a b ⊥,故D 正确.

故选:ACD 【点睛】

本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题.

2.AC 【分析】

根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】

对于A ,由平面向量数量积定义可知

解析:AC 【分析】

根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】

对于A ,由平面向量数量积定义可知cos ,a b a b a b ?=,则||||||a b a b ?≤,所以A 正确,

对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,

对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即

22||||a b a b -?=,cos 1θ=-,

则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ?+>即2||0a a b λ+?>可得530λ+>,解得5

3

λ>-

, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+?=

所以a 与a b λ+的夹角为锐角时5

3

λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】

本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.

3.BCD 【分析】

本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,

所以B 是的中点,P 是的

解析:BCD 【分析】

本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】

解:因为20PA PC +=,2QA QB =,

所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;

因为()

121

333

BP BA AP BA BC BA BA BC =+=+

-=+,故选项B 正确; 因为

11

2223132

APQ ABC

AB h

S S AB h ??==?△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】

本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.

4.ACD 【分析】

根据正弦定理的性质即可判断.

【详解】

对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角

解析:ACD 【分析】

根据正弦定理的性质即可判断. 【详解】

对于A ,在ABC ,由正弦定理得

2sin sin sin a b c

R A B C

===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;

对于B ,若sin 2sin 2A B =,则A B =或2

A B π

+=,所以a 和b 不一定相等,故B 错

误;

对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以

A B >,故C 正确;

对于D ,由正弦定理得

2sin sin sin a b c

R A B C

===,则2sin 2sin 2sin sin sin sin b c R B R C

R B C B C ++==++,故D 正确.

故选:ACD. 【点睛】

本题考查正弦定理的应用,属于基础题. 5.CD

【分析】

转化为,移项运算即得解 【详解】 由题意: 故 即 , 故选:CD 【点睛】

本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.

解析:CD 【分析】

转化3AB AC AP +=为())(AB AP AC AP AP +=--,移项运算即得解 【详解】

由题意:3AB AC AP += 故())(AB AP AC AP AP +=-- 即PB PC AP +=

0C PA PB P ++=∴,PA AB PB +=

故选:CD 【点睛】

本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.

6.BC 【分析】

根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】

对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两

解析:BC 【分析】

根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】

对于选项A 中:由45,70A C =?=?,所以18065B A C =--=?,即三角形的三个角是确定的值,故只有一解;

对于选项B 中:因为csin sin 115B C b =

=<,且c b >,所以角C 有两解;

对于选项C 中:因为sin sin 17

b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b A

B a

=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】

本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.

7.ACD

【分析】

对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确; 对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中

解析:ACD 【分析】

对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确; 对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误; 对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R C

R B C

+=+=左边,故该选项正确.

【详解】

对于A ,由正弦定理

2sin sin sin a b c

R A B C

===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;

对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2

π

,∴a =b 或a 2+b 2

=c 2,故该选项错误;

对于C ,在ABC 中,由正弦定理可得sin A >sin B ?a >b ?A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确;

对于D ,由正弦定理

2sin sin sin a b c

R A B C

===,可得右边=2sin 2sin 2sin sin sin sin b c R B R C

R B C B C ++==++=左边,故该选项正确.

故选:ACD. 【点睛】

本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.

8.ABCD 【分析】

应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理 , 即. , 或. 即或

解析:ABCD 【分析】

应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2

A B π

+=,进而有

△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】

根据正弦定理

sin sin a b A B

= cos cos a A b B =

sin cos sin cos A A B B =, 即sin 2sin 2A B =. 2,2(0,2)A B π∈,

22A B =或22A B π+=. 即A B =或2

A B π

+=

,

△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形. 故选:ABCD 【点睛】

本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°

9.ABD 【分析】

根据向量的加减法运算法则依次讨论即可的答案. 【详解】

解:如图,根据题意得为三等分点靠近点的点.

对于A 选项,根据向量加法的平行四边形法则易得,故A 正确; 对于B 选项,,由于为三

解析:ABD 【分析】

根据向量的加减法运算法则依次讨论即可的答案. 【详解】

解:如图,根据题意得M 为AD 三等分点靠近D 点的点. 对于A 选项,根据向量加法的平行四边形法则易得11

22

AD AB AC =

+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,

2MA MD =-,所以0MA MB MC ++=,故正确;

对于C 选项,()

2212

=3333

BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()

2212

3333

CM CA AD CA CD CA CA CD =+

=+-=+,故D 正确.

故选:ABD

【点睛】

本题考查向量加法与减法的运算法则,是基础题.

10.AC

【分析】

根据共线向量的定义判断即可.

【详解】

对于A选项,若,则与平行,A选项合乎题意;

对于B选项,若,但与的方向不确定,则与不一定平行,B选项不合乎题意;对于C选项,若与的方向相反,

解析:AC

【分析】

根据共线向量的定义判断即可.

【详解】

对于A选项,若a b

=,则a与b平行,A选项合乎题意;

=,但a与b的方向不确定,则a与b不一定平行,B选项不合乎题对于B选项,若a b

意;

对于C选项,若a与b的方向相反,则a与b平行,C选项合乎题意;

对于D选项,a与b都是单位向量,这两个向量长度相等,但方向不确定,则a与b不一定平行,D选项不合乎题意.

故选:AC.

【点睛】

本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.

11.AD

【分析】

分别对所给选项进行逐一判断即可.

【详解】

对于选项A,当时,与不一定共线,故A错误;

对于选项B ,由,得,所以,,

同理,,故是三角形的垂心,所以B 正确; 对于选项C ,两个非零向量

解析:AD 【分析】

分别对所给选项进行逐一判断即可. 【详解】

对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;

对于选项B ,由PA PB PB PC ?=?,得0PB CA ?=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;

对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确;

对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD 【点睛】

本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.

12.CD 【分析】

分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案. 【详解】

分析知,,与的夹角是. 由,故B 错误,D 正确; 由,所以,故A 错误; 由,所以,故C 正确. 故选:CD 【点睛】

解析:CD 【分析】

分析知1a =,2=b ,a 与b 的夹角是120?,进而对四个选项逐个分析,可选出答案. 【详解】

分析知1a =,2=b ,a 与b 的夹角是120?.

由12cos12010a b ??=??=-≠,故B 错误,D 正确; 由()

2

22

21243a b

a a

b b +=+?+=-+=,所以3a b +=,故A 错误;

由()

()2

144440a b b a b b +?=?+=?-+=,所以()

4a b b +⊥,故C 正确. 故选:CD 【点睛】

本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.

13.AD 【解析】 【分析】

由条件可得,再两边平方即可得答案. 【详解】

∵P 是所在平面内一点,且, ∴, 即, ∴,

两边平方并化简得, ∴,

∴,则一定是直角三角形,也有可能是等腰直角三角形, 故

解析:AD 【解析】 【分析】

由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】

∵P 是ABC ?所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=, 即||||CB AC AB =+, ∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ?=, ∴AC AB ⊥,

∴90A ?∠=,则ABC ?一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】

本题考查向量在几何中的应用,考查计算能力,是基础题.

14.AD

【分析】

利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】

单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据

解析:AD 【分析】

利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】

单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据相等向量的概念知,D 正确. 故选:AD 【点睛】

本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.

15.无

二、平面向量及其应用选择题

16.A 【解析】

分析:根据向量加法、减法法则将BD AC ?转化为()()AD AB AB BC -+即可求解. 详解:由题可得:

BD AC ?=()()AD AB AB BC -+=

2211

()()24222

BC AB AB BC BC AB -+=-=-=-,故选A. 点睛:考查向量的线性运算,将问题转化为已知的信息()()AD AB AB BC -+是解题关键. 17.D 【分析】

由点G 是ABC 的重心可得0GA GB GC ++=,即GA GB GC =--,代入

30aGA bGB cGC ++=中可得3()0b a GB c a GC ??-+-= ? ???

,由,GB GC 不共线可

得00b a a -=?-=?,即可求得,,a b c 的关系,进而利用余弦定理求解即可 【详解】

因为点G 是ABC 的重心,所以0GA GB GC ++=, 所以GA GB GC =--,

代入30aGA bGB cGC ++=可得3()03b a GB c a GC ??-+-=

? ???, 因为,GB GC 不共线,所以

0b a a -=?-=,

即b a c =???=??,所以222cos 22b c a BAC bc +-∠==

,故30BAC ?∠=, 故选:D 【点睛】

本题考查向量的线性运算,考查利用余弦定理求角 18.A 【分析】 根据题意得出

tan tan tan A B C

a b c

==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ?为等边三角形,进而可求得BC 所对的ABC ?外接圆的劣弧

长. 【详解】

0a OA b OB c OC ?+?+?=,a b

OC OA OB c c

∴=--,

同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C

b B

c C ?-=-??∴??-=-??,

tan tan tan A B C

a b c

==, 由正弦定理得

tan tan tan sin sin sin A B C A B C ==,所以,111

cos cos cos A B C

==, cos cos cos A B C ∴==,

由于余弦函数cos y x =在区间()0,π上单调递减,所以,3

A B C π

===

设ABC ?的外接圆半径为R

,则22

sin a

R A

=

==,1R ∴=, 所以,边BC 所对的ABC ?外接圆的劣弧长为222133

R A ππ?=?=. 故选:A. 【点睛】

本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 19.A 【分析】

由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan

2

C

,从而求得tan C . 【详解】

∵222222()2S a b c a b ab c =+-=++-,即2221

2sin 22

ab C a b ab c ??=++-, ∴222sin 2ab C ab a b c ?-=+-,

又222sin 2sin cos 1222

a b c ab C ab C

C ab ab +-?-===-,∴sin cos 12C C +=

, 即22cos sin cos 222C C C =,则tan 22C =,∴2

22tan

2242tan 1231tan 2

C

C C ?===---, 故选:A . 【点睛】

本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力. 20.C 【分析】

由三角形的重心定理和平面向量的共线定理可得答案. 【详解】

ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G

为重心,则23BG BE =,2CG GF =,1

2

DG GA =且0GA GB GC ++=

故选:C 【点睛】

本题考查了三角形的重心定理和向量共线定理,属于中档题. 21.D

构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解. 【详解】

解:如图所示的Rt ABC ?,其中角B 为直角,则垂心H 与B 重合,

O 为ABC ?的外心,OA OC ∴=,即O 为斜边AC 的中点,

M 为BC 中点,∴2AH OM =, M 为BC 中点,

∴22()2(2)AB AC AM AH HM OM HM +==+=+.

4224OM HM HM MO =+=-

故选:D . 【点睛】

本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力. 22.A 【解析】

分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.

详解:由题意,在ABC ?中, 利用三角形的面积公式可得011

sin 1sin 60322

ABC S bc A c ?==???=, 解得4c =,

又由余弦定理得2

2

2

1

2cos 116214132

a b c bc A =+-=+-???

=,解得13a =, 由正弦定理得213239

sin 2sin sin sin 3

a b c a A B C A -+===

-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 23.A

根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解. 【详解】

因为1a =,3b =,a 与b 的夹角为60?,

所以2

2

2

4424697a a b b a b =-?+=-+=-,则27a b -=. 故选:A. 【点睛】

本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 24.C 【分析】

根据平面向量的定义与性质,逐项判断,即可得到本题答案. 【详解】

因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ?=?≠,但a b ≠,故B 不正确;

,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形

ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且

||||AB DC =,所以AB DC =,故C 正确;0a b ?>时,,a b 的夹角可能为0,故D 不正

确. 故选:C 【点睛】

本题主要考查平面向量的定义、相关性质以及数量积. 25.D 【分析】

过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出

21312

AM n n

n AB n n ==

--+,再根据AM mAB =可得231n m n =

-,整理可得213m n

+=,最后选出正确答案即可. 【详解】

如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得

1

AC AN n

=,所以11AE AC EM CN n ==-,由12BD DC =可得

12

BM ME =,所以21312

AM n n

n AB n n ==

--+,因

为AM mAB =,所以231

n

m n =-, 整理可得

21

3m n

+=.

故选:D . 【点睛】

本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题.

26.无

27.D 【分析】

由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果. 【详解】

延长AP 交BC 于点D ,因为A 、P 、D 三点共线, 所以(1)CP mCA nCD m n =++=,设CD kCB = 代入可得CP mCA nkCB =+

即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-?=--+ 又因为1142AP AB AC =+,即11

,142

nk m nk =--=,且1m n += 解得13,44

m n =

= 所以13

44

CP CA CD =

+可得4AD PD = 因为BPC ?与ABC ?有相同的底边,所以面积之比就等于DP 与AD 之比 所以BPC ?与ABC ?的面积之比为1

4

故选D 【点睛】

本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目. 28.A 【分析】

相关主题