搜档网
当前位置:搜档网 › 屈服强度概述

屈服强度概述

屈服强度概述
屈服强度概述

屈服强度概述

屈服强度是材料开始发生明显塑性变形时的最低应力值。

1.概念解释

屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。

(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);

(2)对于屈服现象不明显的材料,和应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。

当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。

有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度。

首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)。

建筑钢材以屈服强度作为设计应力的依据。

2.屈服极限,常用符号δs,是材料屈服的临界应力值。

(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);

(2)对于屈服现象不明显的材料,和应力-应变的直线关系的极限偏差达到规定值(通常为材料发生0.2%延伸率)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生塑性变形,应变增大,使材料失效,不能正常使用。

当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为下屈服点和上屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。

a.屈服点yield point(σs)

试样在试验过程中力不增加(保持恒定)仍能继续伸长(变形)

时的应力。

b.上屈服点upper yield point(σsu)

试样发生屈服而力首次下降前的最大应力。

c.下屈服点lower yield point(σsL)

当不计初始瞬时效应时屈服阶段中的最小应力。

有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度。

首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)

建筑钢材以屈服强度作为设计应力的依据。

所谓屈服,是指达到一定的变形应力之后,金属开始从弹性状态非均匀的向弹-塑性状态过渡,它标志着宏观塑性变形的开始。

3.屈服强度的类型

(1):银文屈服:银纹现象和应力发白。(2):剪切屈服。

屈服强度测定

无明显屈服现象的金属材料需测量其规定非比例延伸强度或规定残余伸长应力,而有明显屈服现象的金属材料,则可以测量其屈服强度、上屈服强度、下屈服强度。一般而言,只测定下屈服强度。

通常测定上屈服强度及下屈服强度的方法有两种:图示法和指针法。

3.1图示法

试验时用自动记录装置绘制力-夹头位移图。要求力轴比例为每mm所代表的应力一般小于10N/mm2,曲线至少要绘制到屈服阶段结束点。在曲线上确定屈服平台恒定的力Fe、屈服阶段中力首次下降前的最大力Feh或者不到初始瞬时效应的最小力FeL。

屈服强度、上屈服强度、下屈服强度可以按以下公式来计算:

屈服强度计算公式:Re=Fe/So;Fe为屈服时的恒定力。

上屈服强度计算公式:Reh=Feh/So;Feh为屈服阶段中力首次下降前的最大力。

下屈服强度计算公式:ReL=FeL/So;FeL为不到初始瞬时效应的最小力FeL。

3.2指针法

试验时,当测力度盘的指针首次停止转动的恒定力或者指针首次回转前的最大力或者不到初始瞬时效应的最小力,分别对应着屈服强度、上屈服强度、下屈服强度。[2]

4.屈服强度标准

建设工程上常用的屈服标准有三种:

4.1比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。

4.2弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以ReL表示。应力超过ReL时即认为材料开始屈服。

4.3屈服强度以规定发生一定的残留变形为标准,如通常以0.2%

残留变形的应力作为屈服强度,符号为Rp0.2。

5.屈服强度的影响因素

影响屈服强度的内在因素有:结合键、组织、结构、原子本性。

如将金属的屈服强度和陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:

(1)固溶强化;

(2)形变强化;

(3)沉淀强化和弥散强化;

(4)晶界和亚晶强化。沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。

在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。

影响屈服强度的外在因素有:温度、应变速率、应力状态。

随着温度的降低和应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。

6.工程意义

6.1传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n因场合不同可从1.1到2或更

大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。

6.2需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。

6.3屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。

屈服强度的测定

二、屈服强度σ0.2的测定 一、概述 金属材料的屈服点(屈服强度)是工程实际中广泛应用的一个重要强度性能指标。对于没有明显屈服现象的金属材料,通常固定以产生0.2%残余应变时的应力(称为规定残余伸长应力)作为这类材料的屈服点,故又称为名义屈服极限、屈服强度等,用σ0.2表示。 二、实验目的: 1.学会测定无明显屈服阶段材料的名义屈服极限的原理和方法; 2.测定45钢的规定残余伸长应力σ0.2; 3.学习试验机和相关仪器的操作使用。 三、实验仪器,材料: 电子万能试验机,引伸计,游标卡尺,拉伸试样 四、实验原理 国标GB228-87《金属拉伸试验方法》规定,σ0.2表征试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距长度的0.2%时的应力,简称为规定残余伸长应力。表达式为: σr0.2=F r0.2A0 ? 式中,F r0.2为规定产生0.2%的残余伸长力, A0为试样平行长度部分的原始横截面面积。 金属材料规定残余伸长应力σ0.2和屈服点一样,表征材料开始塑性变形时的应力。其测试方法可分为图解法和引伸计(卸力)法。 1、图解法测σ0.2时,需要借助试验机上的自动绘图装置做出载荷F与伸长△L的关系曲线图。如图1所示。为了确保其测量精度,要求力轴每毫米所代表的应力一般不大于10N/mm2 ,曲线的高度应使F r出于力轴量程的1/2以上。伸长放大倍数的选择应使图中的OC段的长度不小于5mm。然后,在绘出的F-△L曲线图上,自弹性直线段与伸长轴的交点O起,在伸长轴上截取一相应于规定非比例伸长的OC段,即 OC=L r×K×0.2%=KL rεr其中L r为 图1 图解法测定σ0.2

屈服强度概述

屈服强度概述 屈服强度是材料开始发生明显塑性变形时的最低应力值。 1.概念解释 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值); (2)对于屈服现象不明显的材料,和应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。 当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。

有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度。 首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)。 建筑钢材以屈服强度作为设计应力的依据。 2.屈服极限,常用符号δs,是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值); (2)对于屈服现象不明显的材料,和应力-应变的直线关系的极限偏差达到规定值(通常为材料发生0.2%延伸率)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生塑性变形,应变增大,使材料失效,不能正常使用。 当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为下屈服点和上屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。 a.屈服点yield point(σs) 试样在试验过程中力不增加(保持恒定)仍能继续伸长(变形)

钢筋的屈服强度和抗拉强度

钢筋的屈服强度和抗拉强度 HPB235钢筋,屈服点强度为235MPa,(延伸率为17%); HRB335钢筋,屈服点强度为335MPa,(延伸率为16%); HRB400钢筋,屈服点强度为400MPa,(延伸率为15%)。 根据规定,直径28-40的钢筋,断后延伸率可降低1%,40以上的钢筋可降低2%。 以上要求是交货检验的最小保证值 实验钢筋的拉伸试验 简单的说就是钢筋伸长段与钢筋原长的比。 ①钢筋强度的计算 试件的屈服强度按下式计算: 式中ps——屈服点荷载,n; a0——试件横截面积,cm2。 试件的抗拉强度按下式计算: 式中p0——屈服点荷载,n; a0——试件横截面积,cm2。 ②伸长率的测定 a. 将已拉断试件的两段在断裂处对齐,尽量使其轴线位于一条

直线上。如拉断处由于各种原因形成缝隙,则此缝隙应计入试件拉断后的标距部分长度内。 b. 如拉断处到邻近标距端点的距离大于(1/3)l0时,可用卡尺直接量出已被拉的标距长度l1(mm)。 c. 如拉断处到邻近的标距端点的距离小于或等于(1/3)l0时,可按移位法计算。 d. 伸长率按下式计算(精确至1%): 式中δ——伸长率,%,精确至1%; l0——原标距长度,mm; l1——试件拉断后直接量出或按移位法确定的标距部分的长度,mm(测量精确 mm)。 e. 如试件在标距端点上或标距外断裂,则试验结果无效,应重作试验。 将测试、计算所得到的结果δ10、δ5(δ10、δ5分别表示l0=10a和l0=5a时的断后伸长率),对照国家规范对钢筋性能的技术要求,如达到标准要求则合格,如未达到,可取双倍试验重做,如仍未达到标准者,则钢筋的伸长率不合格。 联系电话: 企业网址:山东金业机械有限公司

抗拉强度和屈服强度.

抗拉强度和屈服强度 抗拉强度 抗拉强度(tensile strength) 抗拉强度(бb)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 拉伸强度 拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。 (1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa 表示。有些错误的称之为抗张强度、抗拉强度等。 (2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。 (3)拉伸强度的计算: σt = p /(b×d) 式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。 注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。 屈服强度 材料拉伸的应力-应变曲线 yield strength 是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是在屈服点在应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。因为材料屈服后产生颈缩,应变增大,使材料失去了原有功能。 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这

屈服强度与抗拉强度

屈服强度与抗拉强度的定义屈服强度又称为屈服极限,常用符号δs,是材料屈服的临界应力值。(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。 抗拉强度(tensile strength) 试样拉断前承受的最大标称拉应力。对于塑性材料,它表征材料最大均匀塑性变形的抗力;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 抗拉强度的定义及符号表示: 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横

截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。抗拉强度(Rm)指材料在拉断前承受最大应力值。万能材料试验机当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定。

弹性模量、屈服强度和抗拉强度

弹性模量、屈服强度和抗拉强度 (1) 弹性模量 钢材受力初期,应力与应变成比例地增长,应力与应变之比为常数,称为弹性模量,即E =б/ε。这个阶段的最大应力(P点对应值)称为比例极限бp。 弹性模量反映了材料受力时抵抗弹性变形的能力,即材料的刚度,它是钢材在静荷载作用下计算结构变形的一个重要指标。 (2) 弹性极限 应力超过比例极限后,应力-应变曲线略有弯曲,应力与应变不再成正比例关系,但卸去外力时,试件变形能立即消失,此阶段产生的变形是弹性变形。不产生残留塑性变形的最大应力(e点对应值)称为弹性极限бe。事实上,бp与бe相当接近。 (3) 屈服强度和条件屈服强度 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度,用бs表示。 有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(б0.2)。高碳钢拉伸时的应力-应变曲线如图2-4所示。 图2-4 高碳钢拉伸б-ε曲线 (4) 极限强度 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈

缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度бb。

钢材强度计算Word版

屈服强度计算:用拉伸试验读取的下屈服点力值(N),除以试件截面面积(㎜2),所得即屈服强度。单位N/㎜2 钢筋屈服强度标准值就是的等级如HPB235钢筋的屈服强度标准值就是235MPa,HRB335钢筋的屈服强度标准值就是335MPa,HRB400,钢筋的屈服强度标准值就是400MPa,钢筋的屈服强度实际值是检测(取样试验)出来的。 屈服强度是标准件的拉伸试验获得的计算不出来的 钢板的承受力怎么计算? 钢板的屈服强度X受力截面=该面发生变形的力。 也可写成钢板的杨氏模量X钢板的长度=变形力 屈服强度代号:σs;单位:MPa(或N/mm2) 指金属材料受拉力作用到某一程度时,其变形突然增加很大时的材料抵抗外力的能力. 读西格玛Sigma 以下供你参考 希腊字母的正确读法 1 Α α alpha a:lf 阿尔法 2 Β β beta bet 贝塔 3 Γ γ gamma ga:m 伽马 4 Δ δ delta delt 德尔塔 5 Ε ε epsilon ep`silon 伊普西龙 6 Ζ ζ zeta zat 截塔 7 Η η eta eit 艾塔 8 Θ θ thet θit 西塔 9 Ι ι iot aiot 约塔 10 Κ κ kappa kap 卡帕 11 ∧ λ lambda lambd 兰布达 12 Μ μ mu mju 缪13 Ν ν nu nju 纽磁阻系数 14 Ξ ξ xi ksi 克西 15 Ο ο omicron omik`ron 奥密克戎 16 ∏ π pi pai 派 17 Ρ ρ rho rou 肉 18 ∑ σ sigma `sigma 西格马 19 Τ τ tau tau 套 20 Υ υ upsilon j up`silon 宇普西龙 21 Φ φ phi fai 佛爱 22 Χ χ chi phai 西 23 Ψ ψ psi psai 普西角速; 24 Ω ω omega o`miga 欧米伽 希腊字母读法 Αα:阿尔法Alpha Ββ:贝塔Beta

抗拉强度和屈服强度

抗拉强度和屈服强度 Prepared on 22 November 2020

抗拉强度和屈服强度抗拉强度 抗拉强度(tensile strength) 抗拉强度(бb)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 拉伸强度 拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。 (1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa表示。有些错误的称之为抗张强度、抗拉强度等。 (2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。 (3)拉伸强度的计算: σt = p /( b×d) 式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。 注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。 屈服强度 材料拉伸的应力-应变曲线 yield strength 是屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是在在();(2)对于屈服现象不明显的材料,与应力-应变的直线关系的达到规定值(通常为%的永久形变)时的应力。通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。因为材料屈服后产生,增大,使材料失去了原有功能。 当应力超过后,增加较快,此时除了产生外,还产生部分。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ)。 有些(如)无明显的屈服现象,通常以发生微量的塑性变形(%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。 首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状发生变化)

浅谈材料屈服强度及其影响因素

浅谈材料屈服强度及其影响因素 屈服标准: 工程上常用的屈服标准有三种: 1、比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 2、弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 3、屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 影响屈服强度的因素: 影响屈服强度的内在因素有: ---结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化;(2)形变强化;(3)沉淀强化和弥散强化;(4)晶界和亚晶强化。沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: ---温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率

特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度 屈服强度的工程意义 ----传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 ----屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。

钢材强度计算.

屈服强度计算:用拉伸试验读取的下屈服点力值(N,除以试件截面面积(㎜2,所得即屈服强度。单位N/㎜2 钢筋屈服强度标准值就是的等级如HPB235钢筋的屈服强度标准值就是 235MPa,HRB335钢筋的屈服强度标准值就是335MPa,HRB400,钢筋的屈服强度标准值就是400MPa,钢筋的屈服强度实际值是检测(取样试验出来的。 屈服强度是标准件的拉伸试验获得的计算不出来的 钢板的承受力怎么计算? 钢板的屈服强度X受力截面=该面发生变形的力。 也可写成钢板的杨氏模量X钢板的长度=变形力 屈服强度代号:ζs;单位:MPa(或N/mm2 指金属材料受拉力作用到某一程度时,其变形突然增加很大时的材料抵抗外力的能力. 读西格玛Sigma 以下供你参考 希腊字母的正确读法 1 Α α alpha a:lf 阿尔法 2 Β β beta bet 贝塔 3 Γ γ gamma ga:m 伽马 4 Γ δ delta delt 德尔塔 5 Δ ε epsilon ep`silon 伊普西龙

6 Ε δ zeta zat 截塔 7 Ζ ε eta eit 艾塔 8 Θ ζ thet ζit 西塔 9 Η η iot aiot 约塔 10 Κ θ kappa kap 卡帕 11 ∧ ι lambda lambd 兰布达 12 Μ κ mu mju 缪13 Ν λ nu nju 纽磁阻系数 14 Ξ μ xi ksi 克西 15 Ο ν omicron omik`ron 奥密克戎 16 ∏ π pi pai 派 17 Ρ ξ rho rou 肉 18 ∑ ζ sigma `sigma 西格马 19 Τ η tau tau 套 20 Υ υ upsilon j up`silon 宇普西龙 21 Φ θ phi fai 佛爱 22 Φ χ chi phai 西 23 Χ ψ psi psai 普西角速; 24 Ψ ω omega o`miga 欧米伽 希腊字母读法

拉伸常用计算公式

常用计算公式: 1、钢板拉伸: 原始截面积=长×宽 原始标距=原始截面积的根号×L 0=K S0 k为S0为原始截面积 断后标距-原始标距 断后伸长率= ×100% 原始标距 原始截面积—断后截面积 断面收缩率= ×100% 原始截面积 Z=[(A0—A1)/A0]100% 2、圆材拉伸: 2 原始截面积= 4 (= D=直径)标距算法同钢板 3、光圆钢筋和带肋钢筋的截面积以公称直径为准,标距=5×钢筋的直径。断后伸长同钢板算法。 4、屈服力=屈服强度×原始截面积 最大拉力=抗拉强度×原始截面积 抗拉强度=最大拉力÷原始截面积 屈服强度=屈服力÷原始截面积 5、钢管整体拉伸: 原始截面积=(钢管外径—壁厚)×壁厚×(=)标距与断后伸长率算法同钢板一样。

6、抗滑移系数公式: N V=截荷KN P1=预拉力平均值之和 nf=2 预拉力(KN)预拉力之和滑移荷载Nv(KN) 第一组425 第二组345 428 第三组343 424 7、螺栓扭矩系数计算公式:K= P·d T=施工扭矩值(机上实测) P=预拉力

d=螺栓直径 已测得K值(扭矩系数)但不知T值是多少可用下列公 式算出:T=k*p*d T为在机上做出实际施拧扭矩。K为 扭矩系数,P为螺栓平均预拉力。D为螺栓的公称直径。8、螺栓标准偏差公式: K i=扭矩系数K2=扭矩系数平均值用每一组的扭矩系数减去平均扭矩系数值再开平方,八组相加之和,再除于7。再开根号就是标准偏差。 例:随机从施工现场抽取8 套进行扭矩系数复验,经检测:螺栓直径为22 螺栓预拉力分别为:186kN,179kN,192kN,179kN,200kN,205kN,195kN,188kN; 相应的扭矩分别为: 530N·m,520N·m,560N·m,550N·m,589N·m,620N·m,626N·m,559N·m K=T/(P*D) T—旋拧扭矩P—螺栓预拉力D—螺栓直径(第一步先算K值,如186*22=4092 再用530/4092=,共算出8组的K值,再算出这8组的平均K 值,第二步用每组的K值减去平均K值,得出的数求出它的平方,第三步把8组平方数相加之和,除于7再开根号。得出标准差。 解:根据规范得扭矩系数: 2 1 () 1 n i i K K n σ= - = - ∑

钢管等金属的屈服强度详解

钢管等金属的屈服强度详解 屈服强度 是金属材料发生屈服现象时的屈服极限,也就是抵抗微量塑性变形的应力。对于无明显屈服现象出现的金属材料,规定以产生0.2%残余变形的应力值作为其屈服极限,称为条件屈服极限或屈服强度。 大于屈服强度的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。通常用作固体材料力学机

建筑钢材以屈服强度作为设计应力的依据。屈服极限,常用符号σs,是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为材料发生0.2%延伸率)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生塑性变形,应变增大,使材料失效,不能正常使用。 2类型 (1):银文屈服:银纹现象与应力发白。(2):剪切屈服。 屈服强度测定 无明显屈服现象的金属材料需测量其规定非比例延伸强度或规定残余伸长应力,而有明显屈服现象的金属材料,则可以测量其屈服强度、上屈服强度、下屈服强度。一般而言,只测定下屈服强度。 通常测定上屈服强度及下屈服强度的方法有两种:图示法和指针法。 图示法 试验时用自动记录装置绘制力-夹头位移图。要求力轴比例为每mm所代表的应力一般小于10N/mm2,曲线至少要绘制到屈服阶段结束点。在曲线上确定屈服平台恒定的力F e、屈服阶段中力首次下降前的最大力Feh或者不到初始瞬时效应的最小力F eL。

材料的屈服强度 刚度 与各种应力的关系

许用应力和安全系数 在前面我们已经研究了杆内的应力,通过以上几节我们又了解了材料的力学性能,在 此基础上我们就可以讨论杆件的强度汁算问题。先从杆的拉压(单向成力状态)时的强度问题开始研究。 由前面分析,已知杆在拉压时横截面上的应力为/N A σ=,此应力又称工作应力,它是杆件在工作时由载荷所引起的应力。当杆件的尺寸已给定的情况下,它是随载荷的增大而增长的,但这种工作应力的增长将受到材料力学性能的限制。如对塑性材料来讲,当杆内应力达到材料的屈服点 s σ(或屈服强度0.2σ)时,杆内将发生明显的塑性变形;而对脆性材 料来说,当杆件内的应力达到材料的强度极限 b σ时,杆将发生破坏。这些过度的塑性变 形(将使另件不能正常工作)和破坏当然是工程上所不允许的。因此,为了保证杆件在工作时不出现上述两种情况,就必须使杆内的最大正应力max σ低于材料达到此两种情况时的极 限应力 jx σ值( s σ或b σ),最多只能等于该材料极限应力值jx σ的若干分之一。这种把材料的极限应力值 jx σ除以某一大于1的系数 n 而得到的应力值,通常就称为材料的许用应 力值。并用符号[]σ来表示,即 []0/n jx σσ= 式中, jx σ为材料的极限应力。在常温静荷时:对塑性材料 jx s σσ=,;对脆性材料, jx b σσ=。 n 为规定的安全系数。 构件安全系数 0n 的大小和一系列因素有关,例如和载荷估计的是否精确、材料的性质是否 均匀及计算时所作的某些简化等等都有关。凡构件实际的工作条件和设计时的主观设想不一致而偏于不安全的方面,都要通过安全系数来加以考虑;此外,为了保证构件有足够的强度储备,也要适当地加大安全系数。尤其是对那些因破坏要造成严重后果的构件,更要加大其安全系数。安全系数的确定不仅仅是个力学问题,故不赘述。 在一般强度计算中,通常对塑性材料可取 0 1.5 2.0 n =:;对脆性材可取 0 1.5 2.0 n =:,甚至更大。

相关主题