搜档网
当前位置:搜档网 › 直角三角形的边角关系专题复习

直角三角形的边角关系专题复习

直角三角形的边角关系专题复习
直角三角形的边角关系专题复习

直角三角形的边角关系测试题

1、在Rt △ABC 中,∠A=90o,AB=6,AC=8,则sinB= ,cosC=

2、在△ABC 中,∠B=90o,2

1

cos =C ,则∠C=

3、在△ABC 中,∠C=90o,∠A=60o,AC=34,则BC=

4、在△ABC 中,∠C=90o,BC=3,AB=32,则∠A=

5、在△ABC 中,∠C=90o,若tanA=

2

1

,则sinA= 6、在△ABC 中,若∠C=90o,∠A=45o,则tanA+sinB=

7、如图1,在△ABC 中,∠C=90o,∠B=30o,AD 是∠BAC 的平分线。已知AB=34,

那么AD=

#

8、正方形ABCD 中,AM 平分∠BAC 交BC 于M ,AB=2,BM=1,则cos ∠MAC= 9、如果3)20tan(3=?+α,那么锐角α=

10、某校数学课外活动小组的同学测量英雄纪念碑的高,如图2所示,测得的数据为: BC=42m ,倾斜角o?=30α,测得测角仪高CD=1.5m ,则AB= 。(结果保留四位 有效数字)

11、在△ABC 中,∠C=90o,BC=5,AC=12,则tanA=( ) A 、512 B 、125 C 、513 D 、13

5 12、在Rt △ABC 中,∠C=90o,5

3

cos =

A ,AC=6cm ,则BC=( )cm A 、8

B 、

C 、

D 、 !

13、菱形ABCD 的对角线AC=10cm ,BD=6cm ,那么=2tan

A ( ) A 、53

B 、54

C 、34

343 D 、34345

14、已知:如图3,梯形ABCD 中,AD

63864238242

3

23

1,23-1,2

3

--3253500

)3sin 2(3tan 2=-+-A B 5

353103?+?+?-?45tan 30cos 230tan 330sin ?-?+?

-?

-

?60tan 45tan 30sin 160cos 45cos 2226—1为平地

上一幢建筑物与铁塔图,题6-2图为其示意图.建筑物AB 与铁塔CD 都垂直于底面,BD=30m ,在A 点测得D 点的俯角为45°,测得C 点的仰角为60°.求铁塔CD 的高度.

图6-1 图6-2

图2

a C

A

E B

)

图1 B

C

D

A

图3

图4 图5

24、如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路。现新修一条路AC 到公路l .小 明测量出∠ACD =30°,∠ABD =45°,BC =50m .请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:

2 1.414,

3 1.732≈≈)

25、如图,某船向正东方向航行,在A 处望见某岛C 在北偏东60o方向,前进6海里到B 点,测得该岛在北偏东30o方向,已知该岛周围6海里内有暗礁,若该船继续向东航行,有无触礁危险试说明理由。

]

26、综合实践课上,小明所在小组要测量护城河的宽度。如图所示是护城河的一段,两岸ABCD ,河岸AB 上有一排大 树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD 的M 处测得∠α=36°,然后沿河岸走50米到达N 点,测得∠β=72°。请你根据这些数据帮小明他们算出河宽FR (结果保留两位有效数字). (参考数据:sin 36°≈,cos 36°≈,tan36°≈,sin 72°≈,cos 72°≈,tan72°≈)

A

B C

北 东

A

B

)

E

F

α

β

初中数学竞赛专题训练之例题及三角形边角不等关系

A. B. 33 C. 39 D. 15 C A B C P 图 8-2 图 8-1 D A A. 4cm 10cm B. 5cm 10cm C. 4cm 2 3cm D. 5cm 2 3cm a C. D. 初中数学竞赛专项训练(8) (命题及三角形边角不等关系) 一、选择题: 1、如图 8-1,已知 AB =10,P 是线段 AB 上任意一点,在 AB 的同侧分别以 AP 和 PB 为边作两个等边三 角形 APC 和 BPD ,则线段 CD 的长度的最小值是 ( ) A. 4 B. 5 C. 6 D. 5( 5 - 1) 2、如图 8-2,四边形 ABCD 中∠A =60°,∠B =∠D =90°,AD =8,AB =7, 则 BC +CD 等于 ( ) A. 6 3 B. 5 3 C. 4 3 D. 3 3 3、如图 8-3,在梯形 ABCD 中,AD ∥BC ,AD =3,BC =9,AB =6,CD =4,若 EF ∥BC ,且梯形 AEFD 与梯形 EBCF 的周长相等,则 EF 的长为 ( ) 45 7 5 5 2 C D A D D E F B 图 8-3 4、已知△ABC 的三个内角为 A 、B 、C 且α =A+B ,β =C+A ,γ =C+B ,则α 、β 、γ 中,锐角的个数 最多为 ( ) A. 1 B. 2 C. 3 D. 0 5、如图 8-4,矩形 ABCD 的长 AD =9cm ,宽 AB =3cm ,将其折叠,使点 D 与点 B 重合,那么折叠后 DE 的长和折痕 EF 的长分别为 ( ) E A D B F C B C C 图 8-4 6、一个三角形的三边长分别为 a ,a ,b ,另一个三角形的三边长分别为 a ,b ,b ,其中 a>b ,若两个三角 形的最小内角相等,则 的值等于 ( ) b A. 3 + 1 2 B. 5 + 1 2 3 + 2 2 5 + 2 2 7、在凸 10 边形的所有内角中,锐角的个数最多是 ( ) A. 0 B. 1 C. 3 D. 5 8、若函数 y = kx (k > 0) 与函数 y = 1 x 的图象相交于 A ,C 两点,AB 垂直 x 轴于 B ,则△ABC 的面积为 ( ) A. 1 B. 2 C. k D. k 2 二、填空题 1、若四边形的一组对边中点的连线的长为 d ,另一组对边的长分别为 a ,b ,则 d 与 ______ a + b 2 的大小关系是_

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

直角三角形的边角关系(习题及答案)

直角三角形的边角关系(习题) ?要点回顾 1.默写特殊角的三角函数值: 2.三角函数值的大小只与角度的有关,跟所在的三角形 放缩(大小)没有关系. 3.计算一个角的三角函数值,通常把这个角放在 中研究,常利用或两种方式进行处理.?例题示范 例:如图,在△ABC 中,∠B=37°,∠C=67.5°,AB=10,求BC 的长.(结果精确到0.1,参考数据:sin37°≈0.6,cos37°≈0.8,tan67.5°≈2.41) 如图,过点A 作AD⊥BC 于点D, 由题意AB=10,∠B=37°,∠C=67.5° 在Rt△ABD 中,AB=10,∠B=37°, sin B =AD ,cos B = BD AB AB ∴AD=6,BD=8 在Rt△ADC 中,AD=6,∠C=67.5°,tan C = AD CD ∴CD=2.49 ∴BC=BD+CD=8+2.49=10.49≈10.5 即BC 的长约为10.5. ①得出结论; ②解直角三角形; ③准备条件. 1

2 ?巩固练习 1.在Rt△ABC 中,如果各边长度都扩大为原来的2 倍,那么锐 角A 的正弦值() A.扩大2 倍B.缩小2 倍C.没有变化D.不确定2.在Rt△ABC 中,若∠C=90°,AC=3,BC=5,则sin A 的值为 () A. 3 5 B. 4 5 C. 5 34 34 D. 3 34 34 3.在△ABC 中,∠A,∠B 均为锐角,且 ?1 ?2 sin A - + - cos B ? ?? = 0 ,则这个三角形是()A.等腰三角形B.直角三角形 C.钝角三角形D.等边三角形 4.若∠A 为锐角,且cos A 的值大于 1 ,则∠A() 2 A.大于30°B.小于30° C.大于60°D.小于60° 5.已知β为锐角,且 3 A.30?≤β≤60? C.30?≤β< 60? ≤tan β< ,则β的取值范围是() B.30?<β≤60? D.β< 30? 6.如图,在矩形ABCD 中,DE⊥AC,垂足为E,设∠ADE=α, 若cosα= 3 ,AB=4,则AD 的长为() 5 A.3 B. 16 3 C. 20 3 D. 16 5 第6 题图第7 题图 7.如图,在菱形ABCD 中,DE⊥AB,若cos A = 3 ,BE=2,则 5 tan∠DBE= . 2 3 2 3 3

三角形三边关系(带答案)

【考点训练】三角形三边关系-2 一、选择题(共10小题) 1.(2011?青海)某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形, 4.(2012?长沙)现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可 二、填空题(共10小题)(除非特别说明,请填准确值) 11.(2007?安顺)如果等腰三角形的两边长分别为4和7,则三角形的周长为_________.12.(2004?云南)已知三角形其中两边a=3,b=5,则第三边c的取值范围为_________.

13.(2007?柳州)如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为_________cm. 14.(2006?连云港)如图,∠BAC=30°,AB=10.现请你给定线段BC的长,使构成△ABC能惟一确定.你认为BC的长可以是_________. 15.(2005?泸州)一个等腰三角形的两边分别为8cm和6cm,则它的周长为_________cm. 16.(2007?贵阳)在△ABC中,若AB=8,BC=6,则第三边AC的长度m的取值范围是_________. 17.(2006?梧州)△ABC的边长均为整数,且最大边的边长为7,那么这样的三角形共有_________个. 18.(2004?芜湖)已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________. 19.(2004?玉溪)已知一个梯形的两底长分别是4和8,一腰长为5,若另一腰长为x,则x的取值范围是_________. 20.(2004?嘉兴)小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:_________,_________,_________(单位:cm). 三、解答题(共10小题)(选答题,不自动判卷) 21.已知三角形的三边互不相等,且有两边长分别为5和7,第三边长为正整数. (1)请写出一个三角形符合上述条件的第三边长. (2)若符合上述条件的三角形共有n个,求n的值. (3)试求出(2)中这n个三角形的周长为偶数的三角形所占的比例. 22.如果一个三角形的各边长均为整数,周长大于4且不大于10,请写出所有满足条件的三角形的三边长. 23.一个三角形的边长分别为x,x,24﹣2x, (1)求x可能的取值范围; (2)如果x是整数,那么x可取哪些值? 24.已知三角形的三边长分别为2,x﹣3,4,求x的取值范围. 25.三角形的三边长分别为(11﹣2x)m、(2x2﹣3x)cm、(﹣x2+6x﹣2)cm

(完整word版)沪科版八年级数学三角形中的边角关系

三角形中的边角关系 知识点 一、 边 1、基本概念(三角形的定义、 边、 顶点、 △、 Rt △) 2、按边对三角形的分类:≠?? ?????? 不等边三角形三角形腰底等腰三角形等边三角形 ☆3、三边关系: (1)任意两边之和大于第三边 (2)任意两边之差小于第三边 验证:两条较短边之和与第三边的关系 二、角 1、基本概念( 内角、外角、∠ ) 2、按角对三角形的分类:???? ???? 锐角三角形斜三角形三角形钝角三角形直角三角形 3、三角形的内角和 (1)三角形三个内角和等于180° (2)直角三角形的两个锐角互余 (3)一个三角形最多3个锐角,最多1个钝角,最多1个直角,最少2个锐角) 三、线 1、中线 (1) 定义 (2) 重心 (3)中线是线段 (4) 表述方法 2、高线 (1)定义 (2)垂心 (3)高是线段,垂线是直线 (4)表示方法 (5)3种高的画法 3、角平分线 (1)定义 (2)外心 (3)画法 (4)表示方法 四、数三角形的个数 (1)图形的形成过程 (2)三角形的大小顺序 (3)按某一条边沿着一定的方向 (4)固定一个顶点,按照一定的顺序不断变换另外两个顶点去数 基础练习 1、图中有____个三角形;其中以AB 为边的三角形有______________;含∠ACB 的三角形有______________;在△BOC 中,OC 的对角是___________;∠OCB 的对边是___________. 2、用集合来表示“用边长把三角形分类”,下面集合正确的是( ) A B C D 3、若三角形的三边长分别为3,4,x -1,则x 的取值范围是_________________________

(完整)直角三角形的边角关系知识点,推荐文档

直角三角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,∠C 为直角,则锐角A 的各三角 函数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =b c (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =a b (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作 c ot A , 即c ot A =b a 2.直角三角形中的边角关系 (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A +B =90° (3)边角之间的关系: sinA =cosB =a c , cosA =sinB =b c t an A =c ot B =a b , cot A =t an B =b a

3.三角函数的关系 (1)同角的三角函数的关系 1)平方关系:sinA 2+cosA 2=1 2)倒数关系:t an A·c ot A =1 3)商的关系:t an A =sinA cosA ,c ot A =cosA sinA (2)互为余角的函数之间的关系 sin(90°-A)=cosA , cos(90°-A)=sinA t an (90°-A)=c ot A , cot (90°-A)=t an A 4.一些特殊角的三角函数值 0° 30° 45° 60° 90° sin α 0 1 cos α 1 0 tan α 0 1 ----- cot α ----- 1

2020-2021中考数学复习《直角三角形的边角关系》专项综合练习及答案

2020-2021中考数学复习《直角三角形的边角关系》专项综合练习及答案 一、直角三角形的边角关系 1.(6分)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD ⊥BC 于D ,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据 正切的定义求出CD 的长,得到答案. 试题解析:作AD ⊥BC 于D ,∵∠EAB=30°,AE ∥BF ,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD= ,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC= ,∴CD= =, ∴BC= .故该船与B 港口之间的距离CB 的长为 海里. 考点:解直角三角形的应用-方向角问题. 2.如图,反比例函数() 0k y k x = ≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=?. (1)求k 的值及点B 的坐标; (2)求tanC 的值.

【答案】(1)2k =,()1,2B --;(2)2. 【解析】 【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数 ()0k y k x = ≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=? , 90BHC ∠=? ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出C tan 即可. 【详解】(1)∵点A (1,a )在2y x =上, ∴a =2,∴ A (1,2), 把A (1,2)代入 k y x = 得2k =, ∵反比例函数()0k y k x = ≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称, ∴()1 2B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D , ∵ 90ABC ∠=? , 90BHC ∠=? ,∴C ABH ∠∠=, ∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=, ∴AD 2 2OD 1 tanC tan AOD =∠= ==.

直角三角形边角关系专题复习

页 1 第1讲 解直角三角形专题复习 【知识点梳理】 (一) 三角函数的概念 1、正弦,余弦,正切的概念(及书写规范) 如图,在 ABC Rt ?中,(1)的邻边 的对边 A A A ∠∠= tan = a b (2)斜边 的对边 A A ∠=sin = a c (3)斜边 的邻边A A ∠= cos = b c (二)特殊角的三角函数值 (三)三角函数之间的关系 1、余角关系:在∠A+∠B=90°时 A B C ∠A 的对边 ∠A 的邻边 斜边

页 2 B A cos sin = B A sin cos = 1tan tan =?B A 2、同角关系 sin 2A+cos 2A=1. .cos sin tan A A A = (四)斜坡的坡度 1、仰角、俯角、坡度、坡角和方向角 (1)仰角:视线在水平线上方的角叫仰角. 俯角:视线在水平线下方的角叫俯角. (2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或叫坡比),用字母i 表示. 坡角:坡面与水平面的夹角叫坡角,用α表示,则有i =_tan α 如图所示, l h i ==αtan ,即坡度是坡角的正切值. (3)方向角: 平面上,通过观察点O 作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从O 点出发的视线与水平线或铅锤线所夹的角,叫做观测的方向角. (五)解三角形及其应用 利用(三角函数)解直角三角形解实际应用题的一般步骤: ① 弄清题中名词术语的意义(如俯角、仰角、坡角、方向角等),然后根据题意画出几何图形,建立数学模型; ② 将实际问题中的数量关系归结为直角三角形中元素之间的关系,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形; ③ 寻求基础直角三角形,并解这个三角形或设未知数进行求解.

直角三角形的边角关系专题复习

直角三角形的边角关系测试题 1、在Rt △ABC 中,∠A=90o,AB=6,AC=8,则sinB= ,cosC= 2、在△ABC 中,∠B=90o,2 1 cos =C ,则∠C= 】 3、在△ABC 中,∠C=90o,∠A=60o,AC=34,则BC= 4、在△ABC 中,∠C=90o,BC=3,AB=32,则∠A= 5、在△ABC 中,∠C=90o,若tanA= 2 1 ,则sinA= 6、在△ABC 中,若∠C=90o,∠A=45o,则tanA+sinB= 7、如图1,在△ABC 中,∠C=90o,∠B=30o,AD 是∠BAC 的平分线。已知AB=34, 那么AD= # 8、正方形ABCD 中,AM 平分∠BAC 交BC 于M ,AB=2,BM=1,则cos ∠MAC= 9、如果3)20tan(3=?+α,那么锐角α= 10、某校数学课外活动小组的同学测量英雄纪念碑的高,如图2所示,测得的数据为: BC=42m ,倾斜角o?=30α,测得测角仪高CD=1.5m ,则AB= 。(结果保留四位 有效数字) 11、在△ABC 中,∠C=90o,BC=5,AC=12,则tanA=( ) A 、512 B 、125 C 、513 D 、13 5 12、在Rt △ABC 中,∠C=90o,5 3 cos = A ,AC=6cm ,则BC=( )cm A 、8 B 、 C 、 D 、 ! 13、菱形ABCD 的对角线AC=10cm ,BD=6cm ,那么=2tan A ( ) A 、53 B 、54 C 、34 343 D 、34345 14、已知:如图3,梯形ABCD 中,AD 63864238242 3 23 1,23-1,2 3 --3253500 )3sin 2(3tan 2=-+-A B 5 米 353103?+?+?-?45tan 30cos 230tan 330sin ?-?+? -? - ?60tan 45tan 30sin 160cos 45cos 2226—1为平地 上一幢建筑物与铁塔图,题6-2图为其示意图.建筑物AB 与铁塔CD 都垂直于底面,BD=30m ,在A 点测得D 点的俯角为45°,测得C 点的仰角为60°.求铁塔CD 的高度. … 图6-1 图6-2 图2 a C A E B ) 图1 B C D A 图3 图4 图5

直角三角形的边角关系(含答案)

学生做题前请先回答以下问题 问题1:在Rt△ABC中,∠C=90°,sinA=________,cosA=________,tanA=________. 问题2:在Rt△ABC中,∠C=90°,锐角A越大,正弦sinA______,余弦cosA______,正切tanA______. 问题3:默写特殊角的三角函数值: 问题4:计算一个角的三角函数值,通常把这个角放在____________中研究,常利用_________或__________两种方式进行处理. 直角三角形的边角关系 一、单选题(共14道,每道7分) 1.式子2cos30°-tan45°-的值是( ) A. B.0 C. D.2 答案:B 解题思路: 试题难度:三颗星知识点:特殊角的三角函数值 2.如果△ABC中,,则下列说法正确的是( ) A.△ABC是直角三角形 B.△ABC是等腰三角形 C.△ABC是等腰直角三角形 D.△ABC是锐角三角形

答案:A 解题思路: 试题难度:三颗星知识点:特殊角的三角函数值 3.已知为锐角,且,那么的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:锐角三角函数的增减性 4.如图,在Rt△ABC中,tanB=,BC=,则AC等于( )

A.3 B.4 C. D.6 答案:A 解题思路: 试题难度:三颗星知识点:解直角三角形 5.在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:锐角三角函数的定义 6.在Rt△ABC中,∠C=90°,若AB=4,,则斜边上的高为( ) A. B. C. D. 答案:B 解题思路:

直角三角形的边角关系知识点

直角二角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,/ C 为直角,则锐角 A 的各三角函 数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做/ A 的正弦,记作sinA , ⑵ 角A 的余弦:锐角A 的邻边与斜边的比叫做/ A 的余弦,记作 cosA , 口口 b 即 cosA = (3)角A 的正切:锐角A 的对边与邻边的比叫做/ A 的正切,记作tanA , 即 tanA =7 b (4) 角A 的余切:锐角A 的邻边与对边的比叫做/ A 的余切,记作cotA , 即 si nA

b 即cotA =- a 2.直角三角形中的边角关系

(1) 三边之间的关系:a 2 + b 2 = c 2 (2) 锐角之间的关系:A + B = 90° (3) 边角之间的关系: sinA = cosB = -, cosA = sinB =2 c c a b tanA = cotB = , cotA = tanB = 3. 三角函数的关系 (1) 同角的三角函数的关系 2) 倒数关系:tan A -c otA = 1 sinA cosA tanA = , cotA =. cosA st nA (2) 互为余角的函数之间的关系 sin(90 ° - A) = cosA , cos(90 ° - A) = sinA tan (90 ° — A) = cotA , cot (90 ° — A) = tanA 4. 一些特殊角的三角函数值 1) 平方关系:sinA 2 + cosA 2 = 1 3) 商的关系:

直角三角形三边的关系教案

直角三角形三边关系——勾股定理(1) 一、教学目标: 1.体验勾股定理的探索过程,掌握勾股定理用它解决身边与实际生活相关问题。 2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。 3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。 二、教学重点、难点: 重点:探索和验证勾股定理过程; 难点:通过面积计算探索勾股定理。 三、教学方法及学法指导: 采用合作探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,培养学生动手实践能力和合作交流的意识。 ) 四、教具准备 多媒体课三角形纸片 五、教学过程: (一).自学导纲 1、创设情境,导入课题 师:同学们,在电网改造中,电力工人为了让如图示的电线杆更加稳固,可以采用什么方法请大家帮他想想办法。 生1:埋的更深一些。 师:大家真聪明,能想出这么多方法。如果采用了 生2的方案,你的依据的什么 生:三角形的稳定性。 师:如图示,电杆、钢丝、地面围成了什么图形 生:直角三角形 师:在施工时,还要知道什么 生:钢丝的长度。即AB的长。 ~ 师:大家想不想以最快的速度得出AB的长呢本节课开始,老师和大家一起研究直 角三角形的一条重要性质。(板书课题直角三角形三边关系——勾股定理)

2.出示导纲,学生自学 完成导纲知识性问题 1、直角三角形的定义是: 2、直角三角形有什么性质 3、画直角三角形ABC,∠C为直角。 (二)、合作互动,探究新知 1、互动1:Rt△ABC中,∠C=900,(1)a=3,b=4,c=5 (2) a=5,b=12,c=13 2、互动2. 图是正方形瓷砖拼成的地面,观察图中画出的三个正方形P、Q、R, 观察图形,并填空: ⑴正方形P的面积为 1 2 cm, 正方形Q 的面积为 1 2 cm, 正方形R的面积为 2 2 cm。 ⑵你能发现图中正方形P、Q、R的面积之间有什么关系 … ⑶你会用直角三角形的边长表示正方形P、Q、R的面积吗你能发现等腰直角三角形三边长度之间存在什么关系吗与你的同伴进行交流。 生:在等腰直角三角形中两直角边的平方和等于斜边的平方 师:那么在一般的直角三角形中是否也能满足你的猜想呢 3、互动3. 观察图,完成 》 正方形P的面积S P为9 2 cm, 正方形Q 的面积S Q为16 2 cm, 正方形R的面积S R为25 2 cm。 师:正方形P、Q、R的面积之间的关系 师:由此我们得出直角三角形ABC的三边的长度之间存在的关系是师点评。那么任意的直角三角形是否也能满足这一结论呢A B C P Q R

三角形中的边角关系

三角形基础知识 说明:△ ABC中,角A , B, C的对边分别为a, b, c, p为三角形周长的一半,r为内切圆半径,R为外接圆半径,)h a, h b, %分别为a, b, c边上的高S^ABC表示面积。 1.三角形的定义:三条线段首尾顺次连结所组成的图形,其中各条线段叫做三角形的边,每两条边组成的角叫做三角形的内角(简称三角形的角). 2.三角形的元素:三角形的边、角、中线、高线、角平分线、周长、面积等都叫三角形的元素.3.确定三角形的条件:在三角形的元素中,边和角叫做三角形的基本元素,其中角确定三角形的形状(定形) ,边确定三角形的大小(定量) ,三角形具有稳定性.确定三角形的条件是:已知三角形的三边(SSS)或两边及其夹角(SAS)或两角及其公 共边(ASA )或两角与其中一角的对边(AAS),这也是判断两个三角形全等的主要方法,全等三角形的对应元素都相等.只知三角形的三角大小,不能确定三角形,具有相同大小的三个角的两个三角形是相似关系. 4.三角形的“线”与“心” : (1)高线、垂心. (2)中线、重心及其的性质、坐标公式、向量公式及其物理意义、中线长定理. (3)中垂线、外接圆、外心. (4)内角平分线、内切圆、内心、内角平分线定理. (5)外角平分线、旁切圆、旁心、外角平分线定理. (6)中位线、中位线定理、中点三角形及其性质. 5.三角形的分类: (1)按边的相等情况分:三边不等的三角形、等腰三角形、等边三角形。 (2)按最大角的情况分:锐角三角形、直角三角形、钝角三角形。 6.等腰三角形的判定与性质、四线合一 7.等边三角形的判定与性质、四心合一(中心) 8.三角形元素之间的关系: (1)角与角的关系: ①内角和定理、 ②外角定理 ③角的性质:范围、关系. ④最大角、最小角. ⑤锐角三角形中任两角的和 (2)边与边的关系:两边之和大于第三边,两边之差小于第三边. (“三胞胎” )(3)边与角的关系:(“三胞胎”) ①对边与对角的大小关系:在三角形中,大边所对的角也较大,相等两边所对的角也相等, 反之也真. ②正弦定理:在一个三角形中,各边和它所对角的正弦之比都相等,都等于该三角形外接圆的 直径.

三角形边角关系教案

14.1 三角形中的边角关系(1) -------边的关系 1.三角形的概念 2.三角形的表示方法及分类 3.三角形三边之间的关系 1.了解三角形的概念,掌握分类思想。 2.经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵。 3.让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值。 三教学重难点: 1.重点:了解三角形的分类,弄清三角形三边关系 2.难点:对两边之差小于第三边的领悟 四教学准备: 1.教师准备:多媒体课件 2.学生准备:四根小木条 五课时安排: 一节课 六教学过程: (一)创设情境,探究新知 1.请同学们仔细观察一组图片,找出你熟悉的图形三角形,引入课题 我们在日常生活中几乎随处可见三角形,它简单、有趣,也十分有用。三角形可以帮助我们更好地认识周围的世界,可以帮助我们解决很多实际问题……从这一节课开始我们将学习三角形。 (二)合作交流,探究新知 你能画一个三角形吗? 三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形 3.自学指导: 认真看书67页的内容。注意三角形边的表示方法。 并思考下面问题: (1)知道三角形的顶点,边,角等概念,会用几何符号表示一个三角形; (2)会把三角形按边进行分类,知道每类三角形的特征;

(3)知道等腰三角形的腰,底边,顶角,底角等概念; 依次向学生介绍有关知识 4.巩固练习(多媒体展示) 5.合作探究三角形的三边关系 有这样的四根小棒(6cm、8cm、12cm、18cm)请你任意的取其中的三根,首尾连接,摆成三角形。 (1)有哪几种取法? (2)是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以? (3)用三根什么样的小棒才能拼成三角形呢?你从中发现了什么? 小组活动:学生自主探索并合作交流满足怎样的数量关系的三根小棒能组成三角形; 我们可以发现这四根小棒中,如果较短的两根的和不大于最长的第三根,就不能组成三角形。 这就是说:三角形中任何两边的和大于第三边 三角形中任意两边的差与第三边有什么关系?你能根据上面的结论,利用不等式的性质加以说明吗? 三角形中任何两边的差小于第三边 6.讲解例题 例1 :例:一根木棒长为7,另一根木棒长为2,若要围成三角形,那么则第三根木棒长度应在什么范围呢? 解:设第三条边长为a cm,则 7-2<a<7+2 即5<a<9 结论:其它两边之差< 三角形的一边< 其它两边之和 例2:已知:等腰三角形周长为18cm,如果一边长等于4cm,求另两边的长? 解(1)设等腰三角形的底边长为4 cm,则腰长为x cm。根据题意,得 x+x+4=18 解方程,得 x=7

直角三角形的边角关系(含答案)

第十四章 直角三角形的边角关系 基础知识梳理 1.锐角三角函数. 在Rt △ABC 中,∠C 是直角,如图所示. (1)正切:∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA= A A ∠∠的对边 的邻边 . (2)正弦:∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA= A ∠的对边 邻边 . (3)余弦:∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA= A ∠的邻边 邻边 . (4)锐角三角函数:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数. (5)锐角的正弦和余弦之间的关系. 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值. 即:如果∠A+∠B=90°,那么sinA=cos (90°-A )=cosB ;cosA=sin (?90?°-?A )?=sinB . (6)一些特殊角的三角函数值(如下表). (7)已知角度可利用科学计算器求得锐角三角函数值;同样,?已知三角函数值也可利用科学计算器求得角度的大小.

(8)三角函数值的变化规律. ①当角度在0°~90°间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小). ②当角度在0°~90°间变化时,余弦值随着角度的增大(或减小)而减小(?或增大).(9)同角三角函数的关系. ①sin2A+cos2A=1;②tanA=sin cos A A . 2.运用三角函数解直角三角形. 由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.如图所示,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边分别为a,b,c. (1)三边之间的关系:a2+b2=c2(勾股定理). (2)锐角之间的关系:∠A+∠B=90°. (3)边角之间的关系:sinA=a c ,cosA= b c ,tanA= a b . 所以,在直角三角形中,只要知道除直角外的两个元素(其中至少有一个是边),?就可以求出其余三个未知元素. 解直角三角形的基本类型题解法如下表所示: (1)尽量使用原始数据,使计算更加准确; (2)不是解直角三角形的问题,添加合适的辅助线转化为解直角三角形的问题; (3)恰当使用方程或方程组的方法解决一些较复杂的解直角三角形的问题; (4)在选用三角函数式时,尽量做乘法,避免做除法,以使运算简便; (5)必要时画出图形,分析已知什么,求什么,它们在哪个三角形中,?应当选用什么关系式进行计算; (6)添加辅助线的过程应书写在解题过程中. 3.解直角三角形的实际问题. 解直角三角形的实际问题涉及到如下概念和术语. (1)坡度、坡角.

2020中考数学专题练习:三角形的边角关系 (含答案)

2020中考数学专题练习:三角形的边角关系 (含答案) 1.已知在△ABC中,∠A=70°-∠B,则∠C=() A.35° B.70° C.110° D.140° 2.已知如图1中的两个三角形全等,则角α的度数是() 图1 A.72° B.60° C.58° D.50° 3.如图2,∠A,∠1,∠2的大小关系是() A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1 图2 图3 4.王师傅用四根木条钉成一个四边形木架,如图3.要使这个木架不变形,他至少还要再钉上几根木条() A.0根B.1根C.2根D.3根 5.下列命题中,真命题的是() A.周长相等的锐角三角形都全等 B.周长相等的直角三角形都全等 C.周长相等的钝角三角形都全等 D.周长相等的等腰直角三角形都全等 6.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是() A B C D

7.不一定在三角形内部的线段是() A.三角形的角平分线B.三角形的中线 C.三角形的高D.三角形的中位线 8.用直尺和圆规作一个角的平分线的示意图如图3所示,则能说明∠AOC =∠BOC的依据是() A.SSS B.ASA C.AAS D.角平分线上的点到角两边的距离相等 图3 图4 9.如图4,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=________cm. 10.如图5,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE. 图5 11.如图6,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF. 图6

三角形中的边角关系测试卷

《三角形中的边角关系》测试卷 一、选择题 1、三角形的三边分别为3,1-2a,8,则a 的取值范围是( ) -2 2、下列不属于命题的是( ) A.两直线平行,同位角相等; B.如果x 2=y 2 ,则x =y ; C.过C 点作CD ∥EF ; D.不相等的角就不是对顶角。 3、如果三角形的一个内角等于其它两个内角的差,这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D. 斜三角形 4、四条线段的长度分别为4、6、8、10,可以组成三角形的组数为( ) .3 5、如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A .2 B .3 C .4 D . 5 6、一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于( ) A .30° B .45° C .60° D .75° 7、图(五)为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为 4 21 平方公分,则此方格纸的面积为多少平方公分? A . 11 B . 12 C . 13 D . 14 8、已知如图,∠A=32°,∠B=45°,∠C=38°则ΔDFE 等于( ) ° ° ° ° 9、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°, 那么∠2的度数是( ) A .32° B .58° C .68° D .60° 10、已知:如图,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( ) A .10° B .18° C .20° D .30° 11、已知等腰三角形的一个内角为040,则这个等腰三角形的顶角为 ( ) A.0 40 B.0 100 C.0 40或0 100 D.0 70或0 50 二、填空题 A B 30° 45° α 1 2

三角形边角关系专项练习

三角形边角关系及三线练习题 典型例题 【例1】 已知三角形的三边长分别为4、5、x ,则x 不可能是( ) A. 3 B. 5 C. 7 D. 9 1. 【例2】 一个三角形的三条边中有两条边相等,且一边长为4,还有一边长为9,则它 的周长为( ) A. 17 B. 22 C. 17或22 D. 13 相关变形:一等腰三角形两边长分别为3,5,试求该三角形的周长。 等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( ) A.150° B.80° C.50°或80° D.70° 【例3】 如图SX —02,AD ⊥BC ,则图中以AD 为高的三角形有___________个。 【例4】 如图SX —03,已知线段AD 、AE 分别是△ABC 的中线和高线,且AB=5cm ,AC=3cm , (1) △ABD 与△ACD 的周长之差为_________;(2) △ABD 与△ACD 的面积关系为__________。 【例5】 已知△ABC 中,给出下列四个条件:(1) ∠A+∠B=∠C; (2) ∠A=90°-∠B; (3) ∠A :∠B :∠C=1:1:2; (4) ∠A :∠B :∠C=1:2:3. 其中能够判定△ABC 是直角三角形的有( )个。 A. 1 B. 2 C. 3 D. 4 【例6】 如图SX —04,Rt △ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm ,BC=12cm ,AC=5cm ,求:(1) △ABC 的面积; (2) CD 的长。 【例7】 如图SX —05,△ABC 中,∠B 、∠C 的平分线交于点P ,且∠BPC=130°,求∠ BAC SX — 02 SX —03 SX — 04

三角形中边与角之间的不等关系

三角形中边与角之间的不等关系 《三角形中边与角之间的不等关系》教学设计教学目标: 1. 通过 实验探究发现:在一个三角形中边与角之间的不等关系; 2. 通过实验探究和推理论证,发展学生的分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略; 3. 提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣。教学重点:三角形中边与角之间的不等关 系及其探究过程。教学难点:如何从实验操作中得到启示,写成几 何证明的表达。教具准备:三角形纸片数张、剪刀、圆规、三角板等。教学过程一、知识回顾 1. 等腰三角形具有什么性质? 2. 如何判定一个三角形是等腰三角形?从这两条结论来看,今后要在同 一个三角形中证明两个角相等,可以先证明它们所对的边相等;同样要证明两条边相等可以先证明它们所对的角相等。二、引入新课问题:在三角形中不相等的边所对的角之间又有怎样的大小关系呢?或者不相等的角所对的边之间大小关系又怎样?方法回顾:在探究 “等边对等角”时,我们采用将三角形对折的方式,发现了“在三角形中相等的边所对的角相等”,从而利用三角形的全等证明了这些性质。现在请大家拿出三角形的纸片用类似的方法探究今天的问题。三.探究新知实验与探究1:在△ABC中,如果AB>AC,那么我们可以将△ABC沿∠BAC的平分线AD折叠,使点C落在AB边上的点E处,即AE=AC,这样得到∠AED=∠C,再利用∠AED是△BDE的外角的关系得到∠AED>∠B,从而得到∠C>∠B。由上面的操作过程得到启示, 请写出证明过程。(提示:作∠BAC的平分线AD,在AB边上取点E,使AE=AC,连结DE。)形成结论1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。思考:是否还 有不同的方法来证明这个结论? 实验与探究2:在△ABC中,如果∠C>∠B,那么我们可以将△ABC沿BC的垂直平分线MN折叠,使点B落在点C上,即∠MCN=∠B,于是MB=MC,这样AB=AM+MB=AM+MC>AC. 由上面的操作过程得到启示,请写出证明过程。 形成结论2:在一个三角形中,如果两个角不等,那么它们所对的边

三角形边角关系-经典例题.docx

1、如图,BE是ZABD的平分线,CF是ZACD的平分线,BE、CF相交于点G, ZBDC=140° , ZBGC=110° o 求ZA 的度数. 2、如图,已知P是Z\ABC内一点,连结AP, PB, PC 求证:(1) PA+PB+PC > - (AB+AC+BC) 2 (2) PA+PB+PC < AB+AC+BC 4、如图1,在厶ABC中,AD丄BC,AE是角平分线, (1)求ZDAE与ZB、ZCZ间的关系; (2)如图2,AE是ZBAC的角平分线,FD垂直于BC于D,求ZDFE与ZB、ZC之间的关系. (3)如图3,当点F在AE延长线上时,FD仍垂直于BC于D,继续探讨ZDFE与ZB、ZC的关 系A 5、如图Z\ABC 中,ZBAD=ZCBE=ZACF, ZABC=506 , ZACB=62°,求ZDFE 的大小.

6、AABC中,AD、BE、CF是角平分线,交点是点G, GH丄BC 求证:ZBGD=ZCGH. A

7、如图,厶0y=90°,点A、B分别在坐标轴Ox、Oy上移动,BF是ZABP的平分线,BF的反向延 反线与ZOAB的平分线交于点C,求证ZACB的度数是定值. 8、在平面直角坐标系中,点0为坐标原点,点A在第一象限, 点B是x正半轴上一点。过点0做OD〃AB, ZBA0的平分线与 ZM0D的平分线相交于点Q, 求仝竺的值 ZAON 9、直角坐标系中,0P平分ZXOY, B为 Y轴正半轴上一点,D为第四象限内一点, BD 交x 轴于C , DE // 0P 交x 轴于点E , BCE交0P于A, ZBDE的平分线交0P于G,交直线AC于 M,如图 求证2ZOGD - ZOED ZOAC 为定值 CA 平分Z D

相关主题