搜档网
当前位置:搜档网 › 第二章(简单线性回归模型)2-2答案教学文稿

第二章(简单线性回归模型)2-2答案教学文稿

第二章(简单线性回归模型)2-2答案教学文稿
第二章(简单线性回归模型)2-2答案教学文稿

第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计

一、判断题

1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。(F)

2.随机扰动项i u 和残差项i e 是一回事。(F )

3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。(F )

4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分

布。 ( F )

5.如果观测值i X 近似相等,也不会影响回归系数的估计量。 ( F ) 二、单项选择题

1.设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i

?β的公式中,错误的是( D )。

A .

()()

()

i i 1

2

i

X X Y -Y ?X

X β--∑∑= B .

()

i i i i 1

2

2i i n X Y -X Y ?n X -X β

∑∑∑∑∑=

C .i i 122i X Y -nXY ?X -nX β∑∑=

D .i i i i 12

x

n X Y -X Y ?βσ∑∑∑= 2.以Y 表示实际观测值,?Y

表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。

A .i i ?Y Y 0∑(-)=

B .2

i i ?Y Y 0∑

(-)=

C .i i ?Y Y ∑(-)=最小

D .2

i i ?Y Y ∑

(-)=最小 3.设Y 表示实际观测值,?Y

表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y

Y = B .?Y Y = C .?Y Y = D .?Y Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。

A .X Y (,)

B . ?X Y (,)

C .?X Y (,)

D .X Y (,)

5.以Y 表示实际观测值,?Y

表示OLS 估计回归值,则用OLS 得到的样本回归直线

i 01i

???Y X ββ+=满足( A )。 A .i i ?Y Y 0∑(-)=

B .2

i i Y Y 0∑

(-)= C . 2i i ?Y Y 0∑(-)= D .2i i ?Y Y 0∑(-)=

6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。 A .与随机扰动项不相关 B .与残差项不相关 C .与被解释变量不相关 D .与回归值不相关

7.参数β的估计量β

?具备有效性是指( B ) A .()0Var =β

? B .()β?Var 为最小 C .()0=-ββ

? D .()ββ-?为最小 三、多项选择题

1.以Y 表示实际观测值,?Y

表示OLS 估计回归值,e 表示残差,则回归直线满足(ABE )。

A .X Y 通过样本均值点(,)

B .

i

i ?Y Y

∑∑=

C .2

i i ?Y Y 0

(-)= D .2

i i ?Y Y 0∑

(-)= E .i i cov(X ,e )=0

2.用OLS 法估计模型i 01i i Y X u ββ+=+的参数,要使参数估计量为最佳线性无偏估计量,则要求( ABCE )。

A .i E(u )=0

B .2

i Var(u )=σ C .i j Cov(u ,u )=0 D .i u 服从正态分布 E .X 为非随机变量,与随机扰动项i u 不相关。 3.假设线性回归模型满足全部基本假设,则其参数的估计量具备( CDE )。

A .可靠性

B .合理性

C .线性性

D .无偏性

E .有效性 4.普通最小二乘估计的直线具有以下特性( ABDE )。 A .通过样本均值点(,)X Y B .?i

i

Y Y

=∑∑ C .2

?()0i

i

Y Y -=∑

D .

0i

e =∑ E .(,)0i

i

Cov X e =

5.线性回归模型的变通最小二乘估计的残差i e 满足( ACDE )。 A .

i

e 0∑= B .i i

e Y 0∑= C .i i

?e Y

0∑=

最新第二章(简单线性回归模型)2-3答案

2.3拟合优度的度量 一、判断题 1.当 ()∑-2i y y 确定时,()∑-2 i y y ?越小,表明模型的拟合优度越好。(F ) 2.可以证明,可决系数2R 高意味着每个回归系数都是可信任的。(F ) 3.可决系数2R 的大小不受到回归模型中所包含的解释变量个数的影响。(F ) 4.任何两个计量经济模型的2R 都是可以比较的。(F ) 5.拟合优度2R 的值越大,说明样本回归模型对数据的拟合程度越高。( T ) 6.结构分析是2R 高就足够了,作预测分析时仅要求可决系数高还不够。( F ) 7.通过2R 的高低可以进行显著性判断。(F ) 8.2R 是非随机变量。(F ) 二、单项选择题 1.已知某一直线回归方程的可决系数为0.64,则解释变量与被解释变量间的线性相关系数为( B )。 A .±0.64 B .±0.8 C .±0.4 D .±0.32 2.可决系数2R 的取值范围是( C )。 A .2R ≤-1 B .2R ≥1 C .0≤2R ≤1 D .-1≤2R ≤1 3.下列说法中正确的是:( D ) A 如果模型的2R 很高,我们可以认为此模型的质量较好 B 如果模型的2R 较低,我们可以认为此模型的质量较差 C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量 D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 三、多项选择题 1.反映回归直线拟合优度的指标有( ACDE )。 A .相关系数 B .回归系数 C .样本可决系数 D .回归方程的标准差 E .剩余变差(或残差平方和) 2.对于样本回归直线i 01i ???Y X ββ+=,回归变差可以表示为( ABCDE )。 A .2 2i i i i ?Y Y -Y Y ∑ ∑  (-) (-) B .2 2 1 i i ?X X β∑ (-) C .2 2 i i R Y Y ∑ (-) D .2 i i ?Y Y ∑(-) E .1 i i i i ?X X Y Y β∑ (-()-) 3.对于样本回归直线i 01i ???Y X ββ+=,?σ为估计标准差,下列可决系数的算式中,正确的有( ABCDE )。 A .2i i 2 i i ?Y Y Y Y ∑∑(-)(-) B .2i i 2 i i ?Y Y 1Y Y ∑∑ (-)-(-)

简单线性回归模型

第二章 简单线性回归模型 一、单项选择题 1.影响预测误差的因素有( ) A .置信度 B .样本容量 C .新解释变量X 0偏离解释变量均值的程度 D .如果给定值X 0等于X 的均值时,置信区间越长越好。 2.OLS E 的统计性质( ) A .线性无偏性 B .独具最小方差性 C .线性有偏 D .β∧ 是β的一致估计 3.OLSE 的基本假定( ) A .解释变量非随机 B .零均值 C .同方差 D .不自相关 4.F 检验与拟合优度指标之间的关系( ) A . 21111n p p R --?? ?- ?-?? B . 21111n p p R --?? ?- ?-?? C . 2111n p p R -???- ?-?? D . 2111n p p R -???- ?-?? 5.相关分析和回归分析的共同点( ) A .都可表示程度和方向 B .必须确定解释(自)变量和被解释(因)变量 C .不用确定解释(自)变量和被解释(因)变量 D .都研究变量间的统计关系 6.OLS E 的基本假设有( ) A .解释变量是随机的 B .随机误差项的零均值假设

C .随机误差项同方差假设 D .随机误差项线性相关假设 7.与 2 ()() 1 ()1i i i n x x y y i n x x i - --==∑∑ 等价的式子是( ) A .2 2 1()1i i i n x y nx y i n x n x i -=-=∑∑ B .2()1()1i i i n x x y i n x x i --==∑∑ C .2()1()1i i i n x x x i n x x i -=-=∑∑ D .xy xx L L 8.下列等式正确的是( ) A .SSR=SST+SSE B .SST=SSR+SSE C .SSE=SSR+SST D .SST=SST ×SSE 9.无偏估计量i β的方差是( ) A . 2 1 () n j j X X σ=-∑ B . 2 2 1 ()n j j X X σ=-∑ C . 2 () n j j X X σ=-∑

(完整版)第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计 一、判断题 1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。(F) 2.随机扰动项和残差项是一回事。(F ) 3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。(F ) 4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。 ( F ) 5.如果观测值i X 近似相等,也不会影响回归系数的估计量。 ( F ) 二、单项选择题 1.设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是( D )。 A . ()() () i i 1 2 i X X Y -Y ?X X β--∑∑= B .() i i i i 12 2i i n X Y -X Y ? n X -X β∑∑∑∑∑= C .i i 122i X Y -nXY ?X -nX β∑∑= D .i i i i 12x n X Y -X Y ?βσ∑∑∑= 2.以Y 表示实际观测值,?Y 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。 A .i i ?Y Y 0∑(-)= B .2 i i ?Y Y 0∑ (-)= C .i i ?Y Y ∑(-)=最小 D .2 i i ?Y Y ∑ (-)=最小 3.设Y 表示实际观测值,?Y 表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y Y = B .?Y Y = C .?Y Y = D .?Y Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。 A .X Y (,) B . ?X Y (,) C .?X Y (,) D .X Y (,) 5.以Y 表示实际观测值,?Y 表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01i ???Y X ββ+=满足( A )。 A .i i ?Y Y 0∑(-)= B .2 i i Y Y 0∑ (-)= C . 2 i i ?Y Y 0∑ (-)= D .2i i ?Y Y 0∑ (-)= 6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。 i u i e

多元线性回归预测模型论文

多元线性回归统计预测模型 摘要:本文以多元统计分析为理论基础,在对数据进行统计分析的基础上建立多元线性回归模型并对未知量作出预测,为相关决策提供依据和参考。重点介绍了模型中参数的估计和自变量的优化选择及简单应用举例。 关键词:统计学;线性回归;预测模型 一.引言 多元线性回归统计预测模型是以统计学为理论基础建立数学模型,研究一个随机变量Y与两个或两个以上一般变量X 1,X 2,…,Xp 之间相依关系,利用现有数据,统计并分析,研究问题的变化规律,建立多元线性回归的统计预测模型,来预测未来的变化情况。它不仅能解决一些随机的数学问题,而且还可以通过建立适当的随机模型进而解决一些确定的数学问题,为相关决策提供依据和参考。 目前统计学与其他学科的相互渗透为统计学的应用开辟新的领域。并被广泛的应用在各门学科上,从物理和社会科学到人文科学,甚至被用来工业、农业、商业及政府部门。而多元线性回归是多元统计分析中的一个重要方法,被应用于众多自然科学领域的研究中。多元线性回归分析作为一种较为科学的方法,可以在获得影响因素的前提下,将定性问题定量化,确定各因素对主体问题的具体影响程度。 二.多元线性回归的基本理论 多元线性回归是多元统计分析中的一个重要方法,被广泛应用于众多自然科学领域的研究中。多元线性回归分析的基本任务包括:根据因变量与多个自变量的实际观测值建立因变量对多个自变量的多元线性回归方程;检验、分析各个自变量对因自变量的综合线性影响的显著性;检验、分析各个自变量对因变量的单纯线性影响的显著性,选择仅对因变量有显著线性影响的自变量,建立最优多元线性回归方程;评定各个自变量对因变量影响的相对重要性以及测定最优多元线性回归方程的偏离度等。由于多数的多元非线性回归问题都可以化为多元线性回归问题,所以这里仅讨论多元线性回归。许多非线性回归和多项式回归都可以化为多元线性回归来解决,因而多元线性回归分析有着广泛的应用。 2.1 多元线性回归模型的一般形式 设随机变量y 与一般变量12,, ,p x x x 线性回归模型为 01122...p p y x x x ββββε=+++++ (2.1) 模型中Y为被解释变量(因变量),而12,,,p x x x 是p 个可以精确测量并可控制的一般变 量,称为解释变量(自变量)。p =1时,(2.1)式即为一元线性回归模型,p 大于2时,(2.1)

第二章(简单线性回归模型)2-2答案教学文稿

第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计 一、判断题 1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。(F) 2.随机扰动项i u 和残差项i e 是一回事。(F ) 3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。(F ) 4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。 ( F ) 5.如果观测值i X 近似相等,也不会影响回归系数的估计量。 ( F ) 二、单项选择题 1.设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是( D )。 A . ()() () i i 1 2 i X X Y -Y ?X X β--∑∑= B . () i i i i 1 2 2i i n X Y -X Y ?n X -X β ∑∑∑∑∑= C .i i 122i X Y -nXY ?X -nX β∑∑= D .i i i i 12 x n X Y -X Y ?βσ∑∑∑= 2.以Y 表示实际观测值,?Y 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。 A .i i ?Y Y 0∑(-)= B .2 i i ?Y Y 0∑ (-)= C .i i ?Y Y ∑(-)=最小 D .2 i i ?Y Y ∑ (-)=最小 3.设Y 表示实际观测值,?Y 表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y Y = B .?Y Y = C .?Y Y = D .?Y Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。 A .X Y (,) B . ?X Y (,) C .?X Y (,) D .X Y (,) 5.以Y 表示实际观测值,?Y 表示OLS 估计回归值,则用OLS 得到的样本回归直线

简单线性回归分析思考与练习参考答案

第10章 简单线性回归分析 思考与练习参考答案 一、最佳选择题 1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。 A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错 2.如果相关系数r =1,则一定有( C )。 A .总SS =残差SS B .残差SS =回归 SS C .总SS =回归SS D .总SS >回归SS E. 回归MS =残差MS 3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。 A .ρ=0时,r =0 B .|r |>0时,b >0 C .r >0时,b <0 D .r <0时,b <0 E. |r |=1时,b =1 4.如果相关系数r =0,则一定有( D )。 A .简单线性回归的截距等于0 B .简单线性回归的截距等于Y 或X C .简单线性回归的残差SS 等于0 D .简单线性回归的残差SS 等于SS 总 E .简单线性回归的总SS 等于0 5.用最小二乘法确定直线回归方程的含义是( B )。 A .各观测点距直线的纵向距离相等 B .各观测点距直线的纵向距离平方和最小 C .各观测点距直线的垂直距离相等 D .各观测点距直线的垂直距离平方和最小 E .各观测点距直线的纵向距离等于零 二、思考题 1.简述简单线性回归分析的基本步骤。 答:① 绘制散点图,考察是否有线性趋势及可疑的异常点;② 估计回归系数;③ 对总体回归系数或回归方程进行假设检验;④ 列出回归方程,绘制回归直线;⑤ 统计应用。 2.简述线性回归分析与线性相关的区别与联系。

数据建模与分析:线性回归小论文

上海住房面积和房价的线性回归分析 王明黔 (上海大学机电工程与自动化学院,上海200444) 摘要:在数据构建统计模型的学习中,统计学习是其一种基础的学习方法。本文针对城市人口数目与饮品连锁店利润的关系,就已有的数据进行线性回归分析,利用Matlab工具进行数据的线性回归模拟,进而得出城市人口数目与饮品连锁店利润的散点图、拟合直线图和三维等高线图。为了分析上海地区的住房面积和房价的关系,收集最近的售房成交数据,将数据导入到Matlab进行分析,得出上海房价与住房面积的线性关系。 关键词:Matlab;线性回归;目标函数;梯度下降;统计学习 基于数据的机器学习是现代智能技术中十分重要的一个方面,主要研究如何从一些观测数据(样本)出发,得出目前尚不能通过原理性分析得到的规律,并用以对未来数据或无法观测的数据进行预测。现实生活中大量存在我们尚无法准确认识但却可以进行观测的事件。因此,这种机器学习在从现代科学、技术到社会、经济等各领域中都有着十分重要的应用[1]。使用线性回归方法可以对一些观测数据进行分析,把预测事件中一些因素作为自变量,另一些随自变量变化而变化的变量作为因变量,研究它们之间的非确定性因果关系,以便预测因变量的未来发展趋势。根据若干观测数据寻找描述变量之间的函数或统计相关关系的最佳数学表达式,或者匹配数据之间相关关系的最佳拟合曲线,来表达随机性变量间的规律[2]。利用线性回归通过多变量机器学习的方法,可以建立上海住房面积和价格的线性关系,建立数学模型并评估其中的未知参数。 1案例分析 1.1目标函数的建立 根据已知给出的城市人口数目与饮品连锁店利润的一些数据,可以得到一个样本集,如图1,为样本在Matlab软件加载数据图,第一列表示城市人口数目,第二列表示饮品连锁店利润。 图1 城市人口数目与饮品连锁店利润的样本集 Fig 1 Urban population and beverage chain profits of sample set

一般线性回归分析案例

一般线性回归分析案例 1、案例 为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。 表一血红蛋白与钙、铁、铜必需元素含量 (血红蛋白单位为g;钙、铁、铜元素单位为ug) case y(g)ca fe cu 17.0076.90295.300.840 27.2573.99313.00 1.154 37.7566.50350.400.700 48.0055.99284.00 1.400 58.2565.49313.00 1.034 68.2550.40293.00 1.044 78.5053.76293.10 1.322 88.7560.99260.00 1.197 98.7550.00331.210.900 109.2552.34388.60 1.023 119.5052.30326.400.823 129.7549.15343.000.926 1310.0063.43384.480.869 1410.2570.16410.00 1.190 1510.5055.33446.00 1.192 1610.7572.46440.01 1.210 1711.0069.76420.06 1.361 1811.2560.34383.310.915 1911.5061.45449.01 1.380 2011.7555.10406.02 1.300 2112.0061.42395.68 1.142 2212.2587.35454.26 1.771 2312.5055.08450.06 1.012 2412.7545.02410.630.899 2513.0073.52470.12 1.652 2613.2563.43446.58 1.230

(完整版)第二章(简单线性回归模型)2-2答案

2.2简单线性回归模型参数的估计 、判断题 1. 使用普通最小二乘法估计模型时, (F ) 2. 随机扰动项u i 和残差项e i 是一回事。 (F ) 3. 在 任何情况下OLS 估计量都是待估参数的最 优线性无偏估计。 (F ) 布。 5.如果观测值X i 近似相等,也不会影响回归系数的估计量 】、单项选择题 1.设样本回归模型为 Y i =" ? X i +e i D )。 A. ?= ■ 1 X i X X i X Y i -Y ? X i Y i -nXY c. - X i 2-nX 2 2 ?以 丫表示实际观测值 ,Y?表示回归估计值, 则普通最小二乘法确定的 ?的公式中, 错误的是 ?n X i Y i - X i Y i i n X i 2- X i 2 ?_ n X i Y i - X i Y i i 1 2 x 则普通最小二乘法估计参数的准则是使 (D ) A. (丫— Y i )=o c. (Y — £ )=最小 「? 一 Y A . (X, 丫 ) 5.以丫表示实际观测值, 丫?表示OLS 估计回归值,则用 OLS 得到的样本回归直线 丫 ?一 ?) 4?满足基本假设条件下,随机误差项 i 服从正态分布,但被解释变量 Y 不一定服从正态分 所选择的回归线使得所有观察值的残差和达到最 3. 丫表示实际观测值 丫?表示OLS 估计回归值,则下列哪项成立( D A. 4.用OLS 估计经典线性模型 Y i — 0 i X i + u i ,则样本回归直线通过点( .(X, Y?)

满足(A)。 A.(Y i—丫i)一0 B . (Y i —Y)2 - 0 C.(Y—丫)2-0 D .(丫Y)-0 6.按经典假设,线性回归模型中的解释变量应是非随机变量,且(

实用回归分析论文

研究课题原材料对混凝土裂缝的影响分析 概述:通过对多元回归分析原理及模型介绍, 结合三峡工程大坝混凝土试验实测数据, 运用统计分析程序SPSS 对影响混凝土抗裂性能指标的五大因素进行了多元线性回归分析, 得到了各因素之间 的相互关系及各因素对抗裂指标的影响权重。 变量选取:根据三峡工程大坝混凝土的部分试验实测数据(详见表1 ) , 建立数据文件。选取其中极限拉伸值y为预报量, 用水量x 1、粉煤灰掺量x 2、减水剂掺量x 3、引气剂掺量x 4、水胶比x 5、5 项指标作为预报因子。为了探寻各预报因子之间的相互关系及对于预报量贡献值的大小, 采用多元全回归法对预报量y 与预报因子x i 之 间的关系进行了回归分析。 表1 回归分析变量表 线性逐步回归分析结果 一、表2 给出了自变量进入模型的方式, 5 个自变量用水量x 1、粉煤灰掺x 2、 减水剂掺量x 3、引气剂掺量x 4、水灰比x 5 强制纳入回归模型。

R2= 0. 915 及校正的可决系数Radj= 0. 844, 说明因变量极限拉伸值y 与所选五个自变量之间存在较为密切线 表3 模型综合表 三、表4 是方差分析表, 也即模型中所有自变量的回归系数等于零的F 检验结果。回归平方和SRR=1 330. 956, 残差平方和SSE= 123. 961, 总偏差平方和SST= 1 454. 917, 对应的自由度分别为5, 6, 11, 回归均方差MSR= 266. 191, 残差均方MSE = 20. 660, 回归方程的显著性检验统计量F = 12. 884, 检验P=0. 004< 0. 05, 说明至少有1 个自变量的回归系数0. 004< 0. 05, 说明至少有1 个自变量的回归系数不为零, 所建立的回归模型有统计学意义。 表4 方差分析表 四、表5 为系数分析表, 给出了回归模型中各项的偏回归系数和各自标准差, 以及对各参数是否等于零的t 检验结果。常数项回归系数( Constant ) 为93. 483, x1 的系数为2. 170, x 2 的系数为- 1. 525, x 3的系数为- 80. 062, x 4 的系数为2 756. 589, x 5 的系数为- 361. 278, 回归系数的标准差( Std. Error) 分别为268. 942、2. 072、1. 576、41. 555、4 406. 136、112. 214, x 1、x 2、 x 3、x 4 及x 5 标准化回归系数Beta 分别为0. 215、- 3. 043、- 1. 233、1.

计量经济学讲义第二讲(共十讲)

第二讲 普通最小二乘估计量 一、基本概念:估计量与估计值 对总体参数的一种估计法则就是估计量。例如,为了估计总体均值为u ,我们可以抽取一个容量为N 的样本,令Y i 为第i 次观测值,则u 的一个很自然的 估计量就是?i Y u Y N ==∑。A 、B 两同学都利用了这种 估计方法,但手中所掌握的样本分别是12(,,...,)A A A N y y y 与12(,,...,)B B B N y y y 。A 、B 两同学分别计算出估计值 ?A i A y u N =∑ 与?B i B y u N =∑ 。因此,在上例中,估计量?u 是随机的,而??,A B u u 是该随机变量可能的取值。估计量 所服从的分布称为抽样分布。 如果真实模型是:01y x ββε=++,其中01,ββ是待估计的参数,而相应的OLS 估计量就是: 1 01 2 ()???;() i i i x x y y x x x βββ-==--∑∑ 我们现在的任务就是,基于一些重要的假定,来考察上述OLS 估计量所具有的一些性质。 二、高斯-马尔科夫假定

●假定一:真实模型是:01y x ββε=++。有三种 情况属于对该假定的违背:(1)遗漏了相关的解释变量或者增加了无关的解释变量;(2)y 与x 间的关系是非线性的;(3)01,ββ并不是常数。 ●假定二:在重复抽样中,12(,,...,)N x x x 被预先固定 下来,即12(,,...,)N x x x 是非随机的(进一步的阐释见附录),显然,如果解释变量含有随机的测量误差,那么该假定被违背。还存其他的违背该假定的情况。 笔记: 12(,,...,)N x x x 是随机的情况更一般化,此时,高斯-马尔科夫假定二被更改为:对任意,i j ,i x 与j ε不相关,此即所谓的解释变量具有严格外生性。显然,当12(,,...,)N x x x 非随机时,i x 与j ε必定不相关,这是因为j ε是随机的。 ●假定三:误差项期望值为0,即 ()0,1,2i E i N ε==。 笔记: 1、当12(,,...,)N x x x 随机时,标准假定是: 12(,,...,)0,1,2,...,i N E x x x i N ε== 根据迭代期望定律有:12[(,,...,)]()i N i E E x x x E εε=,因 此,如果12(,,...,)0i N E x x x ε=成立,必定有:()0i E ε=。

简单线性回归模型练习题

第二章 简单线性回归模型练习题 一、术语解释 1 解释变量 2 被解释变量 3 线性回归模型 4 最小二乘法 5 方差分析 6 参数估计 7 控制 8 预测 二、填空 1 在经济计量模型中引入反映( )因素影响的随机扰动项t ξ,目的在于使模型更符合( )活动。 2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的( )、社会环境与自然环境的( )决定了经济变量本身的( );(2)建立模型时其他被省略的经济因素的影响都归入了( )中;(3)在模型估计时,( )与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了( )与( )之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。 3 ( )是因变量离差平方和,它度量因变量的总变动。就因变量总变动的变异来源看,它由两部分因素所组成。一个是自变量,另一个是除自变量以外的其他因素。( )是拟合值的离散程度的度量。它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。( )是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。 4 回归方程中的回归系数是自变量对因变量的( )。某自变量回归系数β的意义,指的是该自变量变化一个单位引起因变量平均变化( )个单位。 5 模型线性的含义,就变量而言,指的是回归模型中变量的( );就参数而言,指的是回归模型中的参数的( );通常线性回归模型的线性含义是就( )而言的。 6 样本观察值与回归方程理论值之间的偏差,称为( ),我们用残差估计线性模型中的( )。 三、简答题 1 在线性回归方程中,“线性”二字如何理解 2 用最小二乘法求线性回归方程系数的意义是什么 3 一元线性回归方程的基本假设条件是什么 4 方差分析方法把数据总的平方和分解成为两部分的意义是什么 5 试叙述t 检验法与相关系数检验法之间的联系。 6 应用线性回归方程控制和预测的思想。 7 线性回归方程无效的原因是什么 8 回归分析中的随机误差项i ε有什么作用它与残差项t e 有何区别

线性回归模型的研究毕业论文

线性回归模型的研究毕业论文 1 引言 回归分析最早是由19世纪末期高尔顿(Sir Francis Galton)发展的。1855年,他发表了一篇文章名为“遗传的身高向平均数方向的回归”,分析父母与其孩子之间身高的关系,发现父母的身高越高或的其孩子也越高,反之则越矮。他把儿子跟父母身高这种现象拟合成一种线性关系。但是他还发现了个有趣的现象,高个子的人生出来的儿子往往比他父亲矮一点更趋向于平均身高,矮个子的人生出来的儿子通常比他父亲高一点也趋向于平均身高。高尔顿选用“回归”一词,把这一现象叫做“向平均数方向的回归”。于是“线形回归”的术语被沿用下来了。 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。按照参数估计方法可以分为主成分回归、偏最小二乘回归、和岭回归。 一般采用线性回归分析,由自变量和规定因变量来确定变量之间的因果关系,从而建立线性回归模型。模型的各个参数可以根据实测数据解。接着评价回归模型能否够很好的拟合实际数据;如果不能够很好的拟合,则重新拟合;如果能很好的拟合,就可以根据自变量进行下一步推测。 回归分析是重要的统计推断方法。在实际应用中,医学、农业、生物、林业、金融、管理、经济、社会等诸多方面随着科学的发展都需要运用到这个方法。从而推动了回归分析的快速发展。 2 回归分析的概述 2.1 回归分析的定义 回归分析是应用极其广泛的数据分析方法之一。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。 2.2 回归分析的主要容

线性回归模型

线性回归模型 1.回归分析 回归分析研究的主要对象是客观事物变量之间的统计关系,它是建立在对客观事物进行大量试验和观察的基础上,用来寻找隐藏在那些看上去是不确定的现象中的统计规律性的方法。回归分析方法是通过建立模型研究变量间相互关系的密切程度、结构状态及进行模型预测的一种有效工具。 2.回归模型的一般形式 如果变量x_1,x_2,…,x_p与随机变量y之间存在着相关关系,通常就意味着每当x_1,x_2,…,x_p取定值后,y便有相应的概率分布与之对应。随机变量y与相关变量x_1,x_2,…,x_p之间的概率模型为 y = f(x_1, x_2,…,x_p) + ε(1) f(x_1, x_2,…,x_p)为变量x_1,x_2,…,x_p的确定性关系,ε为随机误差项。由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。 当概率模型(1)式中回归函数为线性函数时,即有 y = beta_0 + beta_1*x_1 + beta_2*x_2 + …+ beta_p*x_p +ε (2) 其中,beta_0,…,beta_p为未知参数,常称它们为回归系数。当变量x个数为1时,为简单线性回归模型,当变量x个数大于1时,为多元线性回归模型。 3.回归建模的过程 在实际问题的回归分析中,模型的建立和分析有几个重要的阶段,以经济模型的建立为例:

(1)根据研究的目的设置指标变量 回归分析模型主要是揭示事物间相关变量的数量关系。首先要根据所研究问题的目的设置因变量y,然后再选取与y有关的一些变量作为自变量。通常情况下,我们希望因变量与自变量之间具有因果关系。尤其是在研究某种经济活动或经济现象时,必须根据具体的经济现象的研究目的,利用经济学理论,从定性角度来确定某种经济问题中各因素之间的因果关系。(2)收集、整理统计数据 回归模型的建立是基于回归变量的样本统计数据。当确定好回归模型的变量之后,就要对这些变量收集、整理统计数据。数据的收集是建立经济问题回归模型的重要一环,是一项基础性工作,样本数据的质量如何,对回归模型的水平有至关重要的影响。 (3)确定理论回归模型的数学形式 当收集到所设置的变量的数据之后,就要确定适当的数学形式来描述这些变量之间的关系。绘制变量y_i与x_i(i = 1,2,…,n)的样本散点图是选择数学模型形式的重要手段。一般我们把(x_i,y_i)所对应的点在坐标系上画出来,观察散点图的分布状况。如果n个样本点大致分布在一条直线的周围,可考虑用线性回归模型去拟合这条直线。 (4)模型参数的估计 回归理论模型确定之后,利用收集、整理的样本数据对模型的未知参数给出估计是回归分析的重要内容。未知参数的估计方法最常用的是普通最小二乘法。普通最小二乘法通过最小化模型的残差平方和而得到参数的估计值。即 Min RSS = ∑(y_i – hat(y_i))^2 = 其中,hat(y_i)为因变量估计值,hat(beta_i)为参数估计值。 (5)模型的检验与修改 当模型的未知参数估计出来后,就初步建立了一个回归模型。建立回归模型的目的是应用它来研究经济问题,但如果直接用这个模型去做预测、控制和分析,是不够慎重的。因为这个模型是否真正揭示了被解释变量与解释变量之间的关系,必须通过对模型的检验才能决定。统计检验通常是对回归方程的显著性检验,以及回归系数的显著性检验,还有拟合优度的检验,随机误差项的序列相关检验,异方差性检验,解释变量的多重共线性检验等。 如果一个回归模型没有通过某种统计检验,或者通过了统计检验而没有合理的经济意义,就需要对回归模型进行修改。 (6)回归模型的运用 当一个经济问题的回归模型通过了各种统计检验,且具有合理的经济意义时,就可以运用这个模型来进一步研究经济问题。例如,经济变量的因素分析。应用回归模型对经济变量之间的关系作出了度量,从模型的回归系数可发现经济变量的结构性关系,给出相关评价的一些量化依据。 在回归模型的运用中,应将定性分析和定量分析有机结合。这是因为数理统计方法只是从事物的数量表面去研究问题,不涉及事物的规定性。单纯的表面上的数量关系是否反映事物的本质这本质究竟如何必须依靠专门学科的研究才能下定论。 Lasso 在多元线性回归中,当变量x_1,x_2,…,x_3之间有较强的线性相关性,即解释变量间出现严重的多重共线性。这种情况下,用普通最小二乘法估计模型参数,往往参数估计方差太大,使普通最小二乘的效果变得很不理想。为了解决这一问题,可以采用子集选择、压缩估计或降维法,Lasso即为压缩估计的一种。Lasso可以将一些增加了模型复杂性但与模型无关的

第二章(简单线性回归模型)2-5答案(可编辑修改word版)

一、判断题 2.5 回归模型预测 1. Y ?f 是对个别值Y f 的点估计。(F ) 2.预测区间的宽窄只与样本容量 n 有关。(F ) 3. Y ?f 对个别值Y f 的预测只受随机扰动项的影响。(F ) 4.一般情况下,平均值的预测区间比个别值的预测区间宽。(F ) 5.用回归模型进行预测时,预测普通情况和极端情况的精度是一样的。(F ) 二、单项选择题 1. 某一特定的 X 水平上,总体 Y 分布的离散度越大,即 2 越大,则( A )。 A. 预测区间越宽,精度越低 B .预测区间越宽,预测误差越小 C 预测区间越窄,精度越高 D .预测区间越窄,预测误差越大 2. 在缩小参数估计量的置信区间时,我们通常不采用下面的那一项措施(D )。 A. 增大样本容量 n B. 预测普通情形而非极端情形 C.提高模型的拟合优度 D.提高样本观测值的分散度 三、多项选择题 1. 计量经济预测的条件是(ABC ) A. 模型设定的关系式不变 B .所估计的参数不变 C.解释变量在预测期的取值已作出预测 D .没有对解释变量在预测期的取值进行过预测 E .无条件 2. 对被解释变量的预测可以分为(ABC ) A. 被解释变量平均值的点预测 B.被解释变量平均值的区间预测 C.被解释变量的个别值预测 D.解释变量预测期取值的预测 四、简答题 1. 为什么要对被解释变量的平均值以及个别值进行区间预测? 答:由于抽样波动的存在,用样本估计出的被解释变量的平均值Y ?f 与总体真实平均值 E (Y f X f 之间存在误差,并不总是相等。而用Y ?f 对个别值Y f 进行预测时,除了上述 提到的误差,还受随机扰动项的影响,使得总体真实平均值 E (Y f X f 并不等于个别值 Y f 。 一般而言,个别值的预测区间比平均值的预测区间更宽。 2. 分别写出 E ( Y f X f 和Y f 的置信度为1 -的预测区间。 ? 1 (X - X )2 ? ? 1 (X - X )2 ? 答: E ( Y X : Y ? ± t ? + f ? ; Y : Y ? ± t ? 1 + + f ? 。 f f f n ? 2 x 2 ? i ? f f n ? 2 x 2 ? i ? ∑ ∑

线性回归模型的研究毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

第二讲 面板数据线性回归模型

第二讲 面板数据线性回归模型估计、检验和应用 第一节 单因素误差面板数据线性回归模型 对于面板数据y i 和X i ,称 it it it y αε′=++X βit i it u εξ=+ 1,,; 1,,i N t T =="" 为单因素误差面板数据线性回归模型,其中,i ξ表示不可观测的个体特殊效应,it u 表示剩余的随机扰动。 案例:Grunfeld(1958)建立了下面的投资方程: 12it it it it I F C αββε=+++ 这里,I it 表示对第i 个企业在t 年的实际总投资,F it 表示企业的实际价值(即公开出售的股份),C it 表示资本存量的实际价值。案例中的数据是来源于10个大型的美国制造业公司1935-1954共20年的面板数据。 在EViews6中设定面板数据(GRUNFELD.wf1) Eviews6 中建立面板数据 EViews 中建立单因素固定效应模型

1.1 混合回归模型 1 面板数据混合回归模型 假设1 ε ~ N (0, σ2I NT ) 对于面板数据y i 和X i ,无约束的线性回归模型是 y i = Z i δi + εi i =1, 2, … , N (4.1) 其中' i y = ( y i 1, … , y iT ),Z i = [ ιT , X i ]并且X i 是T×K 的,' i δ是1×(K +1)的,εi 是T×1的。 注意:各个体的回归系数δi 是不同的。 如果面板数据可混合,则得到有约束模型 y = Z δ + ε (4.2) 其中Z ′ = (' 1Z ,' 2Z , … ,'N Z ),u ′ = ('1ε,'2ε, … ,' N ε)。 2 混合回归模型的估计 当满足可混合回归假设时, ()1''?Z Z Z Y ?=δ 在假设1下,对于Grunfeld 数据,基于EViews6建立的混合回归模型 3 面板数据的可混合性检验 假设检验原理:基于OLS/ML 估计,对约束条件的检验。 (1) 面板数据可混合的检验 推断面板数据可混合的零假设是: 1 H :对于所有的i 都有δi = δ. 检验约束条件的统计量是Chow 检验的F 统计量

应用回归分析论文

贵州民族大学 实用回归分析论文 (GuizhouMinzu University) 论文题目:影响谷物的因素分析 年级:2014级 班级:应用统计班 小组成员: 姓名:黄邦秀学号:201410100318 序号:4 姓名:王远学号:201410100314 序号:26 姓名:陈江倩学号:201410100326 序号:11 姓名:吴堂礼学号: 时间:2016.12.06

目录 摘要: (3) 关键词: (3) 一、问题的提出 (4) 二、多元线性回归模型的基假设 (4) 三、收集整理统计数据 (5) 3.1数据的收集 (5) 3.2确定理论回归模型的数学形式 (6) 四、模型参数的估计、模型的检验与修改 (6) 4.1 SPSS软件运用 (6) 4.2 用SPSS软件,得到相关系数矩阵表 (8) 4.3 回归方程的显著性检验 (9) 4.4利用逐步回归法进行修正 (9) 4.5 DW检验法 (11) 五、结果分析 (11) 六、建议 (12) 七、参考文献 (12)

影响谷物的因素分析 摘要:在实际问题的研究中,经常需要研究某一些现象与影响它的某一最主要因素的关系,如影响谷物产量的因素非常多。本文采用多元线性回归分析方法,以1994—2014年中国谷物产量及其重要因素的时间序列数据为样本,对影响中国谷物生产的多种因素进行了分析。分析结果表明,近年来我国谷物生产主要受到单产提高缓慢、播种面积波动大、农业基础设施投入不足、自然灾害频繁等重要因素的影响。为提高谷物产量、促进谷物生产,首先应该提供一套促进谷物生产的政策措施,提高谷物种植效益,增加谷物收入是根本。在这个前提下,才有可能提高单产、稳定面积、加强基础设施建设、提高抗灾能力,增强我国谷物生产能力和生产稳定性。 关键词:谷物产量影响因素多元线性回归分析

常见非线性回归模型

常见非线性回归模型 1.简非线性模型简介 非线性回归模型在经济学研究中有着广泛的应用。有一些非线性回归模型可以通过直接代换或间接代换转化为线性回归模型, 但也有一些非线性回归模型却无法通过代换转化为线性回归模型。 柯布—道格拉斯生产函数模型 εβα+=L AK y 其中 L 和 K 分别是劳力投入和资金投入, y 是产出。由于误差项是可加的, 从而也不能通过代换转化为线性回归模型。 对于联立方程模型, 只要其中有一个方程是不能通过代换转化为线性, 那么这个联立方程模型就是非线性的。 单方程非线性回归模型的一般形式为 εβββ+=),,,;,,,(2121p k x x x f y ΛΛ 2.可化为线性回归的曲线回归 在实际问题当中,有许多回归模型的被解释变量y 与解释变量x 之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为

线性关系,利用线性回归求解未知参数,并作回归诊断。如下列模型。 (1)εββ++=x e y 10 (2)εββββ+++++=p p x x x y Λ2210 (3)ε+=bx ae y (4)y=alnx+b 对于(1)式,只需令x e x ='即可化为y 对x '是线性的形式εββ+'+=x y 10,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。 对于(2)式,可以令1x =x ,2x =2x ,…, p x =p x ,于是得到y 关于1x ,2x ,…, p x 的线性表达式εββββ+++++=p p x x x y Λ22110 对与(3)式,对等式两边同时去自然数对数,得ε++=bx a y ln ln ,令 y y ln =',a ln 0=β,b =1β,于是得到y '关于x 的一元线性回归模型: εββ++='x y 10。 乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为t y 本身是异方差的,而t y ln 是等方差的。加性误差项模型认为t y 是等方差的。从统计性质看两者的差异,前者淡化了t y 值大的项(近期数据)的作用,强化了t y 值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则对近期数据拟合得效果较好。 影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用加权最小二乘。

相关主题