搜档网
当前位置:搜档网 › 计算方法-论文

计算方法-论文

计算方法-论文
计算方法-论文

浅论拉格朗日与牛顿插值法

一、课程简介

计算方法是一种以计算机为工具,研究和解决有精确解而计算公式无法用手工完成和理论上有解而没有计算公式的数学问题的数值近似解的方法。在实际中,数学与科学技术一向有着密切关系并相互影响,科学技术各领域的问题通过建立数学模型和数学产生密切的联系,并以各种形式应用于科学与工程领域。而所建立的这些数学模型,在许多情况下,要获得精确解是十分困难的,甚至是不可能的,这就使得研究各种数学问题的近似解变的非常重要了,计算方法就是这样一门课程,一门专门用来研究各种数学问题的近似解的一门课程。计算方法的一般步骤四:实际问题抽象出实际问题的物理模型,再有物理模型具体出数学模型,根据相关的数值方法利用计算机计算出结果。从一般的过程可以看出,计算方法应该具有数学类课程的抽象性和严谨性的理论特性和实验课程的实用性和实验性的技术特征等。

随着计算机的飞速发展,数值计算方法已深入到计算物理、计算力学、计算化学、计算生物学、计算机经济学等各个领域,并且在航天航空、地质勘探、桥梁设计、天气预报和字形字样设计等实际问题领域得到广泛的应用。

二、主要内容

《计算方法》这门课程可以分为三大块:数值逼近,数值代数,常微分方程。

1.数值逼近模块

这模块的知识点主要分布在第一章到第三章。

第一章:数值计算中的误差。主要的知识点是绝对误差和绝对误差限、相对误差和相对误差限、有效数字等概念的引入和计算绝对误差和绝对误差限、相对误差

和相对误差限及有效数字的方法。

第二章:插值法。在这一章中,主要的就是拉格朗日插值法与牛顿插值法的讲述。拉格朗日插值法中核心就是去求插值结点的插值基函数,牛顿插值法中核心就

是计算插值结点的差商,还有就是截断误差的说明。

第三章:曲线拟合的最小二乘法。重点是最小二乘法的法则和法方程组列写,如何利用法方程组去求一个多项式各项的系数。最小二乘法是与插值方法是有区别

的,它不要求过所有的结点,只要靠近这些点,尽可能的表现出这些点的趋势就行

了。

2.数值代数模块

这一部分内容主要在第四章至第七章。

第四章:数值积分。主要说的是插值型的数值积分的公式和积分系数。刚开始讲了牛顿-柯特斯插值求积公式,包括梯形公式、Simpson公式、Cotes公式-系数、

代数精度和截断误差。然后就是复合的牛顿-柯特斯求积公式,包括复合的梯形公式、复合的Simpson公式、各个复合公式的收敛阶和它们各自的截断误差。最后讲的是

龙贝格算法的计算思想和公式的讲述。

第五章:非线性方程的数值解法。在这一章中主要就是向我们介绍了四种非线性方程求根的迭代法,即为二分法、牛顿切线法、牛顿下山法和正割法。牛顿切线

法、牛顿下山法和正割法种方法的迭代公式是怎样的,各自的收敛阶,及它们相互

之间的比较。

第六章:方程组的数值解法。本章的内容讲的都是求解方程组的值,可以分为两类:一类是求解方程组的精确值的方法,即高斯列主元消去法、LU分解法和高斯

消去法;另一类是求解方程组的近似解的方法,即Jacobi迭代法、S-R迭代法和SOR

迭代法。用迭代法求解方程组要判断所用的方法是否收敛,引入了矩阵的范数,迭

代法迭代矩阵谱半径的求解,条件数及病态方程等知识。

3.常微分方程

这个是在第七章:常微分方程的数值解法。在这一章中讲的就是欧拉方法的介绍,由初值,利用欧拉方法去计算微分方程的值。主要的内容就是欧拉公式、向后

欧拉公式和改进的欧拉公式。

三、重点与难点

1.数值逼近

这一部分的重点与难点就是两种插值方法(即拉格朗日插值法和牛顿插值法)和插值条件。在拉格朗日插值法中要知道如何去求每个插值结点的基函数,计算基

函数是拉格朗日插值法的核心部分,并且要理解基函数的定义和插值余项。在牛顿

插值法中,要知道怎么去求差商,求差商是牛顿插值法的核心。在这块的知识点中

主要是要掌握好这两种插值法,利用它们去解决实际中的一些问题,知道它们的优

缺点,根据实际的问题去选择用哪种方法解决实际中的问题。

2.数值代数

这部分主要的是求积分近似值;求解非线性方程的解主要的三种方法(牛顿切线法、牛顿下山法和正割法);求方程组解的五中方法(高斯消去法、LU分解法、

雅可比迭代法、高斯—塞德尔迭代法和SOR迭代法)以及这几种方法的收敛性是怎

么样的,如何判断用这几种方法解方程组的根就是收敛的。

3.常微分方程

在最后一章中主要的是掌握欧拉公式和改进的欧拉公式,学会怎么用欧拉公式和改进的欧拉公式来常微分方程的值。

四、拉格朗日与牛顿插值法

由于在生产和科研中出现的函数是多种多样的,所以常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点的函数值(即一张函数表)。

显然,要利用这张函数表来分析函数f(x)的性态,甚至直接求出其他一些点上的函数值可能是非常地困难。在有些情况下,虽然可以写出函数f(x)的解析表达式,但是由于结构相当复杂,使用起来很是不方便。面对这些情况,总是希望根据所得的函数表(或结构复杂的解析表达式),构造某个简单函数P(x)作为f(x)的近似。插值法就是为了解决

此类问题的一种古老的确实目前常用的方法,它不仅直接广泛地应用于生产实际和科学研究中,而且也是进一步学习数值计算方法的基础。

拉格朗日插值法和牛顿插值法就是两种常用的简便的插值法。在这里主要的就是说一说这两种插值法的理论和比较,它们是属于数值逼近模块的知识。

1. 拉格朗日插值法

在求满足插值条件n 次插值多项式P n (x)之前,先考虑一个简单的插值问题:对结点x i (i=0,1,…,n)中任一点x k (0≤k ≤n),作一n 次多项式l k (x),使它在该点上取值为1,而在其余点x

(i=0,1,…k-1,k+1…,n)上取值为零,即

L 型插值多项式:

2. 牛顿插值法

由线性代数知,任何一个不高于n 次多项式,都可以表示成函数1,x-x 0,(x-x 0)(x-x 1),…,(x-x 0)(x-x 1)…(x-x n-1)的线性组合。既可以把满足插值条件P(x i )=y i (i=0,1,…,n)的n 次插值多项式写成如下形式:

a 0+ a 1(x-x 0)+ a 2(x-x 0)( x-x 1)+…+ a n ( x-x 0)( x-x 1)…(x-x n-1)

其中,a k 为待定系数。这种形式的插值多项式成为牛顿插值多项式,记为N n (x)。 对个n+1个互异节点:x 0, x 1,…,x n

011011()()()()()()11

()()()()

k k k k n k k k k k i k i k n l x a x x x x x x x x l x a x x x x x x x x -+-+=----=?=

---- 又:011,,)

n x =两个互异的插值节点(x 010101

10

() , ()x x x x l x l x x x x x --=

=

--插值基函数:10011()()()()()

L x f x l x f x l x =+线性插值函数:0

()()()()

n

n n k

k k L x P x l

x f x ===

∑101(1)

12()[,] ()[,]()

()()()()()()

(1)!

n n n n n n n n f x C a b a x x x b P x x a b f

R x f x P x f x L x x n ξω+++∈≤<<≤?∈=-=-=

+ 定理:若,且节点,则插值多项式对有:

3. 两者的比较

牛顿插值的误差不要求函数的高阶导数的存在,所以更具有一般性。它对f(x)是由离散点给出的函数情形或f(x)的导数不存在的情形均适用。

拉格朗日插值法公式结构紧凑,在理论分析中方便,但是如果遇到结点的增减,所有的数据需要全部重算,没有承袭性。而牛顿插值就避免了这一缺点,这样的话,在用计算机计算是就可以大量的节省乘除运算的次数,减少了计算的时间,所以可以说对于一些结构相当复杂的函数f(x),牛顿插值法比拉格朗日插值法要占有一定的优势。

五、

心得与体会

通过这学期对《计算方法》这门课程的学习对一些知识有了较清晰的认识和了解,印象也比较深刻。计算方法中所提到的各种方法都有其自己所使用的范围和使用所需的注意事项,同样在相同问题的处理上,不同的处理方法的选择可能会造成两种截然不同的处理结果,也可能会造成误差的扩大化或者不是最有效的解决方法。误差在数值计算中是不可避免的,误差的传播和积累直接影响到计算结果的精度。在研究算法的同时,必须注重误差的分析,使建立起来的算法科学有效。绝大多数情况下不存在绝对的严格和精确,在考虑数值算法时要能将误差限制在许可的范围之内,这种算法就是数值稳定的。一般情况下除了选用较好的计算方法来防止误差传播和积累以外,还可以选用稳定性较好的计算公式、简化计算步骤和公式、合理安排运算顺序(避免大数“淹没”小数;多个数相加时,其绝对值小的先加;多个数相乘时,其有效位数多者先乘)、避免两相近数相减和绝对值太小的数作为除数等。

在这门课中,我觉得主要的是掌握解决实际问题的方法和思想,计算方法告诉了我们处理问题的方法,而我们在实际运用中就需要通过自己的判断和经验来选择实用性最好、使用最简单、误差最小的方法来解决实际问题。

100110

120101220

10100

()()[,](,)(,)

[,,][,,][,,]

[,,]n n n n f x f x f x x x x f x x f x x f x x x x x f x x f x x f x x x x --=

--=--=

- 称为n 阶差商

称为1阶差商

称为2阶差商

)

()()()( 10010---++-+=∴n n n x x x x a x x a a x N ?

??????=--++-+==--+-+==-+===-)

()()()()()())(()()()()()()()(1001021202202102101101

000n n n n n n n n n n n x f x x x x a x x a a x N x f x x x x a x x a a x N x f x x a a x N x f a x N

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

第一性原理计算方法论文

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT 软件包。 1.1第一性原理 第一性原理计算(简称从头计算,the abinitio calculation),指从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。第一性原理计算就只需要用到五个最基本的物理常量即(b o k c h e m ....)和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。 第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。 以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT 。 1.2量子力学与Born-Oppenheimer 近似 固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系,相应的体系哈密顿量可以写成如下形式: ),(),(R r E R r H H ψψ= (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子(原子核和电子)的动能和粒子之间的相互作用能,即 N e N e H H H H -++= (1-2) 其中,以是电子部分的哈密顿量,形式为:

数值分析_数值计算小论文

Runge-Kutta 法的历史发展与应用 摘要Runge-Kutta 法是极其重要的常微分方程数值解法,本文仅就其起源及发展脉络加以简要研究。对Runge 、Heun 以及Kutta 等人的贡献做出适当评述,指出Runge-Kutta 方法起源于Euler 折线法。同时对Runge-Kutta 法的应用做简要研究。 关键词 Euler 折线法 标准四阶Runge-Kutta 法 应用 一、发展历史[1] 1.1 Euler 折线法 在微分方程研究之初,瑞士数学家L.Euler(1707.4—1783.9)做出了开创性的工作。他和其他一些数学家在解决力学、物理学问题的过程中创立了微分方程这门学科。在常微分方程方面,Euler 在1743年发表的论文中,用代换kx y e =给出了任意阶常系数线性微分方程的古典解法,最早引入了“通解”和“特解”的概念。 1768年,Euler 在其有关月球运行理论的著作中,创立了广泛用于求初值问题 00 (,), (1.1)() (1.2)y f x y x x X y x a '=<≤??=? 的数值解的方法,次年又把它推广到二阶方程。欧拉的想法如下:我们选择0h >,然后在00x x x h ≤≤+情况下用解函数的切线 0000()()(,)l x y x x f x y =+- 代替解函数。这样对于点 10x x h =+ 就得到 1000(,)y y hf x y =+。 在11(,)x y 重复如上的程序再次计算新的方向就会得到所谓的递推公式: 11, (,),m m m m m m x x h y y hf x y ++=+=+

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值分析小论文

“数值分析”课程 第一次小论文 郑维珍2015210459 制研15班(精密仪器系)内容:数值分析在你所在研究领域的应用。 要求:1)字数2500以上;2)要有摘要和参考文献;3)截至10.17,网络学堂提交,过期不能提交! 数值分析在微流控芯片研究领域的应用 摘要: 作者在硕士期间即将参与的课题是微流控芯片的研制。当前,微流控芯片发展十分迅猛,而其中涉及到诸多材料学、电子学、光学、流体力学等领域的问题,加上微纳尺度上的尺寸效应,理论研究和数值计算都显得困难重重。发展该领域的数值计算,成为重中之重。本文从微流体力学、微传热学、微电磁学、微结构力学等分支入手,简要分析一下数值分析方法在该领域的应用。 微流控芯片(Microfluidic Chip)通常又称芯片实验室(Lab-On-a-Chip ),它是20世纪90年代初由瑞士的Manz和Widmer提出的[1-2],它通过微细加工技术,将微管道、微泵、微阀、微电极、微检测元件等功能元件集成在芯片材料(基片)上,完成整个生化实验室的分析功能,具有减少样品的消耗量、节省反应和分析的时间、高通量和便携性等优点。 通常一个微流控芯片系统都会执行一个到多个微流体功能,如泵、混合、热循环、扩散和分离等,精确地操纵这些流体过程是微流控芯片的关键。因此它的研究不仅需要生命科学、MEMS、材料学、电子学、光学、流体力学等多学科领域的基础理论的支持,还需要很多数学计算。

1)微流体力学计算[3]: 对微管里的流体动力的研究主要包含了以下几个方面:(1)微管内流体的粘滞力的研究;(2)微管内气流液流的传热活动;(3)在绝热或传热的微管内两相流的流动和能量转换。这三方面的研究涵盖了在绝热、传热和多相转换条件下,可压缩和不可压缩流体在规则或不规则的微管内的流动特性研究。 由此,再结合不同的初值条件和边界条件,我们可以得到各种常微分方程或偏微分方程,而求解这些方程,就是需要很多数值分析的知识。例如,文献[4]里就针对特定的初值和边界条件,由软件求解了Navier-Stodes方程: 文献[4]专门有一章节讨论了该方程的离散化和数值求解。 微流体力学主要向两个方面发展:一方面是研究流动非定常稳定特性、分叉解及微尺寸效应下的湍流流动的机理,更为复杂的非定常、多尺度的流动特征,高精度、高分辨率的计算方法和并行算法;另一方面是将宏观流体力学的基本模型,结合微纳效应,直接用于模拟各种实际流动,解决微纳芯片生产制造中提出来的各种问题。 2)微传热方程计算: 常微分、偏微分方程的数值求解应用较为广泛的另一问题就是微流体传热问题。由传热学的相关知识,我们可以达到如下的传热学基本方程: 该方程在二维情况下经过简化和离散,可以得到如教材第三章所讲的“五点差分格式”的方程组,从而采取数值方法求解[5]。 除此之外,微结构芯片在加工和制造过程中也会有很多热学方面的问题,例如文献[6]所反映的注塑成型工艺中,就有大量的类似问题的解决。 3)微电磁学计算: 由于外加电场的作用,电渗流道中会产生焦耳热效应。许多研究者对电渗流道中的焦耳热效应进行了数值模拟研究。新加坡南洋理工大学的G. Y. Tang等在电渗流模型的基础上,考虑了与温度有关的物理系数,在固一液祸合区域内利用

计算方法-论文

浅论拉格朗日与牛顿插值法 一、课程简介 计算方法是一种以计算机为工具,研究和解决有精确解而计算公式无法用手工完成和理论上有解而没有计算公式的数学问题的数值近似解的方法。在实际中,数学与科学技术一向有着密切关系并相互影响,科学技术各领域的问题通过建立数学模型和数学产生密切的联系,并以各种形式应用于科学与工程领域。而所建立的这些数学模型,在许多情况下,要获得精确解是十分困难的,甚至是不可能的,这就使得研究各种数学问题的近似解变的非常重要了,计算方法就是这样一门课程,一门专门用来研究各种数学问题的近似解的一门课程。计算方法的一般步骤四:实际问题抽象出实际问题的物理模型,再有物理模型具体出数学模型,根据相关的数值方法利用计算机计算出结果。从一般的过程可以看出,计算方法应该具有数学类课程的抽象性和严谨性的理论特性和实验课程的实用性和实验性的技术特征等。 随着计算机的飞速发展,数值计算方法已深入到计算物理、计算力学、计算化学、计算生物学、计算机经济学等各个领域,并且在航天航空、地质勘探、桥梁设计、天气预报和字形字样设计等实际问题领域得到广泛的应用。 二、主要内容 《计算方法》这门课程可以分为三大块:数值逼近,数值代数,常微分方程。 1.数值逼近模块 这模块的知识点主要分布在第一章到第三章。 第一章:数值计算中的误差。主要的知识点是绝对误差和绝对误差限、相对误差和相对误差限、有效数字等概念的引入和计算绝对误差和绝对误差限、相对误差 和相对误差限及有效数字的方法。 第二章:插值法。在这一章中,主要的就是拉格朗日插值法与牛顿插值法的讲述。拉格朗日插值法中核心就是去求插值结点的插值基函数,牛顿插值法中核心就 是计算插值结点的差商,还有就是截断误差的说明。 第三章:曲线拟合的最小二乘法。重点是最小二乘法的法则和法方程组列写,如何利用法方程组去求一个多项式各项的系数。最小二乘法是与插值方法是有区别 的,它不要求过所有的结点,只要靠近这些点,尽可能的表现出这些点的趋势就行 了。 2.数值代数模块 这一部分内容主要在第四章至第七章。 第四章:数值积分。主要说的是插值型的数值积分的公式和积分系数。刚开始讲了牛顿-柯特斯插值求积公式,包括梯形公式、Simpson公式、Cotes公式-系数、 代数精度和截断误差。然后就是复合的牛顿-柯特斯求积公式,包括复合的梯形公式、复合的Simpson公式、各个复合公式的收敛阶和它们各自的截断误差。最后讲的是 龙贝格算法的计算思想和公式的讲述。

中北大学数值分析小论文

中北大学 《数值分析》 常微分方程初值问题的数值解法 专业: 班级: 学号: 姓名: 日期: 2012.12.26

常微分方程初值问题的数值解法 摘 要 微分方程的数值解法在科学技术及生产实践等多方面应用广泛. 文章分析了构造常微分方程初值问题数值解法的三种常用基本方法,差商代替导数法,数值积分法及待定系数法,推导出了Euler 系列公式及三阶龙格-库塔公式,指出了各公式的优劣性及适用条件,并对Euler 公式的收敛性、稳定性进行了分析。 Abstract The numerical solution of differential equations is widely used in science, technology, production practices and many other fields. This paper analyzed three kinds of basic methods for constructing numerical solutions for initial value problem of ordinary differential equations :difference quotient instead of derivative method, numerical integral method and undetermined coefficients method. At the same time, the paper deduces the Euler series formula and the classical third order Runge-Kutta formula. In addition, the paper pointed out the advantages and disadvantages of each formula and application condition, it also analyzed the convergence and stability of the Euler formula. 1.引言 科学技术及实际生产实践中的许多问题都可归结为微分方程的求解问题,使用较多的是常微分方程初值问题的求解。对于一阶常微分方程的初值问题 000dy /dx f (x,y),y(x )y ,x x b ==<<,其中f 为已知函数,0y 是初始值。如 果函数f 关于变量y 满足Lipschitz 条件,则初值问题有唯一解。只有当f 是一些特殊类型的函数时,才能求出问题的解析解,但一般情况下都满足不了生产实践与科学技术发展的需要,因此通常求其数值解法。 2.主要算法 数值解法是一种离散化的方法,可以求出函数的精确解在自变量一系列离散点处的近似值。基本思想是离散化,首先要将连续区间离散化,对连续区域[]0x ,b 进行剖分01n 1n x x x x b -<<Λ<<=,n n 1n h x x +=-为步长;其次将其函离散

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

计算方法论文

****学校课程考查论文 课程名称:《计算方法》 学院: 专业: 班级: 姓名: 学号: 论文题目:《我对拉格朗日公式的认识》成绩:

我对拉格朗日公式的认识 一、问题背景 (一)背景 在生产和科研中出现的函数是多种多样的,常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数在区间[a,b]上存在且连续,但却难以找出它的解析表达式,只能通过实验和观测得到在有限个点的函数值(即一张函数表)。显然,要利用这张函数表来分析函数的性态,甚至直接求出其他一些点的函数值可能是非常困难的。在有些情况 下,虽然可以写出函数的解析表达式,但由于结构相当复杂,使用起来很不方便。插值法是解决此类问题的一种比较古老的、然而却是目前常用的方法。 许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日插值多项式。 (二)相关数学知识 插值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。 在多项式插值中,最常见、最基本的问题是:一次数不超过n次的代

数多项式P n(x)=a0+a1x+…+a n x (1) 使P n(x i)=y i (2) 其中,a0,a1,…a n为实数;x i,y i意义同前。 插值多项式的存在唯一性:若节点x0,x1,x2…x n互不相同,则(2)式满足插值条件式的n次多项式(1)存在且唯一。 可以写出n+1个n次多项式。容易看出,这组多项式仅与节点的取法有关,我们称之为n次插值基函数。 二、方法综述 某多项式函数,已知给定的k+1个取值点:(x0,y1)…(x k,y k),其中x i对应着自变量的位置,而y i对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: (x)+(x)+…+(x) 拉格朗日基本多项式l j(x)的特点是在x j上取值为1,在其它的点x i,i≠j上取值为0。 当n=1时,即得线性插值公式L1(x)=y0+y1又叫线性插值;

数值分析论文

插值方法总结 摘 要:本文是对学过的插值方法进行了总结使我们更清楚的知道那一种方法适合那一种型。 关键词:插值;函数;多项式;余项 (一)Lagrange 插值 1.Lagrange 插值基函数 n+1个n 次多项式 ∏≠=--= n k j j j k j k x x x x x l 0)( n k ,,1,0 = 称为Lagrange 插值基函数 2.Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0 = 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商

i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 2.Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为 0f ,1f ,…,n f ,导数值为'0f ,' 1f ,…,' n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(' '1212 ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα 称为Hermite 插值基函数,)(x l j 是Lagrange 插值基函数,若],[22b a C f n +∈,插值误差为 220) 22(12)()()! 22() ()()(n x n n x x x x n f x H x f --+= -++ ξ,),()(b a x x ∈=ξξ (四)分段插值 设在区间],[b a 上给定n+1个插值节点 b x x x a n =<<<= 10 和相应的函数值0y ,1y ,…,n y ,求作一个插值函数)(x ?,具有性质

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

数值分析论文

题目:论数值分析在数学建模中的应用 学院: 机械自动化学院 专业: 机械设计及理论 学号: 学生姓名: 日期: 2011年12月5日

论数值分析在数学建模中的应用 摘要 为了满足科技发展对科学研究和工程技术人员用数学理论解决实际的能力的要求,讨论了数值分析在数学建模中的应用。数值分析不仅应用模型求解的过程中,它对模型的建立也具有较强的指导性。研究数值分析中插值拟合,解线性方程组,数值积分等方法在模型建立、求解以及误差分析中的应用,使数值分析作为一种工具更好的解决实际问题。 关键词 数值分析;数学建模;线性方程组;微分方程 the Application of Numerical Analysis in Methmetical Modeling Han Y u-tao 1 Bai Y ang 2 Tian Lu 2 Liu De-zheng 2 (1 College of Science ,Tianjin University of Commerce ,Tianjin ,300134 2 College of Science ,Tianjin University of Commerce ,Tianjin ,300134) Abstract In order to meet the technological scientific researchers who use mathematical theory to solve practical problems, the use of numerical analysis in mathematical modeling is discussed.Numerical analysis not only solve the model,but also relatively guide the model.Research on some numerical methods in numerical analysis which usually used in mathmetical modeling and error analysis will be a better way to solve practical problems. Key Words Numerical Analysis ;Mathematical Modeling; Linear Equations ;differential equation 1. 引言 数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。 2. 数值分析在模型建立中的应用 在实际中,许多问题所研究的变量都是离散的形式,所建立的模型也是离散的。例如,对经济进行动态的分析时,一般总是根据一些计划的周期期末的指标值判断某经济计划执行的如何。有些实际问题即可建立连续模型,也可建立离散模型,但在研究中,并不能时时刻刻统计它,而是在某些特定时刻获得统计数据。例如,人口普查统计是一个时段的人口增长量,通过这个时段人口数量变化规律建立离散模型来预测未来人口。另一方面,对常见的微分方程、积分方程为了求解,往往需要将连续模型转化成离散模型。将连续模型转化成离散模型,最常用的方法就是建立差分方程。 以非负整数k 表示时间,记k x 为变量x 在时刻k 的取值,则称k k k x x x -=?+1为k x 的一阶差分,称k k k k k x x x x x +-=??=?++1222)(为k x 的二阶差分。类似课求出k x 的n 阶差分k n x ?。由k ,k x ,及k x 的差分给出的方程称为差分方程[2]。例如在研究节食与运动模型时,发现人们往往采取节食与运动方式消耗体内存储的脂肪,引起体重下降,达到减肥目的。通常制定减肥计划以周为时间单位比较方便,所以采用差分方程模型进行讨论。记第k 周末体重为)(k w ,第k 周吸收热量为)(k c ,热量转换系数α,代谢消耗系数β,在不考虑运动情况下体重变化的模型

论文二重极限计算方法

包头师范学院 本科毕业论文 题目:二重极限的计算方法 学生姓名:王伟 学院:数学科学学院 专业:数学与应用数学 班级:应数一班 指导教师:李国明老师 二〇一四年四月

摘要 函数极限是高等数学中非常重要的内容。关于一元函数的极限及求法,各种高等数学教材中都有详细的例题和说明。二元函数极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤,及二重极限不存在的几种证明方法。 关键词:二重极限变量代换等不存在的证明二元函数连续性

Abstract The limit function is a very important contents of advanced mathematics. The limit of a function and method, all kinds of advanced mathematics textbooks are detailed examples and explanation. The limit function of two variables is the basis for the development in the limit of one variable function on it, there are both connections and differences in the two yuan on the basis of the definition of the logarithm function between the two, variable substitution, summarizes several methods to solve the problem of double limit, and gives some examples and solving steps. Several proof method and double limit does not exist. keywords: Double limit variable substitution, etc. There is no proof Dual function of continuity

数值计算方法设计论文

课程设计(论文) 题目: 三次样条插值问题 学院: ___ 理学院 _ 专业: __ _ 数学与应用数学 班级:数学08-2班 学生姓名: 魏建波 学生学号: 080524010219 指导教师:李文宇 2010年12月17日

课程设计任务书

目录 摘要……………………………………………………………………… 一、前言………………………………………………………………… (一)Lagrange插值的起源和发展过程……………………………………… (二)本文所要达到的目的……………………………………………………… 二、插值函数…………………………………………………………… (一)函数插值的基本思想…………………………………………………… (二)Lagrange插值的构造方法……………………………………………… 三、MATLAB程序………………………………………………………… (一)Lagrange程序…………………………………………………………… (二)龙格程序………………………………………………………………… 四、理论证明…………………………………………………………… 五、综述……………………………………………………………………谢辞………………………………………………………………………参考文献…………………………………………………………………

摘要

前言 要求:500字以上,宋体小四,行距20磅,主要内容写该算法的产生及发展、应用领域等。 题目 整体要求:报告页数,正文在8页以上 字体:宋体小四(行距20磅) 内容:1、理论依据 2、问题描述 3、问题分析 4、求解计算(程序) 5、结论 注:(1)页码编号从正文页开始 (2)标题可根据情况自己适当改动 示例见下: 2判别…………………… 2.1 判……………… 2.1.1 判别……………… 所谓的判别分析,………………………………………………方法[3]。 2.1.2 判………………………… 常用的有四种判别方法:…………………………………………………步判别法[6]。 1. 马氏………………

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

相关主题