搜档网
当前位置:搜档网 › 1.2.1函数的概念练习题及答案解析

1.2.1函数的概念练习题及答案解析

1.2.1函数的概念练习题及答案解析
1.2.1函数的概念练习题及答案解析

1.下列说法中正确的为( )

A .y =f (x )与y =f (t )表示同一个函数

B .y =f (x )与y =f (x +1)不可能是同一函数

C .f (x )=1与f (x )=x 0表示同一函数

D .定义域和值域都相同的两个函数是同一个函数

解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.

2.下列函数完全相同的是( )

A .f (x )=|x |,g (x )=(x )2

B .f (x )=|x |,g (x )=x 2

C .f (x )=|x |,g (x )=x 2

x

D .f (x )=x 2-9x -3

,g (x )=x +3 解析:选B.A 、C 、D 的定义域均不同.

3.函数y =1-x +x 的定义域是( )

A .{x |x ≤1}

B .{x |x ≥0}

C .{x |x ≥1或x ≤0}

D .{x |0≤x ≤1}

解析:选D.由?

????

1-x ≥0x ≥0,得0≤x ≤1. 4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.

解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对

于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).

答案:(2)(3)

1.函数y =1x

的定义域是( ) A .R B .{0}

C .{x |x ∈R ,且x ≠0}

D .{x |x ≠1}

解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.

2.下列式子中不能表示函数y =f (x )的是( )

A .x =y 2+1

B .y =2x 2+1

C .x -2y =6

D .x =y

解析:选A.一个x 对应的y 值不唯一.

3.下列说法正确的是( )

A .函数值域中每一个数在定义域中一定只有一个数与之对应

B .函数的定义域和值域可以是空集

C .函数的定义域和值域一定是数集

D .函数的定义域和值域确定后,函数的对应关系也就确定了

解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .

4.下列集合A 到集合B 的对应f 是函数的是( )

A .A ={-1,0,1},

B ={0,1},f :A 中的数平方

B .A ={0,1},B ={-1,0,1},f :A 中的数开方

C .A =Z ,B =Q ,f :A 中的数取倒数

D .A =R ,B ={正实数},f :A 中的数取绝对值

解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.

5.下列各组函数表示相等函数的是( )

A .y =x 2-3x -3

与y =x +3(x ≠3) B .y =x 2-1与y =x -1

C .y =x 0(x ≠0)与y =1(x ≠0)

D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z X k b 1 . c o m

解析:选C.A 、B 与D 对应法则都不同.

6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( )

A .?

B .?或{1}

C .{1}

D .?或{2}

解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =?或{1}.

7.若[a,3a -1]为一确定区间,则a 的取值范围是________.

解析:由题意3a -1>a ,则a >12

. 答案:(12

,+∞) 8.函数y =(x +1)0

3-2x 的定义域是________. 解析:要使函数有意义,

需满足?????

x +1≠03-2x >0,即x <32且x ≠-1. 答案:(-∞,-1)∪(-1,32

) 9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________.

解析:当x 取-1,0,1,2时,

y =-1,-2,-1,2,

故函数值域为{-1,-2,2}.

答案:{-1,-2,2}

10.求下列函数的定义域:

(1)y =-x 2x 2-3x -2;(2)y =34x +83x -2

. 解:(1)要使y =-x 2x 2-3x -2

有意义,则必须 ?????

-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12

}. (2)要使y =

3

4x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23

}. 11.已知f (x )=

11+x

(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值;

(2)求f (g (2))的值.

解:(1)∵f (x )=11+x

, ∴f (2)=11+2=13

, 又∵g (x )=x 2+2,

∴g (2)=22+2=6.

(2)由(1)知g (2)=6,

∴f (g (2))=f (6)=11+6=17. 12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.

解:函数y =ax +1(a <0且a 为常数).

∵ax +1≥0,a <0,∴x ≤-1a

, 即函数的定义域为(-∞,-1a

]. ∵函数在区间(-∞,1]上有意义,

∴(-∞,1]?(-∞,-1a

], ∴-1a

≥1,而a <0,∴-1≤a <0. 即a 的取值范围是[-1,0).

高中数学必修一《集合与函数的概念》经典例题

高中数学必修一第一章《集合与函数概念》综合测 试题试题整理:周俞江 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正 确答案的代号填在题后的括号内(本大题共12个小题, 每小题5分,共60分). 1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A I ( ) A. }{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2. 若{{}|0,|12A x x B x x =<<=≤<,则A Y B=( ) A . {}|0x x ≤ B .{}|2x x ≥ C .{0x ≤≤ D .{}|02x x << 3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.x x y y ==,1 B .1,112-=+?-=x y x x y C.55 ,x y x y == D .2)(|,|x y x y == 4.函数x x x y +=的图象是( ) 5.0≤f 不是映射的是A .1:3f x y x ?? →= B .1 :2 f x y x ??→= C .1:4f x y x ??→= D .1:6f x y x ??→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1 B .0 C .0或1 D .1或2 7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( ) A .2-≥k B .2-≤k C .2->k D .2-

9.有下面四个命题: ①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称; ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1 B .2 C .3 D .4 10.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 11.若函数))(12()(a x x x x f -+= 为奇函数,则=a ( ) A.21 B.32 C.43 D.1 12.已知函数x x x x f 22 11)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x 21+ B.x x 212+- C.x x 212+ D.x x 21+- 13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 14.已知函数[](]?????∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或4 15.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 A .增函数 B .减函数

解析函数

第2章 解析函数 2.1 解析函数的概念及C-R 条件 复数作为复数域的向量,是一维向量,或复数是复数域上的一维线性空间. 2-1 ()f z 在000i z x y =+点可导的充分必要条件是( ). (A )在00(,)x y 点,u v 可导,且满足C-R 条件,即,u v u v x y y x ????==-????在00(,)x y 成立 (B )()f z 在00(,)x y 点的一个邻域内可导 (C )在00(,)x y 点,u v 可微,且满足C-R 条件 (D )在00(,)x y 点,u v 具有连续的偏导数,且满足C-R 条件 解 由上题的推导过程知,若()f z 在0z 点可导,则,u v 在00(,)x y 可微,且 ,.u v u v a b x y y x ????==- ==???? 在00(,)x y 点成立. 反之,若,u v 在00(,)x y 可微,且满足C-R 条件,则 ()i f z u v z z ??+?=?? i()(||)(i )i(i )(||) (i )(||)x y x y x x x x x u x u y v x v y o z z z u x y v x v y o z z z u v z o z z z ?+?+?+??=+ ???+?+?+??=+ ??+??=+ ?? 故 0() lim x x z f z u iv z ?→?=+? 选(C ). 2-2 若22 2 22,0(,),(,),()i 0,0xy x y x y u x y v x y xy f z u v x y 2?+≠?+===+??+=? ,则函数() f z ( ). (A )仅在原点可导 (B )处处不可导 (C )除原点外处处可导 (D )处处可微 解 (,)u x y 在原点虽有 0y v x y ??==??但不可微;而除原点外,u v 可微但不满足C-R 条件,因此,()f z 处处不可导. 选(B ). ()f z z =如此简单一个函数却处处连续但不可导! 2-3 若2 2 ()()i(32)f z x y ax by cxy x y =-+++++处处解析,则(,,)a b c =( ). (A )(3,2,2) (B )(2,3,2)-- (C )((2 ,3,2)- (D )(2,3,2)- 解 由C-R 条件及 2,2,3, 2.u u v v x a y b cy cx x y x y ????=+=-+=+=+????故2,2, 3.c a b ===- 2-3 若22 ()i f z xy x y =+则()f z ( ). (A )令在直线y x =上可导 (B )仅在直线y x =-上可导 (C )仅在(0,0)点解析 (D )仅在(0,0)点可导

函数概念及解析式

函数的概念及解析式 【复习目标】 1. 理解函数的概念; 2. 掌握函数的表示方法; 【知识梳理】 1. 设A 、B 是____的数集,如果按某种对应关系f ,__________________________________________.,那么这样的对应叫做从A 到B 的一个函数。 2. 函数的三要素:____________、________________、________________________; 3. 常用函数的表示方法:_____________________、______________、_____________; 4. 分段函数是指____________________________________________________________________; 【基础达标】 1. f(1-x)=x 2,则f(x)=____________, 2. 若f(x -221)1x x x +=, 则f(x)=__________. 3. 已知f(x)=11+-x x ,则f(x)+f()1x =_____________. 4. 若f(x)=x 2-mx+n,f(n)=m,f(1)=-1,则f(-5)=____________. 5. 已知)3(4 1)(,2)(2+=+=x x g a x x f ,若g[f(x)]=x 2+x+1,则a=_____________. 6.已知f(1-cosx)=sin 2x ,则f(x)=________________. 【典型例题】 例1.求函数解析式 ⑴.求一次函数f(x),使f[f(x)]=9x+1; ⑵.设二次函数()y =f x 的最大值为13,且3(1)5f f ( )=-=,求()f x 的解析式. ⑶.已知2(31)23f x x x +=-+,求(1)f x -=. ⑷.已知2 21)1(x x x x x f ++=+,求f(x);

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

最全函数概念及基本性质知识点总结及经典例题(汇编)

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈.

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

1.2.1函数的概念练习题及答案解析

1.下列说法中正确的为( ) A .y =f (x )与y =f (t )表示同一个函数 B .y =f (x )与y =f (x +1)不可能是同一函数 C .f (x )=1与f (x )=x 0表示同一函数 D .定义域和值域都相同的两个函数是同一个函数 解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同. 2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2 x D .f (x )=x 2-9x -3 ,g (x )=x +3 解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1} 解析:选D.由? ???? 1-x ≥0x ≥0,得0≤x ≤1. 4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________. 解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对 于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3). 答案:(2)(3) 1.函数y =1x 的定义域是( ) A .R B .{0} C .{x |x ∈R ,且x ≠0} D .{x |x ≠1} 解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.

人教A版高一数学函数的概念知识点总结与例题讲解

函数的概念知识点总结 本节主要知识点 (1)函数的概念. (2)函数的三要素与函数相等. (3)区间的概念及其表示. 知识点一 函数的概念 初中学习的函数的传统定义 一般地,如果在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 函数的近代定义 设A , B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈. 其中,x 叫作自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫作函数值,函数值的集合{}A x x f y y ∈=),(叫做函数的值域.显然,值域是集合B 的子集. 对函数的近代定义的理解 (1)只有两个非空的数集之间才可能建立函数关系.定义域或值域为空集的函数是不存在的. 如x x y --= 11就不是函数. (2)注意函数定义中的“三性”:任意性、存在性和唯一性. 任意性:集合A 中的任意一个元素x 都要考虑到. 存在性:集合A 中的任意一个元素x ,在集合B 中都存在对应元素y . 唯一性:在集合B 中,与每一个元素x 对应的元素y 是唯一的.

(3)集合B 不一定是函数的值域,值域是集合B 的子集. 在集合B 中,可以存在元素在集合A 中没有与之对应者. 例1. 讨论二次函数的定义域和值域. 解:二次函数的一般式为()02≠++=a c bx ax y ,为整式函数,所以其定义域为R ,其值域的确定分为两种情况: ①当0>a 时,函数的值域为?????? -≥a b ac y y 442; ②当0

(word完整版)高中函数典型例题.doc

§ 1.2.1 函数的概念 ¤知识要点: 1. 设 A 、B 是非空的数集,如果按某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 y 和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数,记作 y = f (x) , x A .其中, x 叫自变量, x 的取值范 围 A 叫作定义域,与 x 的值对应的 y 值叫函数值,函数值的集合 { f ( x) | x A} 叫值域 . 2. 设 a 、b 是两个实数,且 a

函数的概念与表示知识点与经典题型归纳

函数的概念与表示 知识领航 1.函数的定义 一般地:设A,B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数() f x和它对应,那么就称(): f x A B →为从集合A到集合B的一个函数,记作:(), y f x x A =∈. 注意:函数概念中的关键词 (1) A,B是非空数集. (2)任意的x∈A,存在唯一的y∈B与之对应. 2. 函数的定义域、值域 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{()|} f x x A ∈叫做函数的值域. 3. 函数的三要素 定义域、值域和对应法则. 4. 相等函数 如果两个函数的定义域和对应法则完全一致,则这两个函数相等; 这是判断两函数相等的依据. 5. 区间的概念 设,a b是两个实数,而且a b<.我们规定: (1)满足不等式a x b ≤≤的实数x的集合叫做闭区间,表示为[,] a b. (2)满足不等式a x b <<的实数x的集合叫做开区间,表示为(,) a b. (3)满足不等式a x b ≤<或a x b <≤的实数x的集合叫做半开半闭区间,分别表示为[,) a b,(,] a b. 这里的实数都叫做相应区间的端点. 实数R可以用区间表示为(,) -∞+∞.“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,我们可以把满足x a≥,x a>,x b≤,x b<,的实数x的集合分别表示为[,) a+∞,(,) a+∞,(,]b -∞,(,)b -∞. 6. 函数的表示法 (1)解析法:用数学表达式表示两个变量之间的对应关系的方法. (2)列表法:列出表格来表示两个变量之间的对应关系的方法. (3)图像法: 用图象表示两个变量之间的对应关系的方法. 用描点法画函数图象的一般步骤:列表、描点、连线(视其定义域决定是否连线). 7.求函数的解析式的方法 (1)待定系数法: 适用于已知函数的模型(如一次函数、二次函数、反比例函数等. (2)换元法: 适用于已知(()) f g x的解析式,求() f x. (3)消元法: 适用于同时含有() f x和1() f x ,或() f x和() f x-.

函数的概念经典例题

考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y=3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2y =3x; ③ A=R,B=R, 对应法则f :x →y=2x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①22x y +=2 1= ③ A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B. y=f (x )图像与直线x=a 没有交点 C. y=f (x )图像与直线x=a 最少有一个交点 D. y=f (x )图像与直线x=a 最多有一个交点 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例1. 下列哪个函数与y=x 相同( ) A. y=x B. y = C. 2 y = D.y=t 变式1.下列函数中哪个与函数y = ) A. y = B. y =- C. y =- D. y x = 变式2. 下列各组函数表示相等函数的是( ) A. 29 3 x y x -=- 与 3y x =+ B. 1y = 与 1y x =-

一次函数专题复习考点归纳+经典例题+练习-精选.

一次函数知识点复习与考点总结 考点1:一次函数的概念. 相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠) 的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数. 1、已知一次函数k x k y )1(-=+3,则k = . 2、函数n m x m y n +--=+12)2(,当 , 时为正比例函数; 当 ,n 时为一次函数. 考点2:一次函数图象与系数 相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图 象位置由k 、b 确定,0>k 直线要经过一、三象限,0b 直线与y 轴的交点在正半轴上,0

5. 关于x 的一次函数2 +1的图像可能是( ) 6.已知一次函数的图像经过一、二、三象限,则b 的值可以是 ( ). 2 B.-1 C.0 D.2 7.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则 m 的取值范围是 . 8. 已知一次函数2的图像如图所示,则m 、n 的取值范围是( ) >0<2 B. m >0>2 C. m <0<2 D. m <0>2 9.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m -- 可 化简为 . 10. 如果一次函数4的图像经过第一、三、四象限,那么b 的取 值范围是_ _。 考点3:一次函数的增减性 相关知识:一 次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而 增大,当0

函数定义域值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33 y x = +- (2 )01(21)111 y x x = +-++ - 2、设函数的定义域为,则函数的定义域为_ _ _;函数 的定义域为________; 3、若函数(1)f x +的定义域为 ,则函数(21)f x -的定义域是 ;函 数1 (2)f x +的定义域为 。 4、 已知函数 的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在, 求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶31 1x y x -= + ⑷311 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设 ()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵ y = ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减 区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶ x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸ 2 1)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3 44 2 ++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3 )

第二章 解析函数

第二章 解析函数 §1 复变函数 一 、复变函数的概念 1. 定义:设D 为复平面上的点集,对?点D z ∈,按某种法则, 总有另一复数W 与之对应,则称W 是Z 的复变函数,记为)(z f w =。 其中,称W 为像;Z 为原像。 若W Z 与是一一对应,则称)(z f w =为单值函数,若W Z 与 是相互一一对应,则称)(z f w =为单叶函数;Z 对应多个W , 则称)(z f w =为多值函数。 2、复变函数与实变函数的关系 设iy x z +=,iv u y x iv y x u z f W +=+==),(),()(, 即有????=?=)()(y x v v y x u u 这说明了一个复变函数可以用 两个二元实变函数 ),(),,(y x v y x u 来表示。 例:xy i y x Z W 2)(2 2 2 +-==???=-=?xy v y x u 22 2。 ??? ????+-=+=?+-+=+-===22 2 22222221y x y v y x x u y x y i y x x y x iy x z z z z w 3.关于映射的慨念 复变函数在几何上又称为映射(或变换)。这种函数关系要用两个平面来表示。 函数)(z f w =在几何上可以看成是把z 平面上的一个点集G 映射到 w 平面上的一个点集*G 。 例 z w =,显然,它将z 平面上的点i z 321+=映射成w 平面上的 点i w 321-=,将点i z 212-=映射成w 平面上的点i w 212+=, 将三角形ABC 映射成w 平面上的三角形'''C B A .

中考二次函数总复习经典例题、习题集

第八篇二次函数的图像及性质 【考纲传真】 1. 理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会根据公式确定图象的顶点、开口方向和对称轴,并能掌握二次函数图象的平移. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题.5.会用二次函数的图象求一元二次方程的近似解. 【复习建议】 二次函数是中考的重点容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查. 【考点梳理】 考点一二次函数的概念 一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数. 注意:(1)二次项系数a≠0;(2)ax2+bx+c必须是整式;(3)一次项可以为零,常数项也可以为零,一次项和常数项可以同时为零;(4)自变量x的取值围是全体实数. 考点二二次函数的图象及性质

考点三二次函数图象的特征与a,b,c及b2-4ac的符号之间的关系 考点四二次函数图象的平移 抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的形状和大小都相同,只是位置的不同.它们之间的平移关系如下表:

考点五二次函数的应用 设一般式:y=ax2+bx+c(a≠0).若已知条件是图象上三个点的坐标,则设一般式 y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值. 考点六二次函数与方程不等式之间的关系 1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了ax2+bx+c=0(a≠0). 2.ax2+bx+c=0(a≠0)的解是抛物线与x轴交点的横坐标. 3.当Δ=b2-4ac>0时,抛物线与x轴有两个不同的交点;当Δ=b2-4ac=0时, 抛物线与x轴有一个交点;当Δ=b2-4ac<0时,抛物线与x轴没有交点. 【典例探究】 考点一二次函数的概念 【例1】下列各式中,y是x的二次函数的是()

(完整版)高中数学必修一第一章《集合与函数的概念》经典例题

高中数学必修一第一章《集合与函数概念》综合测 试题试题整理:周俞江 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正 确答案的代号填在题后的括号内(本大题共12个小题, 每小题5分,共60分). 1.已知全集}5,4,3,2{},3,2,1{==B A ,则= B A I ( ) A.}{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2.若 {} {}|02,|12A x x B x x =<<=≤<,则A Y B=( ) A .{}|0x x ≤ B .{}|2x x ≥ C . {}02x ≤≤ D .{}|02x x << 3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A. x x y y = =,1 B .1,112 -=+?-=x y x x y C. 55 ,x y x y == D . 2)(|,|x y x y == 4.函数 x x x y + =的图象是( ) A B C D 5.设集合{} 06A x x =≤≤,{} 02B y y =≤≤.从A 到B 的对应法则f 不是映射的是( ) A .1:3f x y x ?? →= B .1:2f x y x ??→= C .1:4f x y x ?? →= D .1:6f x y x ??→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ). O y x O y x O y x O y x -1 1 1 -1 -1 -1 1 1

A .1 B .0 C .0或1 D .1或2 7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( ) A .2-≥k B .2-≤k C .2->k D .2-

幂函数经典例题(答案)

幂函数的概念 例1、下列结论中,正确的是( ) A .幂函数的图象都通过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限 C .当幂指数α取1,3,1 2时,幂函数y =x α是增函数 D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数 解析 当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α (α∈R ),y >0,所以幂函数的图象不可能出现在第四象限,故选项B 不正确;而当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案 C 例2、已知幂函数f (x )=(t 3-t +1)x 1 5(7+3t -2t 2) (t ∈Z )是偶函数且在(0,+∞)上为增函数,求实数t 的值. 分析 关于幂函数y =x α (α∈R ,α≠0)的奇偶性问题,设p q (|p |、|q |互质), 当q 为偶数时,p 必为奇数,y =x p q 是非奇非偶函数;当q 是奇数时,y =x p q 的奇偶性与p 的值相对应. 解 ∵f (x )是幂函数,∴t 3-t +1=1, ∴t =-1,1或0. 当t =0时,f (x )=x 7 5是奇函数; 当t =-1时,f (x )=x 2 5是偶函数; 当t =1时,f (x )=x 85是偶函数,且25和8 5都大于0, 在(0,+∞)上为增函数. 故t =1且f (x )=x 85或t =-1且f (x )=x 2 5. 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t ∈Z 给予足够的重视. 例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )