搜档网
当前位置:搜档网 › 2020高考文科数学各类大题专题汇总

2020高考文科数学各类大题专题汇总

2020高考文科数学各类大题专题汇总
2020高考文科数学各类大题专题汇总

2020高考文科数学各类大题专题汇总

一、三角函数

二、数列

三、立体几何

四、概率与统计

五、函数与导数

六、解析几何

七、选做题

大题专项练(一)三角函数

A组基础通关

1.已知在△ABC中,角A,B,C的对边分别是a,b,c,且c cos B+(b-2a)cos C=0.

(1)求角C的大小;

(2)若c=2,求△ABC的面积S的最大值.

因为c cos B+(b-2a)cos C=0,

所以sin C cos B+(sin B-2sin A)cos C=0,

所以sin C cos B+sin B cos C=2sin A cos C,

所以sin(B+C)=2sin A cos C.

又因为A+B+C=π,

所以sin A=2sin A cos C.

又因为A∈(0,π),所以sin A≠0,

所以cos C=.

又C∈(0,π),所以C=.

(2)由(1)知,C=,

所以c2=a2+b2-2ab cos C=a2+b2-ab.

又c=2,所以4=a2+b2-ab.

又a2+b2≥2ab,当且仅当a=b时等号成立,

所以ab≤4.所以△ABC面积的最大值(S△ABC)max=×4×sin.

2.如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°.

(1)若∠AMB=60°,求BC;

(2)设∠DCM=θ,若MB=4MC,求tan θ.

由∠BMC=60°,∠AMB=60°,得∠CMD=60°.

在Rt△ABM中,MB=2AM=4;在Rt△CDM中,MC=2MD=2.

在△MBC中,由余弦定理,得BC2=BM2+MC2-2BM·MC·cos∠BMC=12,BC=2.

(2)因为∠DCM=θ,

所以∠ABM=60°-θ,0°<θ<60°.

在Rt△MCD中,MC=;

,

在Rt△MAB中,MB=

°-

由MB=4MC,得2sin(60°-θ)=sin θ,

所以cos θ-sin θ=sin θ,

即2sin θ=cos θ,

整理可得tan θ=.

3.已知向量m=(2a cos x,sin x),n=(cos x,b cos x),函数f(x)=m·n-,函数f(x)在y轴上的截距为,与y 轴最近的最高点的坐标是.

(1)求函数f(x)的解析式;

(2)将函数f(x)的图象向左平移φ(φ>0)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y=sin x的图象,求φ的最小值.

f(x)=m·n-=2a cos2x+b sin x cos x-,

由f(0)=2a-,得a=,

此时,f(x)=cos 2x+sin 2x,

由f(x)≤=1,得b=1或b=-1,

当b=1时,f(x)=sin,经检验为最高点;

当b=-1时,f(x)=sin,经检验不是最高点.

故函数的解析式为f(x)=sin.

(2)函数f(x)的图象向左平移φ个单位后得到函数y=sin2x+2φ+的图象,横坐标伸长到原来的2倍后得到函数y=sin x+2φ+的图象,

所以2φ+=2kπ(k∈Z),φ=-+kπ(k∈Z),

因为φ>0,所以φ的最小值为.

4.函数f(x)=A sin(A>0,ω>0)的最大值为2,它的最小正周期为2π.

(1)求函数f(x)的解析式;

(2)若g(x)=cos x·f(x),求g(x)在区间-上的最大值和最小值.

由已知f(x)最小正周期为2π,

所以=2π,解得ω=1.

因为f(x)的最大值为2,

所以A=2,

所以f(x)的解析式为f(x)=2sin.

(2)因为f(x)=2sin=2sin x cos+2cos x sin sin x+cos x,

所以g(x)=cos x·f(x)=sin x cos x+cos 2x=sin 2x+

=sin.

因为-≤x≤,所以-≤2x+≤,

于是,当2x+,即x=时,g(x)取得最大值;当2x+=-,即x=-时,g(x)取得最小值0.

5.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的一系列对应值如表:

(1)求f(x)的解析式;

(2)若在△ABC中,AC=2,BC=3,f(A)=-(A为锐角),求△ABC的面积.

由题中表格给出的信息可知,函数f(x)的周期为T=-=π,

所以ω==2.

注意到sin(2×0+φ)=1,也即φ=+2kπ(k∈Z),

由0<φ<π,所以φ=.

所以函数的解析式为f(x)=sin=cos 2x.

(2)∵f(A)=cos 2A=-,且A为锐角,∴A=.

在△ABC中,由正弦定理得,,

∴sin B=·,

∵BC>AC,∴B

∴sin C=sin(A+B)=sin A cos B+cos A sin B=, ∴S△ABC=·AC·BC·sin C=×2×3×.

6.在△ABC中,角A,B,C所对边分别为a,b,c,C=,b=4,△ABC的面积为6.

(1)求c的值;

(2)求cos(B-C)的值.

已知C=,b=4,

因为S△ABC=ab sin C,

即6=×4a×,解得a=3,

由余弦定理,得c2=b2+a2-2ab cos C=10,解得c=.

(2)由(1)得cos B=-,

由于B是三角形的内角,得sin B=-,

所以cos(B-C)=cos B cos C+sin B sin C=.

B组能力提升

7.如图,在凸四边形ABCD中,C,D为定点,CD=,A,B为动点,满足AB=BC=DA=1.

(1)写出cos C与cos A的关系式;

(2)设△BCD和△ABD的面积分别为S和T,求S2+T2的最大值.

在△BCD中,由余弦定理,得BD2=BC2+CD2-2·BC·CD cos C=4-2cos C, 在△ABD中,BD2=2-2cos A,

所以4-2cos C=2-2cos A,即cos A=cos C-1.

(2)S=·BC·CD·sin C=·,T=AB·AD sin A=sin A,

所以S2+T2=sin2C+sin2A=(1-cos2C)+(1-cos2A)=-cos2C+cos C+

=--.

由题意易知,C∈(30°,90°),所以cos C∈,

当cos C=时,S2+T2有最大值.

8.某城市在进行规划时,准备设计一个圆形的开放式公园.为达到社会和经济效益双丰收,园林公司进行如下设计,安排圆内接四边形ABCD作为绿化区域,其余作为市民活动区域.其中△ABD区域种植花木后出售,△BCD区域种植草皮后出售,已知草皮每平方米售价为a元,花木每平方米的售价是草皮每平方米售价的三倍.若BC=6 km,AD=CD=4 km.

(1)若BD=2km,求绿化区域的面积;

(2)设∠BCD=θ,当θ取何值时,园林公司的总销售金额最大.

在△BCD中,BD=2,BC=6,CD=4,

-.

由余弦定理,得cos∠BCD=-

·

因为∠BCD∈(0°,180°),所以∠BCD=60°,

又因为A,B,C,D四点共圆,

所以∠BAD=120°.

在△ABD中,由余弦定理,得BD2=AB2+AD2-2AB·AD cos∠BAD,

将AD=4,BD=2代入化简,得AB2+4AB-12=0,

解得AB=2(AB=-6舍去).

所以S四边形ABCD=S△ABD+S△BCD=×2×4sin 120°+×4×6sin 60°=8(km2),

即绿化空间的面积为8km2.

(2)在△BCD、△ABD中分别利用余弦定理得

BD2=62+42-2×6×4cos θ,①

BD2=AB2+42-2×4AB cos(π-θ),②联立①②消去BD,得AB2+8AB cos θ+48cos θ-36=0,

得(AB+6)(AB+8cos θ-6)=0,

解得AB=6-8cos θ(AB=-6舍去).

因为AB>0,所以6-8cos θ>0,即cos θ<.

S△ABD=AB·AD sin(π-θ)=(6-8cos θ)×4sin θ=12sin θ-16sin θcos θ,S△BCD=BC·CD sin θ=×6×4sin θ=12sin θ.

因为草皮每平方米售价为a元,则花木每平方米售价为3a元,设销售金额为y百万元.

y=f(θ)=3a(12sin θ-16sin θcos θ)+12a sin θ=48a(sin θ-sin θcos θ),

f'(θ)=48a(cos θ-cos2θ+sin2θ)=48a(-2cos2θ+cos θ+1)=-48a(2cos θ+1)(cos θ-1),

令f'(θ)>0,解得-

又cos θ<,不妨设cos θ0=,

则函数f(θ)在上为增函数;

令f'(θ)<0,解得cos θ<-,

则函数f(θ)在上为减函数,

所以当θ=时,f(θ)max=36 a.

答:(1)绿化区域的面积为8km2;(2)当θ=时,园林公司的销售金额最大,最大为36a百万元.

二、数列

A组基础通关1.已知等差数列{a n}满足a3-a2=3,a2+a4=14.

(1)求{a n}的通项公式;

(2)设S n是等比数列{b n}的前n项和,若b2=a2,b4=a6,求S7.

设等差数列{a n}的公差为d,

∵a3-a2=3,a2+a4=14.

∴d=3,2a1+4d=14,

解得a1=1,d=3,

∴a n=1+3(n-1)=3n-2.

(2)设等比数列{b n}的公比为q,b2=a2=4=b1q,b4=a6=16=b1q3,联立解得或

--

∴S7=-

-=254,或S7=---

--

=-86.

2.已知数列{a n}的前n项和为S n,满足a2=15,S n+1=S n+3a n+6.

(1)证明:{a n+3}是等比数列;

(2)求数列{a n}的通项公式以及前n项和S n.

S n+1=S n+3a n+6中,令n=1,得S2=S1+3a1+6, 得a1+a2=a1+3a1+6,即a1+15=4a1+6,

解得a1=3.

因为S n+1=S n+3a n+6,

所以a n+1=3a n+6.

所以=3.

所以{a n+3}是以6为首项,3为公比的等比数列.

(1)得a n+3=6×3n-1=2×3n,

所以a n=2×3n-3.

∴S n=2×(3+32+33+…3n)-3n=2×-

-3n=3n+1-3-3n.

-

3.设数列{a n}的前n项和为S n,S n=1-a n(n∈N*).

(1)求数列{a n}的通项公式;

(2)设b n=log2a n,求数列的前n项和T n.

因为S n=1-a n(n∈N*),

所以S n-1=1-a n-1(n∈N*,且n≥2),

则S n-S n-1=(1-a n)-(1-a n-1)(n∈N*,且n≥2).

即a n=a n-1(n∈N*,且n≥2).

因为S n=1-a n(n∈N*),

所以S1=1-a1=a1,即a1=.

所以{a n}是以为首项,为公比的等比数列.

故a n=(n∈N*).

(2)b n=log2a n,所以b n=log2=-n.

所以,

故T n=--+…+-=1-.

4.设等差数列{a n}的公差为d,d为整数,前n项和为S n,等比数列{b n}的公比为q,已知

a1=b1,b2=2,d=q,S10=100,n∈N*.

(1)求数列{a n}与{b n}的通项公式;

(2)设c n=,求数列{c n}的前n项和T n.

由题意可得

解得(舍去)或

所以a n=2n-1,b n=2n-1.

(2)∵c n=,c n=-

-

,

∴T n=1++…+-

-

,①T n=+…+-,②

①-②可得T n=2++…+

--

=3-,故T n=6-

-

.

5.已知正项数列{a n}的前n项和为S n,满足2S n+1=2+a n(n∈N*).

(1)求数列{a n}的通项公式;

(2)已知对于n∈N*,不等式+…+

n=1时,2a1+1=2+a1,又a n>0,所以a1=1,

当n≥2时,2S n+1=2+a n(n∈N*),

2S n-1+1=2

-

+a n-1(n∈N*),

作差整理,得a n+a n-1=2(a n+a n-1)(a n-a n-1), 因为a n>0,故a n+a n-1>0,所以a n-a n-1=, 故数列{a n}为等差数列,所以a n=. (2)由(1)知S n=,

所以-,

从而+…+

=---+…+

--

-

--

=1+=<.

所以M≥,故M的最小值为.

6.已知数列{a n}是公比为q的正项等比数列,{b n}是公差d为负数的等差数列,满足,b1+b2+b3=21,b1b2b3=315.

(1)求数列{a n}的公比q与数列{b n}的通项公式;

(2)求数列{|b n|}的前10项和S10.

由已知,b1+b2+b3=3b2=21,得b2=7,

又b1b2b3=(b2-d)·b2·(b2+d)=(7-d)·7·(7+d)=343-7d2=315,

得d=-2或2(舍),b1=7+2=9,b n=-2n+11.

于是-,

又{a n}是公比为q的等比数列,故-,

所以,2q2+q-1=0,q=-1(舍)或.

综上,q=,d=-2,b n=11-2n.

(2)设{b n}的前n项和为T n;令b n≥0,11-2n≥0,得n≤5,

于是,S5=T5==25.

易知,n>6时,b n<0,|b6|+|b7|+…+|b10|=-b6-b7-…-b10=-(b6+b7+…+b10)=-(T10-T5)=-(0-25)=25,所以,S10=50.

B组能力提升

7.已知数列{a n}的前n项和为S n,点(n,S n)(n∈N*)在函数f(x)=x2+x的图象上.

(1)求数列{a n}的通项公式;

(2)设数列的前n项和为T n,不等式T n>log a(1-a)对任意正整数n恒成立,求实数a的取值范围.

∵点(n,S n)在函数f(x)=x2+x的图象上,

∴S n=n2+n.①当n≥2时,S n-1=(n-1)2+(n-1),②

①-②,得a n=n.

当n=1时,a1=S1=1,符合上式.

∴a n=n(n∈N*).

(2)由(1),得-,

∴T n=+…+1-+…+=.

∵T n+1-T n=>0,

∴数列{T n}单调递增,

∴{T n}中的最小项为T1=.

要使不等式T n>log a(1-a)对任意正整数n恒成立,只要log a(1-a),

即log a(1-a)

解得0

8.设{a n}是各项均不相等的数列,S n为它的前n项和,满足λna n+1=S n+1(n∈N*,λ∈R).

(1)若a1=1,且a1,a2,a3成等差数列,求λ的值;

(2)若{a n}的各项均不为零,问当且仅当λ为何值时,a2,a3,…,a n,…成等差数列?试说明理由.

令n=1,2,得

又由a1,a2,a3成等差数列,

所以2a2=a1+a3=1+a3,

解得λ=.

(2)当且仅当λ=时,a2,a3,…,a n,…成等差数列,

证明如下:

由已知λna n+1=S n+1,当n≥2时,λ(n-1)a n=S n-1+1,

两式相减得λna n+1-λna n+λa n=a n,

即λn(a n+1-a n)=(1-λ)a n,

由于{a n}的各项均不相等,

所以

--

(n≥2),

当n≥3时,有-

-

-

--

,

两式相减可得

--

-

--

,

①当λ=,得

-

-

--

+1=

--

,

由于a n≠0,所以a n+1-a n=a n-a n-1,

即2a n=a n+1+a n-1(n≥3),

故a2,a3,…,a n,…成等差数列.

②再证当a2,a3,…,a n,…成等差数列时,λ=, 因为a2,a3,…,a n,…成等差数列,

所以a n+1-a n=a n-a n-1(n≥3),可得

-

-

----

-

--

=1=

-

,

所以λ=,

所以当且仅当λ=时,a2,a3,…,a n,…成等差数列.

三、立体几何

A组基础通关

1.如图,三棱柱ABC-A1B1C1中,BC=CC1,平面A1BC1⊥平面BCC1B1.

证明:(1)AC∥平面A1BC1;

(2)平面AB1C⊥平面A1BC1.

几何体为三棱柱?四边形ACC1A1为平行四边形?AC∥A1C1,又A1C1?平面A1BC1,AC?平面A1BC1,∴AC∥平面A1BC1.

(2)∵BC=CC1且四边形BCC1B1为平行四边形,

∴四边形BCC1B1为菱形,∴B1C⊥BC1.

又平面A1BC1⊥平面BCC1B1,平面A1BC1∩平面BCC1B1=BC1,∴B1C⊥平面A1BC1.

又B1C?平面AB1C,∴平面AB1C⊥平面A1BC1.

2.如图,圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=2,P为SB的中点.

(1)求证:SA∥平面PCD;

(2)求圆锥SO的表面积和体积.

PO,∵P、O分别为SB、AB的中点,

∴PO∥SA,由于PO?平面PCD,SA?平面PCD,

∴SA∥平面PCD;

SO=2,OB=2,SO为圆锥的高,OB为圆锥底面圆的半径,∴V=πr2h=π×22×2=, 由于SO为圆锥的高,则母线

SB==2,

∴S侧面=l·SB=×2×π×2×2=4π,S底面=πr2=π×22=4π,故S=S底面+S侧面=(4+4)π.

3.等边三角形ABC的边长为3,点D,E分别是边AB,AC上的点,且满足,如图甲,将△ADE 沿DE折起到△A1DE的位置,使平面A1DE⊥平面BCED,连接A1B,A1C,如图乙,点M为A1D的中点.

(1)求证:EM∥平面A1BC;

(2)求四棱锥A1-BCED的体积.

取BD的中点N,连接NE,则NE∥BC,

在四棱锥A1-BCED中,NE与BC的平行关系不变.

连接MN,在△DA1B中,MN∥A1B,又NM∩NE=N,BA1∩BC=B,∴平面MNE∥平面A1BC,

又EM?平面MNE,∴EM∥平面A1BC.

(2)∵等边三角形ABC的边长为3,且,∴AD=1,AE=2.在△ADE中,∠DAE=60°,

由余弦定理得DE=-°,

从而AD2+DE2=AE2,∴AD⊥DE.

折起后有A1D⊥DE,∵平面A1DE⊥平面BCED,

平面A1DE∩平面BCED=DE,A1D?平面A1DE,

∴A1D⊥平面BCED.

∴四棱锥A1-BCED的体积V=S四边形BCED·A1D,

连接BE,则S四边形BCED=CB·CE sin∠BCE+BD·DE=×1×3×sin 60°+×2×,

∴V=×1=.

4.如图所示,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠

BFC=90°,BF=FC,H为BC的中点.

(1)求证:FH∥平面EDB;

(2)求证:AC⊥平面EDB;

(3)求四面体B-DEF的体积.

AC与BD交于点G,则G为AC的中点,如图所示,连接EG,GH.∵H为BC的中点,∴GH∥AB.

∵EF∥AB,∴EF∥GH.又∵EF=GH=AB,

∴四边形EFHG为平行四边形,∴EG∥FH.

∵EG?平面EDB,FH?平面EDB,

∴FH∥平面EDB.

四边形ABCD为正方形,∴AB⊥BC.

∵EF∥AB,∴EF⊥BC.

又∵EF⊥FB,BC∩FB=B,∴EF⊥平面BFC,又FH?平面BFC,∴EF⊥FH,

2018年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 2 x —2?y 2 =2上,贝U △ ABP 面积的取值范围是 和d 2,且d 1 d 2 =6,则双曲线的方程为 2 2 x ■丄=1 4 12 2 x D — 9 、选择题 1.【2018全国一卷 4】 已知椭圆C : 第九篇:解析几何 X 2 V 2 評廿1的一个焦点为(2 ,0),则C 的离心率为 1 A.- 3 2.【2018全国二卷 6】 1 B.- 2 2 x 2 双曲线 2-爲=1(a 0,b 0)的离心率为,3,则其渐近线方程为 a b A . y 二 2x B . y = 3x D . y 3 x 2 3.【2018全国 11】已知F , F 2是椭圆C 的两个焦点,P 是C 上的一点,若PR_ PF 2 , 且.乙PF 2F 1 =60,则C 的离心率为 A . J 2 B . 2-3 C. D . .3-1 4.【2018全国 三卷 8】直线x y *2=0分别与x 轴,y 轴交于A , B 两点,点P 在圆 A . 2,61 B . 4,8〕 D . 5.【2018全国三卷10】已知双曲线 C : 三卷 =1(a 0 , b 0)的离心率为 .2 ,则点(4,0) 到C 的渐近线的距离为 B . 2 C. 2 D . 2,2 2 x 6.【2018天津卷7】已知双曲线 — a =1(a 0, b 0)的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于 A , B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为 d 1 12 4 =1

8. 4 2 7. 【 2018 浙江卷2 】双曲线「宀的焦点坐标是 之和为() D.4魂 二、填空题 【2018全国一卷15】直线y =x ? 1与圆x 2 y 2 2^^0交于A ,B 两点,则 A ? (- 2 , 0), ( .2 , 0) B ? (-2, 0), (2, 0) C . (0, - . 2 ), (0 , ,2) D . (0, -2), (0, 2) 8.【2018上海卷13】设P 是椭圆 呂+以=1 5 3 上的动点,贝U P 到该椭圆的两个焦点的距离 1. 2. 【2018北京卷10】已知直线I 过点(1,0)且垂直于 轴,若 I 被抛物线 y 2 = 4ax 截得的线 3. 段长为4,则抛物线的焦点坐标为 2 2 【2018北京卷12】若双曲线 笃-丿 1(a 0)的离心率为 a 4 -1,则 2 4.【2018天津卷12】在平面直角坐标系中,经过三点( 0,0) 1),( 2,0)的圆 的方程为 5. 2 x 【2018江苏卷8】在平面直角坐标系 xOy 中,若双曲线 2 与=1(a 0,b 0)的右焦点 b 6. F (c,0)到一条渐近线的距离为乜 2 12】在平面直角坐标系 则其离心率的值是 【2018江苏卷 xOy 中,A 为直线I: y = 2x 上在第一象限内的点, B(5,0),以 AB 为直径的圆C 与直线 l 交于另一点D .若AB CD =0,则点A 的横坐标 7. 【2018浙江卷 17】已知点P (0,1),椭圆^+y 2=m (m>1)上两点A ,B 满足AP =2"P B ,则 4 当m= 时,点B 横坐标的绝对值最大.

高中数学集合历届高考题及答案解析

(A) {1,2} (B) {0,1,2} (C){x|0 ≤x<3} (D) {x|0 ≤x ≤3} (C) { x -1≤ x ≤1} (D) { x -1≤ x < 1} 3. ( 2010辽宁文)(1)已知集合 U 1,3,5,7,9 , A 1,5,7 ,则C U A 7. ( 2010山东文)(1)已知全集 U R ,集合 M x x 2 4 0 ,则 C U M = A. x 2 x 2 B. x 2 x 2 C . x x 2或 x 2 D. x x 2或 x 2 2 8. ( 2010北京理)(1) 集合 P {x Z 0 x 3},M {x Z x 2 9},则 PI M = 第一章 集合与常用逻辑用 语 一、选择题 1. ( 2010浙江理)(1)设 P={x ︱x <4},Q={x ︱ x 2 <4},则 A ) p Q B )Q P ( C ) p CR Q (D ) Q CR P 2. (2010 陕西文) 1. 集合 A ={x -1≤ x ≤2}, B ={ x x<1},则 A ∩B =( (A){ x x< 1} B ){x -1≤ x≤2} A ) 1,3 B ) 3,7,9 C ) 3,5,9 D ) 3,9 4. ( 2010辽宁理) 1.已知 A ,B 均为集合 U={1,3,5,7,9} 的子集,且 A ∩B={3}, eu (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 5. ( 2010 江 西 理 ) 2. 若 集 合 A= x| x 1, x R , A. x| 1 x 1 B. x|x 0 C. x|0 x 1 D. 6. ( 2010浙江文)(1)设 P {x|x 1}, Q {x|x 2 4},则 P Q (A) {x| 1 x 2} (B) {x| 3 x 1} (C) { x|1 x 4} (D) {x| 2 x 1}

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2 ,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2 ,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. B .11+ i 2 - C . D . 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为 13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) C 的渐近线方程 为( ). A . B . C .1 2 y x =± D . 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵2e = 2c a =,即2254 c a =.

高考数学文科分类--集合与简易逻辑

2014年高考数学文科分类------集合与简易逻辑 (安徽)2命题“0||,2 ≥+∈?x x R x ”的否定是( ) A.0||,2<+∈?x x R x B. 0||,2≤+∈?x x R x C. 0||,2000<+∈?x x R x D. 0||,2000≥+∈?x x R x 北京1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( ) A.{}0,1,2,3,4 B.{}0,4 C.{}1,2 D.{}3 5.设a 、b 是实数,则“a b >”是“22a b >”的( ) A.充分而不必要条件 B.必要而不必要条件 C.充分必要条件 D.既不充分不必要条件 (福建卷)1若集合}42|{<≤=x x P ,}3|{≥=x x Q ,则=Q P I 等于( ) A .}43|{<≤x x B .}43|{<

高考数学文科集合习题大全完美

第一章集合与函数的概念 一、选择题 1 .设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P∩(C U Q)= ( ) A .{1,2,3,4,6} B .{1,2,3,4,5} C .{1,2,5} D .{1,2} 2 .设集合A ={x |1

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

高考文科数学练习题高考常考的6大题型

第3课时 题型上——全析高考常考的6大题型 题型一 圆锥曲线中的定点问题 圆锥曲线中的定点问题一般是指与解析几何有关的直线或圆过定点的问题(其他曲线过定点太复杂,高中阶段一般不涉及),其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步: 一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一). 二求:求出定点所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程. 三定点:对上述方程进行必要的化简,即可得到定点坐标. [典例] (2019·成都一诊)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的右焦点F (3,0),长半轴 的长与短半轴的长的比值为2. (1)求椭圆C 的标准方程; (2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明直线l 过定点,并求出该定点的坐标. [解] (1)由题意得,c =3,a b =2,a 2=b 2+ c 2, ∴a =2,b =1, ∴椭圆C 的标准方程为x 24 +y 2 =1. (2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2). 联立,得? ???? y =kx +m ,x 2+4y 2=4,消去y 可得(4k 2+1)x 2+8kmx +4m 2-4=0. ∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-4 4k 2+1 . ∵点B 在以线段MN 为直径的圆上, ∴BM ―→·BN ―→ =0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1)=(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2 =0, ∴(k 2+1) 4m 2-44k 2 +1+k (m -1)-8km 4k 2+1 +(m -1)2=0, 整理,得5m 2-2m -3=0, 解得m =-3 5 或m =1(舍去).

三年高考(2017-2019)各地文科数学高考真题分类汇总:概率

概率 1.(2019全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只 兔子中随机取出3只,则恰有2只测量过该指标的概率为 A.2 3 B. 3 5 C. 2 5 D. 1 5 2.(2019全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A.1 6 B. 1 4 C. 1 3 D. 1 2 3.(2018全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.0.6B.0.5C.0.4D.0.3 4.(2018全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3B.0.4C.0.6D.0.7 5.(2017新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.1 4 B. 8 π C. 1 2 D. 4 π 6.(2017新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A. 1 10 B. 1 5 C. 3 10 D. 2 5 7.(2017天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为

A .45 B .35 C .25 D .15 8.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰 好选中2名女生的概率为 . 9.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4 人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 10.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个 数x ,则x D ∈ 的概率是 . 11.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表: 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率; (3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论) 12.(2018天津)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现 采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 13.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元, 售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求

高考文科数学双向细目表

模块 知识点考查内容了解理解集合的含义、元素与集合的属于关系√列举法、描述法√包含于相等的含义√识别给定集合子集√全集于空集√并集于交集的含义与运算√补集的含义与运算√韦恩图表达集合的关系与运算√简单函数定义域和值域,了解映射√图像法、列表法、解析法表示函数√分段函数√函数单调性、最值及几何意义√函数奇偶性√函数图像研究函数性质指数函数模型背景√有理、实数指数幂、幂的运算指数函数概念、单调性√指数函数图像√对数的概念与运算√换底公式、自然对数、常用对数√对数函数的概念、单调性√对数函数的图像指数函数与对数函数互为反函数√幂函数的概念√幂函数的图像√二次函数、零点与方程的根√一元二次方程根的存在性及跟的个数√集合图像,用二分法求近似解指、对、幂函数的增长特征√函数模型的应用√柱、锥、台的结构特征√三视图√斜二测画法和直观图√平行、中心投影√三视图和直观图√球、柱、锥、台的表面积和体积公式√线面的位置关系定义√线面平行的判定 √面面平行的判定 √线面垂直的判定 √面面垂直的判定 √线面平行的性质 √面面平行的性质 √线面垂直的性质 √面面垂直的性质 √ 用已获结论证明空间几何体中的位置关系点、线、面位置关系集合的含义与表示集合间的基本关系集合的基本运算函数指数函数对数函数知识要求集合 函数概念 与基本初 等函数1 立体几何初步幂函数函数与方程函数模型及应用空间几何体

结合图形,确定直线位置关系的几何要素√直线倾斜角和斜率的概念√过两点的直线斜率计算公式√判定直线平行或垂直√点斜式、两点式、一般式√斜截式与一次函数的关系√两条相交直线的交点坐标√两点间的距离公式√ 点到直线的距离公式两条平行线间的距离公式√圆的几何要素,标准方程和一般方程判断直线与圆的位置关系应用直线与圆的方程√代数方法处理几何问题的思想√空间直角坐标表示点的位置√空间两点间的距离公式√算法的含义与思想√顺序、条件分支、循环逻辑结构√基本算法语句输入、输出、赋值、条件、循环语句√简单随机抽样√分层抽样和系统抽样√样本频率分布表、频率分布直方图、折线图√茎叶图√标准差的意义和作用√平均数和标准差√用样本估计总体的思想√会画散点图,认识变量间的相关关系√最小二乘法,线性回归方程√频率和概率的意义√互斥事件的概率加法公式√古典概型古典概型及其计算公式√随机事件所含的基本事件数及发生的概率√随机数的意义,运用模拟方法估计概率√几何概型的意义√任意角的概念√弧度制的概念、弧度与角度的互化√正弦、余弦、正切的定义√单位圆的三角函数线√诱导公式√三角函数的图像√ 三角函数的周期性√ 正余弦函数的单调性、最值、对称 中心 √正切函数性质 √同角三角函数的基本关系式 √正弦型函数的参数对图像变化的影响√向量的实际背景√ 平面向量的概念√ 向量的实际背景用样本估计总体变量的相关性事件与概率几何概型任意角的概念、弧度制三角函数直线与方程 圆的方程空间直角坐标系算法的含义、程序框图随机抽样统计 基本初等函数2平面解析几何初步算法初步

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

高考文科数学试题解析分类汇编

2013年高考解析分类汇编16:选修部分 一、选择题 1 .(2013年高考大纲卷(文4))不等式 222x -<的解集是 ( ) A .()-1,1 B .()-2,2 C .()()-1,00,1U D .()()-2,00,2U 【答案】D 2|2|2 <-x ,所以?????->-<-222222 x x ,所以402 <2, 则关于实数x 的不等式||||2x a x b -+->的解集是______. 【答案】R 考察绝对值不等式的基本知识。函数||||)(b x a x x f -+-=的值域为:

高考文科数学重要考点大全

高考文科数学重要考点大全 一 考点一:集合与简易逻辑 集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的 试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这 些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查 有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用 逻辑用语表达数学解题过程和逻辑推理。 考点二:函数与导数 函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数一次和二次函数、指数、对数、幂函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的 运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最 值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和 函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数 的取值范围问题、方程根的个数问题、不等式的证明等问题。 考点三:三角函数与平面向量 一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一 道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道 和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向 量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概 念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、 共线等问题是“新热点”题型. 考点四:数列与不等式 不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基 本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解 析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、 性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合 运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目. 考点五:立体几何与空间向量

(完整版)2017年全国1卷高考文科数学试题及答案-

绝密★启用前 2017年普通高等学校招生全国统一考试 文科数学 本试卷共5页,满分150分。 考生注意: 1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?< ??? ? B .A I B =? C .A U B 3|2x x ? ?=

高考试题文科数学分类汇编导数

2012年高考试题分类汇编:导数 1.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是 【答案】C 2.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数 A. 若e a +2a=e b +3b ,则a >b B. 若e a +2a=e b +3b ,则a <b C. 若e a -2a=e b -3b ,则a >b D. 若e a -2a=e b -3b ,则a <b 【答案】A 3.【2012高考陕西文9】设函数f (x )=2x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=12 为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 【答案】D. 4.【2012高考辽宁文8】函数y=12 x 2-㏑x 的单调递减区间为

(A)(-1,1] (B)(0,1] (C.)[1,+∞)(D)(0,+∞) 【答案】B 5.【2102高考福建文12】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论: ①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0; ④f(0)f(3)<0. 其中正确结论的序号是 A.①③ B.①④ C.②③ D.②④ 【答案】C. 6.【2012高考辽宁文12】已知P,Q为抛物线x2=2y上两点,点P,Q 的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为 (A) 1 (B) 3 (C) -4 (D) -8【答案】C 7.【2012高考新课标文13】曲线y=x(3ln x+1)在点)1,1(处的切线方程为________ 【答案】3 4- =x y 8.【2012高考上海文13】已知函数() y f x =的图像是折线段ABC,其 中(0,0) A、 1 (,1) 2 B、(1,0) C,函数() y xf x =(01 x ≤≤)的图像及x轴围成 的图形的面积为【答案】 4 1。

2019高考文科数学考试大纲(最新整理)

文科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教 育部2003 年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修 课程、选修课程系列1 和系列4 的内容,确定文史类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课 程、选修课程系列1 和系列4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反 映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照 一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列 知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、 判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、 研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、 解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出 图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地 揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图 形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语 言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想 象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属 于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能 有概括,而概括必须在抽象的基础上得出某种观点或某个结论. 抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的 大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

2020高考文科数学各类大题专题汇总

2020高考文科数学各类大题专题汇总 一、三角函数 二、数列 三、立体几何 四、概率与统计 五、函数与导数 六、解析几何 七、选做题 大题专项练(一)三角函数 A组基础通关 1.已知在△ABC中,角A,B,C的对边分别是a,b,c,且c cos B+(b-2a)cos C=0. (1)求角C的大小; (2)若c=2,求△ABC的面积S的最大值. 因为c cos B+(b-2a)cos C=0, 所以sin C cos B+(sin B-2sin A)cos C=0, 所以sin C cos B+sin B cos C=2sin A cos C, 所以sin(B+C)=2sin A cos C. 又因为A+B+C=π, 所以sin A=2sin A cos C. 又因为A∈(0,π),所以sin A≠0, 所以cos C=. 又C∈(0,π),所以C=. (2)由(1)知,C=,

所以c2=a2+b2-2ab cos C=a2+b2-ab. 又c=2,所以4=a2+b2-ab. 又a2+b2≥2ab,当且仅当a=b时等号成立, 所以ab≤4.所以△ABC面积的最大值(S△ABC)max=×4×sin. 2.如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°. (1)若∠AMB=60°,求BC; (2)设∠DCM=θ,若MB=4MC,求tan θ. 由∠BMC=60°,∠AMB=60°,得∠CMD=60°. 在Rt△ABM中,MB=2AM=4;在Rt△CDM中,MC=2MD=2. 在△MBC中,由余弦定理,得BC2=BM2+MC2-2BM·MC·cos∠BMC=12,BC=2. (2)因为∠DCM=θ, 所以∠ABM=60°-θ,0°<θ<60°. 在Rt△MCD中,MC=; , 在Rt△MAB中,MB= °- 由MB=4MC,得2sin(60°-θ)=sin θ, 所以cos θ-sin θ=sin θ, 即2sin θ=cos θ, 整理可得tan θ=.

相关主题