搜档网
当前位置:搜档网 › 湍流减阻意义与工程应用

湍流减阻意义与工程应用

湍流减阻意义与工程应用
湍流减阻意义与工程应用

湍流减阻意义与工程应用

摘要:湍流减阻的原理与粘性减阻的定义应用,高分子聚合物在湍流中的原理解释,从不同的方向阐述了当今流体湍流减阻的研究成果,展现了湍流减阻的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流减阻的前景,并对湍流减阻的发展提出了一些建议和设想。

关键词:湍流减阻;粘性减阻;高分子聚合物;湍流

Turbulent drag reduction significance and engineering application

Abstract: the principle of turbulent drag reduction and viscous drag reduction the definition of the application of polymer in the turbulence theory to explain, in different directions this paper expounds the current research achievements of fluid turbulent drag reduction, showed the in-depth of turbulent drag reduction for the important role of science and technology and social development, the outlook of the turbulent drag reduction, and puts forward some Suggestions on the development of turbulent drag reduction and ideas

Key words: turbulent drag reduction; Viscous drag reduction; Polymer; turbulence

人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化,预测方法不断改进。随着我国飞速发展,所需的战略型资源--化工石油越发紧缺【1】。同时,随着我国大部分油田开发进入中后期,采出油品的流动性不断恶化,使得管道输送阻力急剧增大,运营成本剧增。因此如何降低石油及其产品的管输阻力成为国内外众多学者研究的热点和难点问题。

自从Toms,Kramer先后发现高分子稀溶液或弹性材料护面都能实现减阻以来,减阻现象与边界剪切湍流产生的基本规律密切相联【2-3】。粘性减阻就是通过或从外部改变流体边界条件或从内部改变其边界条件,依靠改变边界材料的物理、化学、力学性质或在流动的近壁区注入物理、化学、力学性质不同的气体、液体来改变近壁区流动的运动和动力学特性,从而达到减阻目的的技术【4】。

1、粘性减阻

当粘性流体沿边界流过时,由于在边界上流速为零,边界面上法向流速梯度异于零,产生了流速梯度和流体对边界的剪力。边壁剪力作功的结果消耗了流体中部分能量,并最终以热量形式向周围发散。边界面的粗糙程度,决定微观的分离和边界的无数小旋涡几何尺寸的差

异,从而决定流体能量消散的差异和阻力系数的差异[5~7]。如想达到粘性减阻,首先要实现壁的光滑减阻;就要改变层流边界层和湍流边界层中层流附面层的内部结构:

1)减小层流边界层和层流附面层贴近边界处的流速梯度值和流体对边界的剪力,减小通过粘性直接发散的能量值,达到减阻。

2)增大层流边界层和层流附面层的厚度,从而达到减阻【8-10】。

2、高分子稀溶液

高分子稀溶液减阻是通过从流体内侧边界创造条件,以实现减阻。长链高分子稀溶液能导致减阻的共同特点是:其额定分子量数量级都是高达百万的。从减阻的结果来看它只对湍流有效;而对层流则无效。而且只有当高分子稀溶液注入到临边界区域时,才能实现减阻[14~15]。

第一种认为减阻作用是由于减阻剂使边界层产生了滑动。

第二种认为是由于高分子稀溶液延缓了近壁区层流向湍流的过渡,使层流附面层增厚了,流速分布发生了弹性变形,出现“缓冲层”。

第三种认为是稀溶液改变了流体粘性。

从化学角度来看,当在附壁区受流体剪力作用时,卷曲的分子链将直化。而解除外力后则力图回缩至原状,具有弹性,故较容易与层流附面层发生同步波动。归根到底,高分子化学稀溶液能在内外流中起减阻作用,是由稀溶液中溶质的化学结构所决定的。在化学结构中,影响和决定减阻的主要因素是大分子的链环数[18],每链环的分子量值。

如果高分子结构,浓度所决定的宏观力学指标使得近壁薄层具有弹性,对层流附面层波动具有完全的柔顺性,而链网内部阻力损失很小,那么它就有良好的减阻效果。但高分子在受到流动剪力或其它机械力易产生降解,从而降低和丧失减阻性能并有较昂贵的费用[19]。表1为过去几十年中较通用的几种材料和有效的减阻浓度范围【12-13】。

表1 高分子减阻器

Table 1 polymer drag reduction

3、高分子聚合物对湍流漩涡的作用

聚合物湍流减阻的基本思想就是最大限度地阻止湍流的迸发,即降低湍流迸发频率和强度。只有在流动漩涡为非对称流动的情况下,其中的聚合物才可能存在反向扭矩,当湍流漩涡遇到阻碍其运动的壁面时,发卡型漩涡变得不对称,导致聚合物产生反向扭矩,而发卡型漩涡偏离其自身中心对称轴。从而高分子聚合物可以利用自身具有的粘弹性反向扭矩抑制湍流漩涡的旋转翻腾,进而降低湍流程度,减小流动阻力【16】。

4、减阻剂

减阻剂是一种减少液体管道内摩阻损失的化学制品,是高分子聚合物,属碳氢化合物。早在1944年,美国麻省理工学院就研究了能够减阻的物质【17】。1947年美国海军研究院开始进一步的发展研究。在60年代后期,美国的生产厂家己开始对减阻剂进行研制生产。1979年美国Conoco公司生产的CDR减阻剂开始应用在横贯阿拉斯加的原油管道上。自80年代初以来,在世界范围内,海上、陆上有几百条输油管道都陆续应用了减阻剂【21】。

5、柔顺壁减阻

柔性化是以柔顺的边界替代了刚性边界面从流体外侧边界创造条件来影响流体流动的。柔性化后使边界产生同步波动,从而减小牛顿剪切应力,阻滞层流边界层流态的转捩,导致层流附面层或层流边界层的增厚[23~24]。许多研究者考虑了应力与速度在层流边界层或层流附面层与柔性壁交界面的连续性,通过计算证明Kramer型的非各向同性柔性壁有利于层流边界层的转捩延迟[22]。

近年来,从内、外侧同时来改变流体状况的水溶性高分子涂层[25]。其一方面是从涂层溶解出来的线型高分子,沿流取向的过程中抑制湍流和湍流压力的脉动;第二方面是涂层在水中不断地溶胀,形成弹性模数梯度,引起壁的柔顺效应。但这种涂层在很短时间内,会由于涂层的完全溶解而失去了减阻的效果。

6、医学上的应用

有人研究用减阻剂(葡萄糖类)和高疏水性的血管材料来减少血液流动的粘性摩阻,增大血流量。以治疗由于胆固醇沉积使冠状动脉管径减少引起的心肌供氧不足,心脏负担过重的冠心病【20】。

7、船舶航行

船舶或水下兵器在水中航行时,水的粘性摩阻及其引起的噪声是影响船速和水下兵器作战性能的主要因素。在其外壁涂上某些高分子物质,如表面柔性高分子材料,水溶性高分子涂层,低表面能减阻涂层等,可减少航行阻力和噪声,提高航速和声纳的信噪比,降低动力耗散。同样,这种涂层也可用于体育比赛的赛艇上以提高船速。

参考文献:

[1] Tom B A. Congress on rheology[M]. North Holland:AcademicPress,1948:135.

[2] 郑文.高分子聚合物和流体的减阻[J].高分子通报,1989(4):21-24.

[3] 窦国仁.高分子聚合物减阻流的湍流结构[J].水力水运科学研究,1981(1):1-10.

[4] 陈林,唐登斌.转捩边界层中流向条纹的新特性[J].物理学报,2011,60(9):1-5.

[5] Liu J T. Contributions to the understanding of large scalecoherent in developing free turbulent shear flows[J]. Advances of Applied Mechanics,1988,26:183-305.

[6] Jiang LShan HLiu C. Recent advances in DNS and LES[C].Proceedings of the Second AFOSR International,Conference on DNS/LES,Rutgers-The State University of New Jersey,New Brunswick,USA,June 7-9,1999.

[7] Mack L M. Review of linear compressible stability theory[C].Stability for Time Dependent an

d Spatially Varying Flows,New York,USA,1985.

[8] Crews James BHuang Tianping. Internal breakers forviscoelastic-surfactant fracturing fluids[C ]. SPE106216,2007.

[9] 窦国仁.含高分子聚合物的紊流及其减阻规律.中国科学,1981,(11):1409

[10] 何钟怡.高分子稀溶液减阻机理的研究进展.水动力学研究与进展.1993,8:381

[11] 周火亘,熊忠民.湍流边界层近壁区相干结构起因的研究.中国科学,1994,24:941

[12] 么胜洪,舒玮.壁湍流外层周期扰动对内层脉动特性的影响.中国科学,1991,(1):47

[13] WuJiezhi,WuJainming.InteractionsBetweenaSolidSurfaceandaViscousCompressibleFlowFiel

d,J.Fluid,Mech.,1993,254:183

[14] WeiT,WillmarthWW.ModifyingTurbulentStructurewithDragReducing-PolymerAdditivesinTu rbulent,ChannelFlows,J.FluidMech.,1992,245:619

[15] KalashnikovVN.HydrodynamicsofPolymerSolutionsExhibitingLowEddyFriction,FluidMecha nics-SovietRe2,search,1979,8(3):14

[16] LandahlMT.DragReductionbyPolymerAddition,Proc.13thIntCongrTheor,Appl.Mech,Springer -Verlag,1973

[17] VirkPetal.TheTom’sPhenomenon:Turbule ntPipeFlowofDilutePolymerSolutions.J.FluidMech., 1967,30:305

[18] VirkPandMerillEW.TheOnsetofDilutePolymerSolutionPhenomena,inViscousDragReduction, EditbyWells,CS,PlenumPress,1969

[19] 马祥,陶进.表面活性剂管道减阻及传热特性的研究.水动力学研究与进展,1993,8:636

[20] ZandiI.DecreasedHeadLossesinRaw-WaterConduits,J.Am.WaterworkAssoc,1967,59:213

[21] GustG.ObservationonTurbulentDragReductioninaDiluteSuspensionofClayinSeawater,J.Fluid Mech.1976,75:29

[22] 钱宁,万兆惠.泥沙运动力学,科学出版社,北京,1983

[23] https://www.sodocs.net/doc/278794318.html,pliantCoatingResearch.AGuidetotheExperimentalist,J.FluidandStructure19 87,1:55

[24] CarpenterPW,GarradAD.TheHydrodynamicStabilityofFlowoverKramer-TypeCompliantSurfa ce,Part,Tollmien-SchlichtingInstability,J.FluidMech,1985,155:465

[25] 李万平,杨新祥.柔性壁减阻的试验研究.水动力学研究与进展,1991,6:108[26] 金善熙.高分子减阻涂料.海军工程学院学报,1987,(1):8

湍流减阻的意义及工程应用

湍流减阻的意义及工程应用 摘要:伴随着世界性能源危机的逐渐加剧,节能减排已经成为大势所趋,在能源运输的过程之中,摩擦阻力是主要的耗能来源,所以研究湍流减阻意义十分的重大。为此本文将对于湍流减阻的意义及工程应用展开有关的论述。本文首先论述了推流减租的意义,之后详细的论述了其工程上面的应用。含有肋条、柔顺壁、聚合物添加剂、微气泡、仿生减阻、壁面振动等主要湍流减阻技术最近的研究成果和应用现状,并着重强调了各自的减阻机理。 关键词:能源危机湍流减阻减阻机理 引言 伴随着全球能源消耗的不断提升,科学家门已经将越来越多的警力投入到如何有效的利用与保护能源领域上面。车辆、飞机以及船舶、油气长输管道的数量快速的增加,所以设法减少这些运输工具表面的摩擦阻力,成为人们研究发展节约能源的新技术含有的突破点[1]。 1湍流减阻的意义 节约能源消耗是人类一直追求的目标,其主要的途径就是在各种运输工具设计之中,尽可能的减少表面的摩擦阻力。表面摩擦阻力在运输工具总阻力之中占据很大的比例,在这些运输工具表面的发部分区域,流动都是处于湍流的状态,所以研究推流边界层减租意义十分的重大,已经引起广泛的重视,同时已经被NASA列为21实际航空关键技术之一[2]。 有关减租问题的研究可以追溯到上世纪的30年代,不过一直到上世纪的60年代中期,研究工作主要围绕减小表面的粗糙程度,隐含的假设光滑表面的阻力最小。到了70年代,阿拉伯石油禁运由此引发的燃油价格上涨激起了持续至今的推流减租研究与应用潮流,经过多年的发展,尤其是湍流理论的发展,使得湍流减阻理论与应用都是取得了突破性的进展[3]。

2湍流减阻的工程应用 2.1肋条减阻 20世纪70年代,NASA研究中心发现具有顺流向微小肋条的表面可以有效的降低臂面的摩擦阻力,从而突破了表面越光滑阻力越小的传统思维模式,肋条减阻成为湍流减阻技术研究热点[6]。 最近几年,为了最大限度的实现减租,人们对于肋条进行了很多的实验与应用优化设计[7]。德国的Bechert和Brused等使用一种测量阻力可以精确度达到±0.3%的油管对于各种肋条表面的减阻效果进行了研究。其测试了多种形状的肋条,含有三角形、半圆以及三维肋条,实验的结果显示V形肋条减阻效果最好,可以达到10%以上的减阻幅度[8]。大量的研究工作显示肋条表面减阻的可靠性与可应用性,国外的研究已经进入到了工程实用阶段,空中客车将A320试验机表面积约70%贴上肋条薄膜,到达了节油2%左右。NASA兰利中心对于Learjet 型飞机的飞行试验结果减阻大约在6%左右。国内的李育斌在1:12的运七模型上具有湍流流动的区域顺流向粘贴肋条薄膜之后,试验表面可以减小飞机阻力8%左右[9]。 2.2壁面振动减阻 壁面振动减阻是20世纪90年代才出现的一种新的方法,米兰大学的Baron和Quadrio 利用直接的数字模拟技术研究了壁面振动减阻的总能量节约效果,其发现在壁面振动速度振 幅在大于: h QX8/ 3时,不会节约能源,而是在比较小的振幅时候能量才有节约[10]。 这个里面Qx表示流量,h表示湍流明渠流高度的一半。在振幅为 h QX4/的时候,可 以净节约多达10%的能量。因为试验都是在固定无因次周期为T+=100下进行的,所以人们认为如果应用条件适当,还能节省更多的能量[11]。 2.3仿生减阻 海洋生物长期生活在水中,经过漫长的岁月,进化出了效率很高的游动结构,表面摩擦阻力也相当的低。所以通过仿生学的研究,设计出减阻效果更好的结构,也变成了研究的热点。Bechert对于一种模拟鸟类羽毛被动流体分离控制的方法进行了风洞的测试,在迅游环境里面,对层流翼部分的活动襟翼的测试结果表明机翼上的最大升力增加了20%而未发现有负面影响。一架电动滑翔机飞行测试纪录的阻力数据也证明了这一点[12]。

湍流减阻意义与工程应用

湍流减阻意义与工程应用 摘要:湍流减阻的原理与粘性减阻的定义应用,高分子聚合物在湍流中的原理解释,从不同的方向阐述了当今流体湍流减阻的研究成果,展现了湍流减阻的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流减阻的前景,并对湍流减阻的发展提出了一些建议和设想。 关键词:湍流减阻;粘性减阻;高分子聚合物;湍流 Turbulent drag reduction significance and engineering application Abstract: the principle of turbulent drag reduction and viscous drag reduction the definition of the application of polymer in the turbulence theory to explain, in different directions this paper expounds the current research achievements of fluid turbulent drag reduction, showed the in-depth of turbulent drag reduction for the important role of science and technology and social development, the outlook of the turbulent drag reduction, and puts forward some Suggestions on the development of turbulent drag reduction and ideas Key words: turbulent drag reduction; Viscous drag reduction; Polymer; turbulence 人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化,预测方法不断改进。随着我国飞速发展,所需的战略型资源--化工石油越发紧缺【1】。同时,随着我国大部分油田开发进入中后期,采出油品的流动性不断恶化,使得管道输送阻力急剧增大,运营成本剧增。因此如何降低石油及其产品的管输阻力成为国内外众多学者研究的热点和难点问题。 自从Toms,Kramer先后发现高分子稀溶液或弹性材料护面都能实现减阻以来,减阻现象与边界剪切湍流产生的基本规律密切相联【2-3】。粘性减阻就是通过或从外部改变流体边界条件或从内部改变其边界条件,依靠改变边界材料的物理、化学、力学性质或在流动的近壁区注入物理、化学、力学性质不同的气体、液体来改变近壁区流动的运动和动力学特性,从而达到减阻目的的技术【4】。 1、粘性减阻 当粘性流体沿边界流过时,由于在边界上流速为零,边界面上法向流速梯度异于零,产生了流速梯度和流体对边界的剪力。边壁剪力作功的结果消耗了流体中部分能量,并最终以热量形式向周围发散。边界面的粗糙程度,决定微观的分离和边界的无数小旋涡几何尺寸的差 异,从而决定流体能量消散的差异和阻力系数的差异[5~7]。如想达到粘性减阻,首先要实现壁的光滑减阻;就要改变层流边界层和湍流边界层中层流附面层的内部结构: 1)减小层流边界层和层流附面层贴近边界处的流速梯度值和流体对边界的剪力,减小通过粘性直接发散的能量值,达到减阻。 2)增大层流边界层和层流附面层的厚度,从而达到减阻【8-10】。

高尔夫球运动中的流体力学

高尔夫球运动中的流体力学 “高尔夫”是GOLF 的音译,由四个英文词汇的首字母缩写构成。它们分别是:Green ,Oxygen , Light , Friendship ,意思是"绿色,氧气,阳光,友谊",它是一种把享受大自然乐趣、体育锻炼和游戏集于一身的运动。[1]如今,现代高尔夫球运动已经成为贵族运动的代名词,是中国古代一种名为“捶丸”的球戏演变而来的。 1 高尔夫球的发展历史 高尔夫球最早是用木制的,中国的捶丸的“丸”或“俅”是用“痪木”,即木疙瘩制成。后来,西方改用皮革内充以羽毛来缝制。不过这种球有一个大缺点,就是当球被打入水中或被露水粘湿时,重量会增加。[2]直到1845年,开始改用橡胶或塑胶压制而成的光滑圆球,这种球优点是不会因为被水湿了而大大加重,但是球飞行的距离却大为缩短。 后来,人们发现,用旧了的有划痕的高尔夫球,反而可以打得更远。为什么表面粗糙了,飞行反而远了呢?这里面大有学问。 早在1910年,著名物理学家J.J.Thomson 就发表了这方面的研究论文[3],相继的研究工作导致了为让球飞得更远,在球的表面上采用了布满小凹痕的设计。事实上一个表面光滑的球,职业选手击出后的飞行距离,大约只是布满凹痕球的一半。粗糙的表面可降低空气阻力的道理涉及“边界层”的概念。 2 边界层理论 边界层理论的基本想法是,在黏性系数很小的情形,可将整个流场分做两部分处理,黏性只表现在附着于物体表面上的边界层内;从表面向外,边界层中气流的速度从零逐渐加大到与外部气体流速相同,不同速度层间存在摩擦损耗,对于边界层以外的流体,则完全略去黏性力的影响,用理想流体的理论处理,并将得到的解作为边界层外缘的边条件,这样整个问题可得到解决,边界层的厚度21 Re d ≈δ,其中d 为球的直径。 3 高尔夫球效应的原理 物体或高尔夫球在空气中飞行,最早空气被想象为没有黏性的,或者说是没有摩擦的。这时流过物体表面的流体质点和物体表面质点的速度可以不同,它们之间是有正压力却没有切向力,这就好像把重物体在另一物体的水平面上拖着走时没有阻力一样。人们把这种没有黏性的流体称为理想流体。按理说,在理想流体中飞行的物体是没有阻力的,在地面上的抛体,即使是抛一根稻草,它的飞行距离可以和扔石头一样远。不过这和实际观察到的现象完全不符合,物体在空气中飞行时的阻力是绝对不可忽略的。最早认识到这个矛盾的是法国学者达朗伯尔,所以这个矛盾也被称为“达朗伯尔佯谬”。[4] 由于空气阻力的作用,按说应该是光滑的物体受到的空气阻力小才对,不过流体作用在运动物体上的阻力还要复杂一些,除了上面的这种由流体的黏性引起的阻力外,还有一种由于流场改变所产生的阻力,即压差阻力。而且在物体运动

湍流的统计特性及对激光大气传输的影响

第4章湍流的统计特性及对激光大气传输的影响分析 激光大气传输湍流效应本质上就是光在湍流大气中的传播问题。20世纪50年代前苏联学者Tatarskii引入Kolmogorov和Obukhov发展的湍流统计理论,求解湍流大气中波传播方程,取得的一些理论结果相当好地解释了在此以前所取得的实验结果,从而奠定的光波在湍流大气中传播的理论基础。然而,由于激光在湍流大气中的传播是一个十分复杂的随即非线性过程,特别是大气湍流存在的间歇性,对激光传输有着难以估计的影响。 4.1大气湍流的成因 在大气中,任一点的大气运动速度的方向和大小无时无刻不发生着不规则变化,产生了各个大气分子团相对于大气整体平均运动的不规则运动,这种现象称为大气湍流。通常情况下大气都处于湍流状态,大气的随机运动产生了大气湍流,由于大气湍流的存在,大气温度和折射率也时刻发生着不规则的变化。形成大气湍流的原因大致有四点。第一,太阳的照射造成的大气温度差,太阳辐射对地表不同地区造成加热不同;第二,地球表面对气流拉伸移位导致了风速剪切;第三,地表热辐射产生了热对流;第四,伴随着热量释放的相变过程(沉积、结晶)导致了温度和速度场变化。图4.1形象的表述了湍流的形成。

上图是英国的物理学家形chardson描绘的湍流的一个级串模型,虽然湍流的运动很复杂,但通过上图仍能对湍流有一个形象的认识。上图表示湍流含有尺度不同的湍涡,而各种能量从大尺度湍涡一步一步向小尺度湍涡传递。外界的能量传递给第一级大湍涡,由于受风剪切等因素的影响,大湍涡逐渐变得不稳定形成次级小湍涡,小湍涡再次失稳后再形成更次一级的许多小湍涡。从图中可以看出,湍涡的大小有限,最大的湍涡的尺寸大小是外尺度 L,最小的湍涡是内尺度0l。 尤其重要的是,这些大大小小的湍涡没有分散存在于大气中,而是交叉重叠的存在于大气中。 4.2 Kolmogorov-Oboukhov湍流统计理论 虽然迄今为止人们对湍流的基本物理机制尚还不十分清楚,但已形成几个公认的基本概念,包括随机性、涡粘性、级串、和标度率。随机性构成了湍流统计理论的基础;涡粘性揭示了湍流相近尺度间的相互作用行为;级串给了我们最直观、最明晰的湍流图像;标度律则成为物理上定量研究湍流问题的数学手段。 在直观的湍流现象中,Richardson首先给出了湍流的级串图:湍流中存在着不同尺度间的逐级能量传递,由大尺度湍涡向小尺度湍涡输送能量。第一级大湍涡的能量来自外界,大湍涡失稳后形成次级的小湍涡,再失稳后产生更次一级的小湍涡。在大雷诺数下,所有可能的运动模式都被激发。 基于Richardson级串模型。Kolmogorov认为在大雷诺数下,这些不同尺度的湍

四种湍流模型介绍

由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。 涉及的湍流模型: 标准k-ε湍流模型(SKE) 1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。 2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。在fluent中,标准 k-ε湍流模型自从被Launderand Spalding 提出之后,就变成流场计算中的主要工具。其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。 3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。 它是个半经验的公式,是从实验现象中总结出来的。 动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。 应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。 可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。 ·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。 应用范围: 可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。 可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNGk-ε模型有更好的表现。但是最初的研究表明可实现的k-ε模型在所有k-ε模型中流动分离和复杂二次流有很好的作用。 该模型适合的流动类型比较广泛,包括有旋均匀剪切流,自由流(射流和混合层),腔道流动和边界层流动。对以上流动过程模拟结果都比标准k-ε模型的结果好,特别是可再现k-ε模型对圆口射流和平板射流模拟中,能给出较好的射流扩张。

1研究的背景和意义

目录 1研究的背景和意义 (2) 2表面活性剂减阻机理及影响因素 (6) 2.1湍流减阻基本概念 (6) 2.1.1从微观结构角度对表面活性剂湍流减阻机理的解释 (7) 2.1.2从湍流物理角度对湍流减阻机理的解释 (7) 2.2影响表面活性剂减阻的因素 (10) 2.2.1烷基 (10) 2.2.2烷基链头基 (11) 2.2.3 烷基链长度 (11) 2.2.4表面活性剂的浓度 (11) 2.2.5 补偿离子 (11) 2.2.5.1补偿离子的浓度 (11) 2.2.5.2补偿离子的疏水性与亲水性 (12) 2.2.5.3补偿离子的电荷性质以及电荷数 (12) 2.3其他因素的影响 (12) 2.3.1管路系统的直径 (12) 2.3.2流体介质的速度和温度 (13) 2.3.3环境中的金属离子 (13) 2.3.4雷诺数的影响 (13) 2.4表面活性剂减阻方程式的介绍 (13) 2.4.1粘弹性流体的剪力及湍流运动方程 (14) 3表面活性剂的国内外研究及运用状况 (15) 3.1国外的研究状况 (15) 3.2国内的研究状况 (16) 4主要研究的方法和内容 (17) 4.1研究的内容 (17) 4.2研究方法 (17) 4.2.1流变模型及数值模拟研究 (17) 4.2.2尺度放大的研究方法 (19) 5前景与展望 (21)

1研究的背景和意义 如今随着世界能耗的不断增加,能源问题一直是比较棘手的问题,特别像我国人口众多的国家,人均资源占有量远低于世界的平均水平,且对于能源的需求更加巨大,所以节约能源对于中国来说乃至于对于全世界来说是相当重要的大事。能源的消耗重要发生在能源交通运输过程中,且表面摩擦占很大的比例。而在长距离的管道运输过程中,泵站的动力几乎全部用于克服表面摩擦力。而由于表面摩擦阻力的存在,会将油气由层流状态转变为湍流状态,所以湍流减阻对长距离的管道输油具有重要的意义,已引起了广泛的重视。 在长距离管道流体输运中,绝大部分的流体输送能耗来源于管道壁面的摩擦阻力。对于能源紧缺的今天,尤其是像我国这样处于发展中且人均资源占有量较低的国家来说,节约能源以及能源的高效利用已经成为了当前研究的重点和亟待解决的问题。减阻添加剂的使用能极大地减少流体在壁面的摩擦阻力,减阻效果高达80%,具有重要的节能价值。相比于聚合物减阻剂,表面活性剂具有可逆的机械降解性质,在高剪切力场合以及封闭式循环系统如集中供暖系统中有着极大的优势以及更为广泛的应用前景。 由于表面活性剂溶液在不同的剪切力作用下,其内部的单体分子会形成不同形状的微观胶束结构,比如球状、棒状、蠕虫状、网状等,而这些不同的微观结构又能够影响表面活性剂溶液的流变性能,使其在不同剪切力下表现不同的流变特性;而流变特性又会影响流体内部的湍流结构,从而进一步影响表面活性剂溶液的减阻性能。因此,为了认识表面活性剂溶液的内在减阻机理,对其微观结构、流变特性及流体内部湍流结构的研究成为了国内外众多学者关注的焦点之一。 然而,表面活性剂在高效减阻的同时,其换热性能将会极大地恶化,这主要是由其内部微观结构对流体湍流强度的抑制作用造成的,从而导致了表面活性剂溶液传热性能恶化的现象。因此,为了进一步扩大表面活性剂在换热领域的应用,其强化传热也成为了研究的焦点。 当表面活性剂溶液发生减阻作用时,其流体内部的湍流涡结构会受到由表面活性剂形成的剪切诱导结构的抑制,从而使湍流结构发生改变。这一特点则为通过影响湍流结构实现减阻的其它减阻方法提供了可能的条件,为表面活性剂与其它适当的减阻方式相结合的耦合减阻研究提供了指导。因此,表面活性剂与其它减阻方式耦合进行高效湍流减阻的研究也是当前的研究热点。 综上所述,为了全面认识表面活性剂溶液的减阻机理,提高其在节能方面的应用价值和范围,就需要对其微观结构、流变特性、减阻特性、湍流结构特征、强化传热以及与其它减阻方法协同作用耦合特性进行系统的研究。本文对作者近年来在表面活性剂湍流减阻方面的最新研究进展进行综述,并与其它同类研究进行了对比分析。首先总结分析表面活性剂溶液结构、复杂流变特性和湍流结构及其与减阻和换热性能之间的内在联系,然后阐述表面活性剂和壁面微沟槽协同作用减阻性能与机理,并介绍表面活性剂减阻的实际工程应用,最后对表面活性剂减阻在今后的研究重点提出建议。 湍流减阻对提高能源的利用率、保护生态坏境等都有重要的意义。近年来国际学术界对湍流减阻的基础和运用研究十分重视,每年都要召开有关于湍流减阻的学术会议,湍流减阻已经发展成为当今流体力学及流体工程界的一个热门学科。添加剂湍流减阻技术作为湍流减阻重要的一个分支,是指在管道中的流体湍流流

fluent湍流模型 总结

一般来说,DES和LES是最为精细的湍流模型,但是它们需要的网格数量大,计算量和内存需求都比较大,计算时间长,目前工程应用较少。 S-A模型适用于翼型计算、壁面边界层流动,不适合射流等自由剪切流问题。 标准K-Epsilon模型有较高的稳定性、经济性和计算精度,应用广泛,适用于高雷诺数湍流,不适合旋流等各相异性等较强的流动。 RNG K-Epsilon模型可以计算低雷诺数湍流,其考虑到旋转效应,对强旋流计算精度有所提供。 Realizable K-Epsilon模型较前两种模型的有点是可以保持雷诺应力与真实湍流一致,可以更加精确的模拟平面和圆形射流的扩散速度,同时在旋流计算、带方向压强梯度的边界层计算和分离流计算等问题中,计算结果更符合真实情况,同时在分离流计算和带二次流的复杂流动计算中也表现出色。但是此模型在同时存在旋转和静止区的计算中,比如多重参考系、旋转滑移网格计算中,会产生非物理湍流粘性。因此需要特别注意。专用于射流计算的Realizable k-ε模型。 标准K-W模型包含了低雷诺数影响、可压缩性影响和剪切流扩散,适用于尾迹流动、混合层、射流、以及受壁面限制的流动附着边界层湍流和自由剪切流计算。 SST K-W模型综合了K-W模型在近壁区计算的优点和K-Epsilon模型在远场计算的优点,同时增加了横向耗散导数项,在湍流粘度定义中考虑了湍流剪切应力的输运过程,适用更广,可以用于带逆压梯度的流动计算、翼型计算、跨声速带激波计算等。 雷诺应力模型没有采用涡粘性各向同性假设,在理论上比前面的湍流模型要精确的多,直接求解雷诺应力分量(二维5个,三维7个)输运方程,适用于强旋流动,如龙卷风、旋流燃烧室计算等。 !!!!! 所以在选择湍流模型时要注意各个模型是高雷诺数模型还是低雷诺数模型,前者采用壁面函数时,应该避免使用太好(对壁面函数方法)或太粗劣(对增强函数处理方法)的网格。而对于低雷诺数模型,壁面应该有好的网格。另外fluent 对壁面函数除了有增强处理以外,还有非平衡处理。(FLUENT首选标准壁面方程组,它能很好的计算出以壁面为边界的流动情况。但是,当流体流动分离太大。以致于远远偏离了理想条件时,就不太适用了,在其他情况下,剪切应力及平衡假设大大限制了壁面方程的通用性。相应的,当近壁面流动处于高压之下时,当流动处于不平衡状态时,这些假设就不在成立了。不平衡方程组提供了处理以上情况的方法)非平衡壁面函数被推荐使用在包含脱流、回流和冲击的复杂流动当中。 但是考虑到壁面函数的局限性(对近壁面的影响无效),壁面函数方法的局限性(y+应用于壁面函数) 标准的壁面函数能够为大多数高雷诺数的边界限制流提供合理、精确的预测。而非平衡

研究的背景和意义

目录 1研究的背景和意义 (3) 2表面活性剂减阻机理及影响因素 (6) 湍流减阻基本概念 (6) 从微观结构角度对表面活性剂湍流减阻机理的解释 (7) 从湍流物理角度对湍流减阻机理的解释 (8) 影响表面活性剂减阻的因素 (11) 烷基 (11) 烷基链头基 (12) 烷基链长度 (12) 表面活性剂的浓度 (12) 补偿离子 (13) 补偿离子的浓度 (13) 补偿离子的疏水性与亲水性 (13) 补偿离子的电荷性质以及电荷数 (13) 其他因素的影响 (13) 管路系统的直径 (13) 流体介质的速度和温度 (14) 环境中的金属离子 (14) 雷诺数的影响 (15) 表面活性剂减阻方程式的介绍 (15) 粘弹性流体的剪力及湍流运动方程 (15) 3表面活性剂的国内外研究及运用状况 (16) 国外的研究状况 (16)

国内的研究状况 (16) 4主要研究的方法和内容 (16) 研究的内容 (16) 研究方法 (17) 流变模型及数值模拟研究 (17) 尺度放大的研究方法 (19) 5前景与展望 (21)

1研究的背景和意义 如今随着世界能耗的不断增加,能源问题一直是比较棘手的问题,特别像我国人口众多的国家,人均资源占有量远低于世界的平均水平,且对于能源的需求更加巨大,所以节约能源对于中国来说乃至于对于全世界来说是相当重要的大事。能源的消耗重要发生在能源交通运输过程中,且表面摩擦占很大的比例。而在长距离的管道运输过程中,泵站的动力几乎全部用于克服表面摩擦力。而由于表面摩擦阻力的存在,会将油气由层流状态转变为湍流状态,所以湍流减阻对长距离的管道输油具有重要的意义,已引起了广泛的重视。 在长距离管道流体输运中,绝大部分的流体输送能耗来源于管道壁面的摩擦阻力。对于能源紧缺的今天,尤其是像我国这样处于发展中且人均资源占有量较低的国家来说,节约能源以及能源的高效利用已经成为了当前研究的重点和亟待解决的问题。减阻添加剂的使用能极大地减少流体在壁面的摩擦阻力,减阻效果高达80%,具有重要的节能价值。相比于聚合物减阻剂,表面活性剂具有可逆的机械降解性质,在高剪切力场合以及封闭式循环系统如集中供暖系统中有着极大的优势以及更为广泛的应用前景。 由于表面活性剂溶液在不同的剪切力作用下,其内部的单体分子会形成不同形状的微观胶束结构,比如球状、棒状、蠕虫状、网状等,而这些不同的微观结构又能够影响表面活性剂溶液的流变性能,使其在不同剪切力下表现不同的流变特性;而流变特性又会影响流体内部的湍流结构,从而进一步影响表面活性剂溶液的减阻性能。因此,为了认识表面活性剂溶液的内在减阻机理,对其微观结构、 流变特性及流体内部湍流结构的研究成为了国内外众多学者关注的焦点之一。 然而,表面活性剂在高效减阻的同时,其换热性能将会极大地恶化,这主要是由其内部微观结构对流体湍流强度的抑制作用造成的,从而导致了表面活性剂溶液传热性能恶化的现象。因此,为了进一步扩大表面活性剂在换热领域的应用,其强化传热也成为了研究的焦点。 当表面活性剂溶液发生减阻作用时,其流体内部的湍流涡结构会受到由表面活性剂形成的剪切诱导结构的抑制,从而使湍流结构发生改变。这一特点则为通过影响湍流结构实现减阻的其它减阻方法提供了可能的条件,为表面活性剂与其它适当的减阻方式相结合的耦合减阻研究提供了指导。因此,表面活性剂与其它减阻方式耦合进行高效湍流减阻的研究也是当前的研究热点。 综上所述,为了全面认识表面活性剂溶液的减阻机理,提高其在节能方面的应用价值和范围,就需要对其微观结构、流变特性、减阻特性、湍流结构特征、强化传热以及与其它减阻方法协同作用耦合特性进行系统的研究。本文对作者近年来在表面活性剂湍流减阻方面的最新研究进展进行综述,并与其它同类研究进行了对比分析。首先总结分析表面活性剂溶液结构、复杂流变特性和湍流结构及 其与减阻和换热性能之间的内在联系,然后阐述表面活性剂和壁面微沟槽协同作

大气湍流的复原

大气湍流的复原 研究背景与意义 21 世纪以来,美国、欧空局、俄罗斯等空间科技强国都相继提出了新的空间发展规划。特别的,美国自特朗普上台后提出太空政策,加大对太空探索的投资力度,并积极开展多个民用太空项目。根据我国至2030 年空间科学发展规划,我国将建立以覆盖多个热点领域的空间科学卫星为标志的空间科学体系[1],通过发展系列空间科学计划,牵引和带动我国在空间目标识别与监视、深空测绘乃至其他重要科技领域的创新与突破,推动我国高科技产业的跨越式发展。而对空间目标的姿态、形状、特征以及太空星体表面的地形地貌进行高精度识别与判读,都需要采用光学成像系统对其观测与监视,从而获取足够数量的影像资料,从这些影像资料中提取使用者所期望的感兴趣信息。 由于地面受到太阳辐射作用,造成大气中分子和由悬浮粒子构成的离散混合介质的不规则热运动,使得大气呈现出非稳态性和随机性,这种现象称之为大气湍流现象。当光波穿过空间大气层时,由于大气中湍流介质中各处的压强、温度、湿度以及物理特性的随机变化,使得射出湍流介质的波阵面不再保持平面特性。因此,光学成像系统中的传感器透过大气对目标物或场景进行观测时,由于近地面的大气湍流强度在空间和时间上分布的差异,造成湍流介质内的空气折射率的随机涨落。这会导致光波到达像面的振幅和相位的随机起伏,从而导致光束扩散、波面畸变、像点漂移等现象[2][3],使得目标在成像设备上会产生严重的模糊和降质。大气对成像系统的影响主要包括:1)空间对地高分辨率遥感观测中,卫星或航天飞机对地面目标进行跟踪和监视。2)在地基成像观测系统中,自适应光学望远镜对卫星、行星以及其他宇宙天体进行识别与探测。3)在高速飞行器成像制导系统中,使用激光器对目标实施打击的过程(如图1.1 所示)。由于大气湍流的干扰,飞行器上发射的激光束产生随机扩散与畸变,严重减弱了激光器的打击精度,因此有效的减弱大气湍流的影响,避免激光器的能量扩散和路径偏移是十分必要的。 (a)美国战略导弹防御系统机(b)激光器打击导弹 (c)理想情况下激光束的能量分布(d)受大气湍流干扰的激光束能量分布 图1.1 美国战略导弹防御机系统 在地基空间目标观测过程中,大气湍流扰动的存在,使得光学望远镜的分辨率不再由其理论衍射极限来决定,而取决于其大气相干长度。当光学系统对受到大气湍流干扰的光波进行成像时,其分辨率不会超过口径为0r 的光学系统衍射极限分辨率,其中0r 就是大气相干长度的大小[4]。0r 值越大,表示大气整体湍流强度越小。如果口径数米乃至数十米的光学望远镜在没有自适应补偿系统的条件下,通过空间大气层对近地卫星、行星或其他星体进行观测成像时,由于受到大气湍流的影响,其成像分辨率不会超过口径为分米级小型望远镜[5],且获取的图像会出现模糊与抖动,这严重降低了观测图像的研究价值。针对大气湍流的扰动问题,目前研究人员提出了两种解决方案:1)发射太空望远镜(如美国哈勃望远镜、康普顿望远镜)。但是太空望远镜不仅造价和发射耗资巨大,而且出现故障不易检测和维护。望远镜如果没有补偿措施,在太空中会受到太空低温、失重环境导致镜面畸变,同样会观测图像出现模糊和降质。2)采用自适应光学补偿系统和波后复原技术。首先通过自适应光学系统对光波波前畸变进行实时补偿和校正,其后基于数字图像处理技术对目标受抑制的中高频信息进行恢复和重建,最终获得目标的高清晰图像。 在遥感对地观测领域,由于大气湍流干扰、卫星平台的不稳定振动、传感器与被拍摄目标之间的相对运动、光学成像系统的离焦和散焦等因素,再加上传感器在数据传输、扫描成像时引入的噪声,都会导致遥感图像的降质和退化。然而研究人员希望获取纹理和边缘清晰、易

1研究的背景和意义

目录 1 研究的背景和意义. (3) 2 表面活性剂减阻机理及影响因素 (7) 2.1 湍流减阻基本概念 (7) 2.1.1 从微观结构角度对表面活性剂湍流减阻机理的解释 (8) 2.1.2 从湍流物理角度对湍流减阻机理的解释 (9) 2.2 影响表面活性剂减阻的因素 (13) 2.2.1 烷基 (13) 2.2.2 烷基链头基 (13) 2.2.3 烷基链长度 (13) 2.2.4 表面活性剂的浓度 (14) 2.2.5 补偿离子 (14) 2.2.5.1 补偿离子的浓度 (14) 2.2.5.2 补偿离子的疏水性与亲水性 (14) 2.2.5.3 补偿离子的电荷性质以及电荷数 (14) 2.3 其他因素的影响 (15) 2.3.1 管路系统的直径 (15) 2.3.2 流体介质的速度和温度 (15) 2.3.3 环境中的金属离子 (16) 2.3.4 雷诺数的影响 (16) 2.4 表面活性剂减阻方程式的介绍 (16) 2.4.1 粘弹性流体的剪力及湍流运动方程 (17) 3 表面活性剂的国外研究及运用状况 (18) 3.1 国外的研究状况 (18) 3.2 国的研究状况 (19)

4 主要研究的方法和容 (20) 4.1 研究的容 (20) 4.2 研究方法 (21) 4.2.1 流变模型及数值模拟研究 (21) 4.2.2 尺度放大的研究方法 (23) 5 前景与展望 (25)

1 研究的背景和意义 如今随着世界能耗的不断增加,能源问题一直是比较棘手的问题,特别像我 国人口众多的国家,人均资源占有量远低于世界的平均水平,且对于能源的需求更加巨大,所以节约能源对于中国来说乃至于对于全世界来说是相当重要的大事。能源的消耗重要发生在能源交通运输过程中,且表面摩擦占很大的比例。而在长距离的管道运输过程中,泵站的动力几乎全部用于克服表面摩擦力。而由于表面摩擦阻力的存在,会将油气由层流状态转变为湍流状态,所以湍流减阻对长距离的管道输油具有重要的意义,已引起了广泛的重视。 在长距离管道流体输运中,绝大部分的流体输送能耗来源于管道壁面的摩擦阻力。对于能源紧缺的今天,尤其是像我国这样处于发展中且人均资源占有量较低的国家来说,节约能源以及能源的高效利用已经成为了当前研究的重点和亟待解决的问题。减阻添加剂的使用能极减少流体在壁面的摩擦阻力,减阻效果高达80%,具有重要的节能价值。相比于聚合物减阻剂,表面活性剂具有可逆的机械降解性质,在高剪切力场合以及封闭式循环系统如集中供暖系统中有着极大的优势以及更为广泛的应用前景。 由于表面活性剂溶液在不同的剪切力作用下,其部的单体分子会形成不同形状的微观胶束结构,比如球状、棒状、蠕虫状、网状等,而这些不同的微观结构又能够影响表面活性剂溶液的流变性能,使其在不同剪切力下表现不同的流变特性;而流变特性又会影响流体部的湍流结构,从而进一步影响表面活性剂溶液的减阻性能。因此,为了认识表面活性剂溶液的在减阻机理,对其微观结构、流变特性及流体部湍流结构的研究成为了国外众多学者关注的焦点之一。 然而,表面活性剂在高效减阻的同时,其换热性能将会极恶化,这主要是由 其部微观结构对流体湍流强度的抑制作用造成的,从而导致了表面活性剂溶液传热性能恶化的现象。因此,为了进一步扩大表面活性剂在换热领域的应用,其强化传热也成为了研究的焦点。 当表面活性剂溶液发生减阻作用时,其流体部的湍流涡结构会受到由表面活性剂形成的剪切诱导结构的抑制,从而使湍流结构发生改变。这一特点则为通过影响湍流结构实现减阻的其它减阻方法提供了可能的条件,为表面活性剂与其它适当的减阻方式相结合的耦合减阻研究提供了指导。因此,表面活性剂与其它减阻方式耦合进行高效湍流减阻的研究也是当前的研究热点。 综上所述,为了全面认识表面活性剂溶液的减阻机理,提高其在节能方面的应用价值和围,就需要对其微观结构、流变特性、减阻特性、湍流结构特征、强化传热以及与其它减阻方法协同作用耦合特性进行系统的研究。本文对作者近年来在表面活性剂湍流减阻方面的最新研究进展进行综述,并与其它同类研究进行了对比分析。首先总结分析表面活性剂溶液结构、复杂流变特性和湍流结构及 其与减阻和换热性能之间的在联系,然后阐述表面活性剂和壁面微沟槽协同作用减阻性能与机理,并介绍表面活性剂减阻的实际工程应用,最后对表面活性剂减阻在今后的研究重点提出建议。

第二章 光在湍流大气中传输的理论概述

2.1 大气折射率 在光学频率范围内,对流层(高度<17km)中的地球大气的空气折射率表示如下: n=1+77.6(1+7.52×10-3λ-2)(p/T)×10-6 (2.1)式中,p是以mbar为单位的大气气压,T是热力学温度,λ是以μm为单位的光波波长,由于地面上温度对n 1 (r)的贡献<1%,故(2.1)式中忽略了与水汽压相关的项,当然这一项对水上传播光路是不可忽略的。 2. 2 大气湍流描述 自然界中的流体运动存在着二种不同的形式:一种是层流,看上去平顺、清晰,没有掺混现象;另一种是湍流,看上去毫无规则,显得杂乱无章。例如,如果流体以一定的速度流过一个管子,我们可以用带颜色的染料对它进行观察,在流体速度低的时候,流线光滑面清晰,流体处于层流状态;不断增加流体速度,当流速达到一定值时,流线就不再是光滑的了,整个流体开始作不规则的随机运动,流体处于湍流状态。自从1883 年Reynolds 做了著名的湍流实验以来,以Monin-Obukhov 提出的相似理论、Deardorff 提出的大涡模拟、美国Kansas 州观测实验等为代表,大气湍流的研究已经取得了很大的进展和丰硕的成果,并在天气、气候研究和工程实际中获得成功地应用。湍流对大气中声、光和其它电磁波的传播具有极为重要的影响,例如湍流风速、温度和湿度的脉动都会引起声音散射和减弱,大气小尺度光折射率的起伏(称为光学湍流),会严重影响光的传播和光学成像的质量等等。长期以来,以Tatarskii 的工作为代表,声光电传播的湍流效应大都是按照Kolmogorov 的均匀、平稳和各向同性假设处理的,而实际的湍流经常不满足这些假设,要建立更加完善的波动传播模型就必须考虑湍流的各向异性、以及间歇性的影响。 2. 3 折射率湍流模型 在湍流大气中,折射率在不同地点、不同时刻都是变化的。一方面,我们还不可能对这些变化作出预测;另一方面,即使已知这些变化,要对所有时刻、所有地点的值作出描述实际上也是不可能的。因此,有必要用统计方法来描述这种介质。考虑到湍流大气的折射率是随空间、时间和波长而变化的,因此可用空间、时间和波长的随机函数来描述湍流大气折射率 n(r,t,λ ) = n 0(r,t,λ ) + n 1 (r,t,λ ) (2. 3.1) 在(2.3.1)式中,n 0是n的确定性部分,对湍流大气而言,可近似地取n ≈1 ,n 1 (r,t,λ)表示n(r,t,λ )围绕平均值E[n] = n ≈1的随机涨落。 大气湍流可以用Kolmogorov 理论描述。大气中大的漩涡的能量被重新分配, 随着能量损失,大的湍流的尺寸减小, 直到消散。n 1 的结构函数定义为

第四章 光在湍流大气中的传输时光强起伏分析

4.1 光强起伏(光闪烁)的定义及基本描述 光强起伏(光闪烁)是大气湍流导致的最常见且最明显的光传输效应之一,激光在湍流大气中传输时其光强随时间变化而产生随机起伏的现象被称作为光强起伏(光闪烁),其原因是大气折射率起伏在导致传输激光相位变化的同时,也导致了传输激光的振幅起伏,进而产生散射强度起伏现象,更进一步的原因可认为是由同一光源发出的通过略微不同路径的光线之间的随机干涉所造成。 经典理论认为:光闪烁由尺寸比光束直径小的大气湍流引起,它与湍流的内尺度、外尺度、结构常数及传输距离等因素有关,其幅度特性由接受平面上光强的对数强度方差σI2来表征: σI2=I2?I2 I2 (4.1)光束在湍流大气中传输时,对数振幅满足正态分布,振幅对数满足χ定义为:χ≡ln(A/A0),其中,A为在湍流中传播时实际的光波振幅,A0为未经过湍流扰动的振幅。 设一对数正态分布为高斯随机变量(对数正态分布密度函数具有三个相对读了的参数:χ、σx、I0),其中对数振幅χ的均值为χ,标准偏差为σx,则其概率密度分布函数为: pχΧ= 2πσ ?χ?χ2 σχ (4.2) 其振幅A=A0 expχ。引入概率变换: p A A=pχΧ=ln A dχ dA ,dχ dA =1 A (4.3) 则振幅的概率密度函数为: p A A= 2πσA exp ?1 2σχ2 ln A A0 ?χ 2 ,A≥0(4.4) 闪烁起伏概率分布满足对数正态分布的物理意义是:光场u=u0expχ+jsδ中χ是大量独立前向散射元的和,由中心极限定理可知χ服从正态分布。 4.2 光强闪烁的日变化 大气的湍流运动导致信道上折射率的不均匀起伏,引起光强起伏,表征光强 起伏强弱程度的主要特征量是对数光强起伏方差。它的定义: σln I2=ln I I0?ln I I02(4.5) 其中ln I为瞬时光强的对数值:ln I为平均光强的对数值。在较好的天气下,光强起伏值从太阳出来后开始上升,到中午达到最强,视观察距离的不同起伏值也不同,如果距离很长,起伏值趋于一条直线,达到“饱和”。在这期间,视各地

湍流理论发展概述

湍流理论发展概述 一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S 方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1. 平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。

湍流模型介绍

湍流模型介绍 因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。FLUENT 中采用的湍流模拟方法 包括Spalart-Allmaras模型、standard(标准)k ?ε模型、RNG(重整化群)k ?ε模型、Realizable(现实)k ?ε模型、v2 ?f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。 7.2.1 雷诺平均与大涡模拟的对比 因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。 FLUENT 中使用的三种k ?ε模型、Spalart-Allmaras 模型、k ?ω模型及雷诺应力模型RSM)等都属于湍流模式理论。 大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟 序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。在这个思想下,大涡模拟通过滤波处理,首先将小于某个尺度的旋涡从流场中过滤掉,只计算大涡,然后通过求解附加方程得到小涡的解。过滤尺度一般就取为网格尺度。显然这种方法比直接求解NS 方程的DNS 方程效率更高,消耗系统资源更少,但却比湍流模式方法更精确。尤其应该注意的是,湍流模式理论无法准确模拟大涡结构,因此在需要模拟大涡结构时,只能采用LES 方法1。 尽管大涡模拟理论比湍流模式理论更精确,但是因为大涡模拟需要使用高精度的网格,对计算机资源的要求比较高,所以还不能在工程计算中被广泛使用。在绝大多数情况下,湍流计算还要采用湍流模式理论,大涡模拟则可以在计算资源足够丰富的时候尝试使用。 7.2.2 Spalart-Allmaras 模型 Spalart-Allmaras 模型是一方程模型里面最成功的一个模型,最早被用于有壁面限制情 况的流动计算中,特别在存在逆压梯度的流动区域内,对边界层的计算效果较好,因此经常被用于流动分离区附近的计算,后来在涡轮机械的计算中也得到广泛应用。 最早的Spalart-Allmaras 模型是用于低雷诺数流计算的,特别是在需要准确计算边界层 粘性影响的问题中效果较好。FLUENT 对Spalart-Allmaras 进行了改进,主要改进是可以在网格精度不高时使用壁面函数。在湍流对流场影响不大,同时网格较粗糙时,可以选用这个模型。 Spalart-Allmaras 模型是一种新出现的湍流模型,在工程应用问题中还没有出现多少成

相关主题