搜档网
当前位置:搜档网 › 第二章 糖 类

第二章 糖 类

第二章  糖   类
第二章  糖   类

第二章糖类

提要

一、定义

糖、单糖、寡糖、多糖、结合糖、呋喃糖、吡

喃糖、糖苷、手性

二、结构

1.链式:Glc、Man、Gal、Fru、Rib、dRib

2.环式:顺时针编号,D型末端羟甲基向下,α型

半缩醛羟基与末端羟甲基在两侧。

3.构象:椅式稳定,β稳定,因其较大基团均为平

键。

三、反应

1.与酸:莫里斯试剂、西里万诺夫试剂。

2.与碱:弱碱互变,强碱分解。

3.氧化:三种产物。

4.还原:葡萄糖生成山梨醇。

5.酯化

6.成苷:有α和β两种糖苷键。

7.成沙:可根据其形状与熔点鉴定糖。

四、衍生物

氨基糖、糖醛酸、糖苷

五、寡糖

蔗糖、乳糖、麦芽糖和纤维二糖的结构

六、多糖

淀粉、糖原、纤维素的结构

粘多糖、糖蛋白、蛋白多糖一般了解

七、计算

比旋计算,注意单位。

第一节概述

一、糖的命名

糖类是含多羟基的醛或酮类化合物,由碳氢氧三种元素组成的,其分子式通常以Cn(H2O)n 表示。

由于一些糖分子中氢和氧原子数之比往往是2:1,与水相同,过去误认为此类物质是碳与水的化合物,所以称为"碳水化合物"(Carbohydrate)。

实际上这一名称并不确切,如脱氧核糖、鼠李糖等糖类不符合通式,而甲醛、乙酸等虽符合这个通式但并不是糖。只是"碳水化合物"沿用已久,一些较老的书仍采用。我国将此类化合物统称为糖,而在英语中只将具有甜味的单糖和简单的寡糖称为糖(sugar)。

二、糖的分类

根据分子的聚合度分,糖可分为单糖、寡糖、多糖。也可分为:结合糖和衍生糖。

单糖是不能水解为更小分子的糖。葡萄糖,果糖都是常见单糖。根据羰基在分子中的位置,单糖可分为醛糖和酮糖。根据碳原子数目,可分为丙糖,丁糖,戊糖,己糖和庚糖。

寡糖由2-20个单糖分子构成,其中以双糖最普遍。寡糖和单糖都可溶于水,多数有甜味。

多糖由多个单糖(水解是产生20个以上单糖分子)聚合而成,

又可分为同聚多糖和杂聚多糖。同聚多糖由同一种单糖构成,杂聚多糖由两种以上单糖构成。

糖链与蛋白质或脂类物质构成的复合分子称为结合糖。其中的糖链一般是杂聚寡糖或杂聚多糖。如糖蛋白,糖脂,蛋白聚糖等。

由单糖衍生而来,如糖胺、糖醛酸等。

1.分布糖在生物界中分布很广,几乎所有的动物,植物,微生物体内都含有糖。糖占植物干重的80%,微生物干重的10-30%,动物干重的2%。糖在植物体内起着重要的结构作用,而动物则用蛋白质和脂类代替,所以行动更灵活,适应性强。动物中只有昆虫等少数采用多糖构成外骨胳,其形体大小受到很大限制。

在人体中,糖主要的存在形式:(1)以糖原形式贮藏在肝和肌肉中。糖原代谢速度很快,对维持血糖浓度衡定,满足机体对糖的需求有重要意义。(2)以葡萄糖形式存在于体液中。细胞外液中的葡萄糖是糖的运输形式,它作为细胞的内环境条件之一,浓度相当衡定。(3)存在于多种含糖生物分子中。糖作为组成成分直接参与多种生物分子的构成。如:DNA分子中含脱氧核糖,RNA和各种活性核苷酸(ATP、许多辅酶)含有核糖,糖蛋白和糖脂中有各种复杂的糖结构。

2.功能糖在生物体内的主要功能是构成细胞的结构和作为储藏物质。植物细胞壁是由纤维素,半纤维素或胞壁质组成的,它们都是糖类物质。作为储藏物质的主要有植物中的淀粉和动物中的糖原。此外,糖脂和糖蛋白在生物膜中占有重要位置,担负着细胞和生物分子相互识别的作用。

糖在人体中的主要作用:(1)作为能源物质。一般情况下,人体所需能量的70%来自糖的氧化。(2)作为结构成分。糖蛋白和糖脂是细胞膜的重要成分,蛋白聚糖是结缔组织如软骨,骨的结构成分。(3)参与构成生物活性物质。核酸中含有糖,有运输作用

的血浆蛋白,有免疫作用的抗体,有识别,转运作用的膜蛋白等绝大多数都是糖蛋白,许多酶和激素也是糖蛋白。(4)作为合成其它生物分子的碳源。糖可用来合成脂类物质和氨基酸等物质。

第二节单糖

一、单糖的结构

(一)单糖的链式结构

单糖的种类虽多,但其结构和性质都有很多相似之处,因此我们以葡萄糖为例来阐述单糖的结构。

葡萄糖的分子式为C6H12O6,具有一个醛基和5个羟基,我们用费歇尔投影式表示它的链式结构:

以上结构可以简化:

(二)葡萄糖的构型

葡萄糖分子中含有4个手性碳原子,根据规定,单糖的D、L构型由碳链最下端手性碳的构型决定。人体中的糖绝大多数是D-糖。

(三)葡萄糖的环式结构

葡萄糖在水溶液中,只要极小部分(<1%)以链式结构存在,大部分以稳定的环式结构存在。环式结构的发现是因为葡萄糖的某些性质不能用链式结构来解释。如:葡萄糖不能发生醛的NaHSO3加成反应;葡萄糖不能和醛一样与两分子醇形成缩醛,只能与一分子醇反应;葡萄糖溶液有变旋现象,当新制的葡萄糖溶解于水时,最初的比旋是+112度,放置后变为+52.7度,并不再改变。溶液蒸干后,仍得到+112度的葡萄糖。把葡萄糖浓溶液在110度结晶,得到比旋为+19度的另一种葡萄糖。这两种葡萄糖溶液放置一定时间后,比旋都变为+52.7度。我们把+112度的叫做α-D(+)-葡萄糖,+19度的叫做β-D(+)-葡萄糖。

这些现象都是由葡萄糖的环式结构引起的。葡萄糖分子中的醛基可以和C5上的羟基缩合形成六元环的半缩醛。这样原来羰基的C1就变成不对称碳原子,并形成一对非对映旋光异构体。一般规定半缩醛碳原子上的羟基(称为半缩醛羟基)与决定单糖构型的碳原子(C5)上的羟基在同一侧的称为α-葡萄糖,不在同一侧的称为β-葡萄糖。半缩醛羟基比其它羟基活泼,糖的还原性一般指半缩醛羟基。葡萄糖的醛基除了可以与C5上的羟基缩合形成六元环外,还可与C4上的羟基缩合形成五元环。五元环化合物不甚稳定,天然糖多以六元环的形式存在。五元环化合物可以看成是呋喃的衍生物,叫呋喃糖;六元环化合物可以看成是吡喃的衍生物,叫吡喃糖。因此,葡萄糖的全名应为α-D(+)-或β-D(+)-吡喃葡萄糖。

α-和β-糖互为端基异构体,也叫异头物。D-葡萄糖在水介质中达到平衡时,β-异构体占63.6%,α-异构体占36.4%,以链式结构存在者极少。

为了更好地表示糖的环式结构,哈瓦斯(Haworth,1926)设计了单糖的透视结构式。规定:碳原子按顺时针方向编号,氧位于环的后方;环平面与纸面垂直,粗线部分在前,细线在后;将费歇尔式中左右取向的原子或集团改为上下取向,原来在左边的写在上方,右边的在下方;D-型糖的末端羟甲基在环上方,L-型糖在下方;半缩醛羟基与末端羟甲基同侧的为β-异构体,异侧的为α-异构体.

(四)葡萄糖的构象

葡萄糖六元环上的碳原子不在一个平面上,因此有船式和椅式两种构象。椅式构象比船式稳定,椅式构象中β-羟基为平键,比α-构象稳定,所以吡喃葡萄糖主要以β-型椅式构象C1存在。

二、单糖的分类

单糖根据碳原子数分为丙糖至庚糖,根据结构分为醛糖和酮糖。最简单的糖是丙糖,甘油醛是丙醛糖,二羟丙酮是丙酮糖。二羟丙酮是唯一一个没有手性碳原子的糖。醛糖和酮糖还可分为D-型和L-型两类。

三、单糖的理化性质

(一)物理性质

1.旋光性除二羟丙酮外,所有的糖都有旋光性。旋光性是鉴定糖的重要指标。一般用比旋光度(或称旋光率)来衡量物质的旋光性。公式为

[α]tD=αtD*100/(L*C)

式中[α]tD是比旋光度,αtD是在钠光灯(D线,λ:589.6nm与589.0nm)为光源,温度为t,旋光管长度为L(dm),浓度为C(g/100ml)时所测得的旋光度。在比旋光度数值前面加“+”号表示右旋,加“-”表示左旋。

2.甜度各种糖的甜度不同,常以蔗糖的甜度为标准进行比较,将它的甜度定为100。果糖为17

3.3,葡萄糖7

4.3,乳糖为16。

3.溶解度单糖分子中有多个羟基,增加了它的水溶性,尤其在热水中溶解度极大。但不溶于乙醚、丙酮等有机溶剂。

(二)化学性质

单糖是多羟基醛或酮,因此具有醇羟基和羰基的性质,如具有醇羟基的成酯、成醚、成缩醛等反应和

羰基的一些加成反应,又具有由于他们互相影响而产生的一些特殊反应。

单糖的主要化学性质如下:

1.与酸反应戊糖与强酸共热,可脱水生成糠醛(呋喃醛)。己糖与强酸共热分解成甲酸、二氧化碳、乙酰丙酸以及少量羟甲基糠醛。糠醛和羟甲基糠醛能与某些酚类作用生成有色的缩合物。利用这一性质可以鉴定糖。如α-萘酚与糠醛或羟甲基糠醛生成紫色。这一反应用来鉴定糖的存在,叫莫利西试验。间苯二酚与盐酸遇酮糖呈红色,遇醛糖呈很浅的颜色,这一反应可以鉴别醛糖与酮糖,称西利万诺夫试验。

2.酯化作用单糖可以看作多元醇,可与酸作用生成酯。生物化学上较重要的糖酯是磷酸酯,他们是糖代谢的中间产物。

3.碱的作用醇羟基可解离,是弱酸。单糖的解离常数在1013左右。在弱碱作用下,葡萄糖、果糖和甘露糖三者可通过烯醇式而相互转化,称为烯醇化作用。在体内酶的作用下也能进行类似的转化。单糖在强碱溶液中很不稳定,分解成各种不同的物质。

4.形成糖苷(glycoside) 单糖的半缩醛羟基很容易与醇或酚的羟基反应,失水而形成缩醛式衍生物,称糖苷。非糖部分叫配糖体,如配糖体也是单糖,就形成二糖,也叫双糖。糖苷有α、β两种形式。核糖和脱氧核糖与嘌呤或嘧啶碱形成的糖苷称核苷或脱氧核苷,在生物学上具有重要意义。α-与β-甲基葡萄糖苷是最简单的糖苷。天然存在的糖苷多为β-型。苷与糖的化学性质完全不同。苷是缩醛,糖是半缩醛。半缩醛很容易变成醛式,因此糖可显示醛的多种反应。苷需水解后才能分解为糖和配糖体。所以苷比较稳定,不与苯肼发生反应,不易被氧化,也无变旋现象。糖苷对碱稳定,遇酸易水解。

5.糖的氧化作用单糖含有游离羟基,因此具有还原能力。某些弱氧化剂(如铜的氧化物的碱性溶液)与单糖作用时,单糖的羰基被氧化,而氧化铜被还原成氧化亚铜。测定氧化亚铜的生成量,即可测定溶液中的糖含量。实验室常用的费林(Fehling)试剂就是氧化铜的碱性溶液。Benedict试剂是其改进型,用柠檬酸作络合剂,碱性弱,干扰少,灵敏度高。

除羰基外,单糖分子中的羟基也能被氧化。在不同的条件下,可产生不同的氧化产物。醛糖可用三种方式氧化成相同原子数的酸:(1)在弱氧化剂,如溴水作用下形成相应的糖酸;(2)在较强的氧化剂,如硝酸作用下,除醛基被氧化外,伯醇基也被氧化成羧基,生成葡萄糖二酸;(3)有时只有伯醇基被氧化成羧基,形成糖醛酸。酮糖对溴的氧化作用无影响,因此可将酮糖与醛糖分开。在强氧化剂作用下,酮糖将在羰基处断裂,形成两个酸。

6.还原作用单糖有游离羰基,所以易被还原。在钠汞齐及硼氢化钠类还原剂作用下,醛糖还原成糖醇,酮糖还原成两个同分异构的羟基醇。如葡萄糖还原后生成山梨醇。

7.糖单糖具有自由羰基,能与3分子苯肼作用生成糖沙。反应步骤:首先一分子葡萄糖与一分子苯肼缩合生成苯腙,然后葡萄糖苯腙再被一分子苯肼氧化成葡萄糖酮苯腙,最后再与另一个苯肼分子缩合,生成葡萄糖沙。糖沙是黄色结晶,难溶于水。各种糖生成的糖沙形状与熔点都不同,因此常用糖沙的生成来鉴定各种不同的糖。

8.

(1)鉴别糖与非糖:Molisch试剂,α-萘酚,生成紫红色。丙酮、甲酸、乳酸等干扰该反应。该反应很灵敏,滤纸屑也会造成假阳性。

蒽酮(10-酮-9,10-二氢蒽)反应生成蓝绿色,在620nm有吸收,常用于测总糖,色氨酸使反应不稳定。

(2)鉴别酮糖与醛糖:用Seliwanoff 试剂(间苯二酚),酮糖在20-30秒内生成鲜红色,醛糖反应慢,颜色浅,增加浓度或长时间煮沸才有较弱的红色。但蔗糖容易水解,产生颜色。

(3)鉴定戊糖:Bial 反应,用甲基间苯二酚(地衣酚)与铁生成深蓝色沉淀(或鲜绿色,670nm),可溶于正丁醇。己糖生成灰绿或棕色沉淀,不溶。(4)单糖鉴定:Barford 反应,微酸条件下与铜反应,单糖还原快,在3分钟内显色,而寡糖要在20分钟以上。样品水解、浓度过大都会造成干扰,NaCl也有干扰。

四、重要单糖

(一)丙糖

重要的丙糖有D-甘油醛和二羟丙酮,它们的磷酸酯是糖代谢的重要中间产物。

(二)丁糖

自然界常见的丁糖有D-赤藓糖和D-赤藓酮糖。它们的磷酸酯也是糖代谢的中间产物。

(三)戊糖

自然界存在的戊醛糖主要有D-核糖、D-2-脱氧核糖、D-木糖和L-阿拉伯糖。它们大多以多聚戊糖或以糖苷的形式存在。戊酮糖有D-核酮糖和D-木酮糖,均是糖代谢的中间产物。

1.D-核糖(ribose) D-核糖是所有活细胞的普遍成分之一,它是核糖核酸的重要组成成分。在核苷酸中,核糖以其醛基与嘌呤或嘧啶的氮原子结合,而其2、3、5位的羟基可与磷酸连接。核糖在衍生物中总以呋喃糖形式出现。它的衍生物核醇是某些维生素(B2)和辅酶的组成成分。D-核糖的比旋是-23.7°。

细胞核中还有D-2-脱氧核糖,它是DNA的组分之一。它和核糖一样,以醛基与含氮碱基结合,但因2位脱氧,只能以3,5位的羟基与磷酸结合。D-2-脱氧核糖的比旋是-60°。

2.L-阿拉伯糖阿拉伯糖在高等植物体内以结合状态存在。它一般结合成半纤维素、树胶及阿拉伯树胶等。最初是在植物产品中发现的。熔点160℃,比旋+104.5°。酵母不能使其发酵。

3.木糖木糖在植物中分布很广,以结合状态的木聚糖存在于半纤维素中。木材中的木聚糖达30%以上。陆生植物很少有纯的木聚糖,常含有少量其他的糖。动物组织中也发现了木糖的成分。熔点143℃,比旋+18.8°。酵母不能使其发酵。

(四)己糖

重要的己醛糖有D-葡萄糖、D-甘露糖、D-半乳糖,重要的己酮糖有D-果糖、D-山梨糖。

1.葡萄糖(glucose,Glc) 葡萄糖是生物界分布最广泛最丰富的单糖,多以D-型存在。它是人体内最主要的单糖,是糖代谢的中心物质。在绿色植物的种子、果实及蜂蜜中有游离的葡萄糖,蔗糖由D-葡萄糖与D-果糖结合而成,糖原、淀粉和纤维素等多糖也是由葡萄糖聚合而成的。在许多杂聚糖中也含有葡萄糖。

D-葡萄糖的比旋光度为+52.5度,呈片状结晶。酵母可使其发酵。

2.果糖(fructose,Fru) 植物的蜜腺、水果及蜂蜜中存在大量果糖。它是单糖中最甜的糖类,比旋光度为-92.4度,呈针状结晶。42%果葡糖浆的甜度与蔗糖相同(40℃),在5℃时甜度为143,适于制作冷饮。食用果糖后血糖不易升高,且有滋润肌肤作用。游离的果糖为β-吡喃果糖,结合状态呈β-呋喃果糖。酵母可使其发酵。

3.甘露糖(Man) 是植物粘质与半纤维素的组成成分。比旋+1

4.2度。酵母可使其发酵。

4.半乳糖(Gal) 半乳糖仅以结合状态存在。乳糖、蜜二糖、棉籽糖、琼脂、树胶、粘质和半纤维素等都含有半乳糖。它的D-型和L-型都存在于植物产品中,如琼脂中同时含有D-型和L-型半乳糖。D-半乳糖熔点167℃,比旋+80.2度。可被乳糖酵母发酵。

5.山梨糖酮糖,存在于细菌发酵过的山梨汁中。是合成维生素C的中间产物,在制造维生素C工艺中占有重要地位。又称清凉茶糖。其还原产物是山梨糖醇,存在于桃李等果实中。熔点159-160℃,比旋-43.4度。

(五)庚糖

庚糖在自然界中分布较少,主要存在于高等植物中。最重要的有D-景天庚酮糖和D-甘露庚酮糖。前者存在于景天科及其他肉质植物的叶子中,以游离状态存在。它是光合作用的中间产物,呈磷酸酯态,在碳循环中占重要地位。后者存在于樟梨果实中,也以游离状态存在。

(六)单糖的重要衍生物

1.糖醇糖的羰基被还原(加氢)生成相应的糖醇,如葡萄糖加氢生成山梨醇。糖醇溶于水及乙醇,较稳定,有甜味,不能还原费林试剂。常见的有甘露醇和山梨醇。甘露醇广泛分布于各种植物组织中,熔点106℃,比旋-0.21度。海带中占干重的5.2-20.5%,是制取甘露醇的原料。山梨醇在植物中分布也很广,熔点97.5℃,比旋-1.98度。山梨醇积存在眼球晶状体内引起白内障。山梨醇氧化时可形成葡萄糖、果糖或山梨糖。

糖的羟基被还原(脱氧)生成脱氧糖。除脱氧核糖外还有两种脱氧糖:L-鼠李糖和6-脱氧-L-甘露糖(岩藻糖),他们是细胞壁的成分。

2.糖醛酸单糖具有还原性,可被氧化。糖的醛基被氧化成羧基时生成糖酸;糖的末端羟甲基被氧化成羧基时生成糖醛酸。重要的有D-葡萄糖醛酸、半乳糖醛酸等。葡萄糖醛酸是肝脏内的一种解毒剂,半乳糖醛酸存在于果胶中。

3.氨基糖单糖的羟基(一般为C2)可以被氨基取代,形成糖胺或称氨基糖。自然界中存在的氨基糖都是氨基己糖。D-葡萄糖胺是甲壳质(几丁质)的主要成分。甲壳质是组成昆虫及甲壳类结构的多糖。D-半乳糖胺是软骨类动物的主要多糖成分。糖胺是碱性糖。糖胺氨基上的氢原子被乙酰基取代时,生成乙酰氨基糖。

4.糖苷 主要存在于植物的种子、叶子及皮内。在天然糖苷中的糖苷基有醇类、醛类、酚类、固醇和嘌呤等。它大多极毒,但微量糖苷可作药物。重要糖苷有:能引起溶血的皂角苷,有强心剂作用的毛地黄苷,以及能引起葡萄糖随尿排出的根皮苷。苦杏仁苷也是一种毒性物质。配糖体一般对植物有毒,形成糖苷后则无毒。这是植物的解毒方法,也可保护植物不受外来伤害。

5.糖酯 单糖羟基还可与酸作用生成酯。糖的磷酸酯是糖在代谢中的活化形式。糖的硫酸酯存在于糖胺聚糖中。top

第三节 寡 糖

寡糖是由少数(2-20个)单糖分子结合而成的糖。与稀酸共煮寡糖可水解成各种单糖。寡糖中以双糖分布最普遍,意义也较大。

一、双糖

双糖是由两个单糖分子缩合而成。双糖可以认为是一种糖苷,其中的配基是另外一个单糖分子。在自然界中,仅有三种双糖(蔗糖、乳糖和麦芽糖)以游离状态存在,其他多以结合状态存在(如纤维二糖)。蔗糖是最重要的双糖,麦芽糖和纤维二糖是淀粉和纤维素的基本结构单位。三者均易水解为单糖。

(一)麦芽糖

麦芽糖(maltose)大量存在于发酵的谷粒,特别是麦芽中。它是淀粉的组成成分。淀粉和糖原在淀粉酶作用下水解可产生麦芽糖。麦芽糖是D-吡喃葡萄糖-α(1

4)-D-吡喃葡萄糖苷,因为有一个醛基

是自由的,所有它是还原糖,能还原费林试剂。支链淀粉水解产物中除麦芽糖外还含有少量异麦芽糖,它是α-D-吡喃葡萄糖-(16)-D-吡喃葡萄糖

苷。

麦芽糖在水溶液中有变旋现象,比旋为+136度,且能

[α]D20=+130.4°。麦芽糖在缺少胰岛素的情况下也可被肝脏吸收,不引起血糖升高,可供糖尿病人食用。 (二)乳糖

乳糖(lactose)存在于哺乳动物的乳汁中(牛奶中含4-6%),高等植物花粉管及微生物中也含有少量乳糖。它是β-D-半乳糖-(1

4)-D-葡萄糖苷。

乳糖不易溶解,味不甚甜(甜度只有16),有还原性,且能成铩,纯酵母不能使它发酵,能被酸水解,右旋[α]D20=+55.4°。

乳糖的水解需要乳糖酶,婴儿一般都可消化乳糖,成人则不然。某些成人缺乏乳糖酶,不能利用乳糖,食用乳糖后会在小肠积累,产生渗透作用,使体液外流,引起恶心、腹痛、腹泻。这是一种常染色体隐性遗传疾病,从青春期开始表现。其发病率与地域有关,在丹麦约3%,泰国则高达92%。可能是从一万年前人类开始养牛时成人体内出现了乳糖酶。 (三)蔗糖

蔗糖(sucrose)是主要的光合作用产物,也是植物体内糖储藏、积累和运输的主要形式。在甜菜、甘蔗和各种水果中含有较多的蔗糖。日常食用的糖主要是蔗糖。

蔗糖很甜,易结晶,易溶于水,但较难溶于乙醇。若加热到160℃,便成为玻璃样的晶体,加热至200℃时成为棕褐色的焦糖。它是α-D-吡喃葡萄糖-(1→2)-β-D-呋喃果糖苷。它是由葡萄糖的半缩醛羟基和果糖的半缩酮羟基之间缩水而成的,因为两个还原性基团都包含在糖苷键中,所有没有还原性,是非还原性杂聚二糖。右旋,[α]D20=+66.5°。 蔗糖极易被酸水解,其速度比麦芽糖和乳糖大1000倍。水解后产生等量的D-葡萄糖和D-果糖,这个混合物称为转化糖,甜度为160。蜜蜂体内有转化酶,因此蜂蜜中含有大量转化糖。因为果糖的比旋比葡萄糖的绝对值大,所以转化糖溶液是左旋的。在植物中有一种转化酶催化这个反应。口腔细菌利用蔗糖合成的右旋葡聚糖苷是牙垢的主要成分。 (四)纤维二糖

是纤维素的基本构成单位。可由纤维素水解得到。由两个β-D-葡萄糖通过C1-C4相连,它与麦芽糖的区别是后者为α-葡萄糖苷。 (五)海藻糖

α-D-吡喃葡萄糖-(1→1)- α-D-吡喃葡萄糖苷。在抗干燥酵母中含量较多,可用做保湿。

二、三糖

自然界中广泛存在的三糖只有棉籽糖,主要存在于棉籽、甜菜、大豆及桉树的干性分泌物(甘露蜜)中。它是α-D-吡喃半乳糖-(16)-α-D-吡喃葡

萄糖-(1

2)-β-D-呋喃果糖苷。

棉籽糖的水溶液比旋为+105.2°,不能还原费林试剂。在蔗糖酶作用下分解成果糖和蜜二糖;在α-半乳糖苷酶作用下分解成半乳糖和蔗糖。 此外,还有龙胆三糖、松三糖、洋槐三糖等。top

第四节 多 糖

多糖由多个单糖缩合而成。它是自然界中分子结构复杂且庞大的糖类物质。多糖按功能可分为两大类:一类是结构多糖,如构成植物细胞壁的纤维素、半纤维素,构成细菌细胞壁的肽聚糖等;另一类是贮藏多糖,如植物中的淀粉、动物体内的糖原等。还有一些多糖具有更复杂的生理功能,如粘多糖、血型物质等,它们在生物体内起着重要的作用。

多糖可由一种单糖缩合而成,称均一多糖,如戊糖胶(木糖胶、阿拉伯糖胶)、己糖胶(淀粉、糖原、纤维素等),也可由不同类型的单糖缩合而成,称不均一多糖,如半乳糖甘露糖胶、阿拉伯胶和果胶等。

多糖在水中不形成真溶液,只能形成胶体。多糖没有甜味,也无还原性。多糖有旋光性,但无变旋现象。

一、淀粉

淀粉(starch)是植物中最重要的贮藏多糖,在植物中以淀粉粒状态存在,形状为球状或卵形。淀粉是由麦芽糖单位构成的链状结构,可溶于热水的是直链淀粉,不溶的是支链淀粉。支链淀粉易形成浆糊,溶于热的有机溶剂。玉米淀粉和马铃薯淀粉分别含27%和20%的直链淀粉,其余为支链淀粉。有些淀粉(如糯米)全部为支链淀粉,而有的豆类淀粉则全是直链淀粉。

淀粉与酸缓和地作用时(如7.5%HCl,室温下放置7日)即形成所谓“可溶性淀粉”,在实验室内常用。淀粉在工业上可用于酿酒和制糖。

(一)直链淀粉

直链淀粉(amylose)分子量从几万到十几万,平均约在60,000左右,相当于300-400个葡萄糖分子缩合而成。由端基分析知道,每分子中只含一个还原性端基和一个非还原性端基,所有它是一条不分支的长链。它的分子通常卷曲成螺旋形,每一转有六个葡萄糖分子。直链淀粉是由1,4糖苷键连接的α-葡萄糖残基组成的。以碘液处理产生蓝色,光吸收在620-680nm。

(二)支链淀粉

支链淀粉(amylopectin)的分子量在20万以上,含有1300个葡萄糖或更多。与碘反应呈紫色,光吸收在530-555nm。端基分析指出,每24-30个葡萄糖单位含有一个端基,所有它具有支链结构,每个直链是α-1,4连接的链,而每个分支是α-1,6连接的链。由不完全水解产物中分离出了以α-1,6糖苷键连接的异麦芽糖,证明了分支的结构。据研究,支链淀粉至少含有300个α-1,6糖苷键。

二、糖原

糖原(glycogen)是动物中的主要多糖,是葡萄糖的极容易利用的储藏形式。糖原分子量约为500万,端基含量占9%,而支链淀粉为4%,所以8糖原的分支程度比支链淀粉高一倍多。糖原的结构与支链淀粉相似,但分支密度更大,平均链长只有12-18个葡萄糖单位。每个糖原分子有一个还原末端和很多非还原末端。与碘反应呈紫色,光吸收在430-490nm。

糖原的分支多,分子表面暴露出许多非还原末端,每个非还原末端既能与葡萄糖结合,也能分解产生葡萄糖,从而迅速调整血糖浓度,调节葡萄糖的供求平衡。所以糖原是储藏葡萄糖的理想形式。糖原主要储藏在肝脏和骨骼肌,在肝脏中浓度较高,但在骨骼肌中总量较多。糖原在细胞的胞液中以颗粒状存在,直径约为100-400埃。现在发现除动物外,在细菌、酵母、真菌及甜玉米中也有糖原存在。

三、纤维素

纤维素(cellulose)是自然界中含量最丰富的有机物,它占植物界碳含量的50%以上。棉花和亚麻是较纯的纤维素,在90%以上。木材中的纤维素常和半纤维素及木质素结合存在。用煮沸的1%NaOH处理木材,然后加氯及亚硫酸钠,即可去掉木质素,留下纤维素。

纤维素由葡萄糖分子以β-1,4-糖苷键连接而成,无分支。纤维素分子量在5万到40万之间,每分子约含300-2500个葡萄糖残基。纤维素是直链,100-200条链彼此平行,以氢键结合,所以不溶于水,但溶于铜盐的氨水溶液,可用于制造人造纤维。纤维素分子排列成束状,和绳索相似,纤维就是由许多这种绳索集合组成的。

纤维素经弱酸水解可得到纤维二糖。在浓硫酸(低温)或稀硫酸(高温、高压)下水解木材废料,可以产生约20%的葡萄糖。纤维素的三硝酸酯称为火棉,遇火迅速燃烧。一硝酸酯和二硝酸酯可以溶解,称为火棉胶,用于医药、工业。

纯净的纤维素是无色无臭、无味的物质。人和动物体内没有纤维素酶,不能分解纤维素。反刍动物和一些昆虫体内的微生物可以分解纤维素,为这些动物提供营养。

四、其他

(一)果胶一般存在于初生细胞壁中,也存在于水果中。它是果胶酸的甲酯。果酱就是利于水果的

果胶制成的。

(二)菊糖也叫菊粉,主要存在于菊科植物的根部,是多缩果糖。

(三)琼脂某些海藻(如石花菜属)所含的多糖物质,主要成分是多缩半乳糖,含有硫和钙。琼脂不易被微生物分解,可作微生物培养基成分,也可作为电泳支持物。食品工业中常用来制造果冻、果酱等。1-2%的琼脂在室温下就能形成凝胶。

agar包括agarose和araropectin,琼脂糖由D-吡喃半乳糖以α-1,3键相连,每9个残基与一个L-吡喃半乳糖以1,4键连接,每53个残基有一个硫酸基。

(四)几丁质 N-乙酰葡萄糖胺以β-1,4糖苷键相连,是甲壳动物的结构多糖,也叫甲壳素。是水中含量最大的有机物。

五、不均一多糖

粘多糖,也叫糖胺聚糖,它与蛋白质结合构成蛋白聚糖,又称粘蛋白。它存在于软骨、腱等结缔组织中,构成组织间质。各种腺体分泌出的起润滑作用的粘液多富含粘多糖。它在组织生长和再生过程中,在受精过程中以及机体与许多传染源(细菌、病毒)的相互作用上都起着重要作用。

糖胺聚糖是由特定二糖单位多次重复构成的杂聚多糖,因其二糖单位中都含有己糖胺而得名。不同糖胺聚糖的二糖单位不同,但一般都由一分子己糖胺和一分子己糖醛酸或中性糖构成。单糖之间以1-3键或1-4键相连。

糖胺聚糖按其分布和组成分为以下五类:硫酸软骨素,硫酸皮肤素,硫酸角质素,肝素和透明质酸。其中除角质素外,都含有糖醛酸;除透明质酸外,都含有硫酸基。

糖胺聚糖是高分子量的胶性物质,分子量可达500万,存在于动物细胞的细胞衣中,起润滑和粘合的作用。

透明质酸存在于眼睛的玻璃液及脐带中,可溶于水,成粘稠溶液。其主要功能是在组织中吸着水分,具有保护及粘合细胞使其不分散的作用。在具有强烈侵染性的细菌中,在迅速生长的恶性肿瘤中,在蜂毒与蛇毒中都含有透明质酸酶,它能引起透明质酸的分解。

硫酸软骨素是软骨、腱及骨骼的主要成分。有A,B 和C三种。

肝素在动物体内分布很广,因在肝脏中含量丰富而得名。具有阻止血液凝固的特性。目前广泛应用肝素为输血时的血液抗凝剂,临床上也常用它防止血栓形成。分子量为17,000。top

第五节结合糖

结合糖是指糖与非糖物质的结合物,常见的是与蛋白质的结合物。它们的分布很广泛,生物功能多种多样,且都含有一类含氮的多糖,即粘多糖。根据含糖多少可分为以糖为主的蛋白多糖和以蛋白为主的糖蛋白。

二、糖蛋白

糖蛋白是以蛋白质为主体的糖-蛋白质复合物,在肽链的特定残基上共价结合着一个、几个或十几个寡糖链。寡糖链一般由2-15个单糖构成。寡糖链与肽链的连接方式有两种,一种是它的还原末端以O-糖苷键与肽链的丝氨酸或苏氨酸残基的侧链羟基结合,另一种是以N-糖苷键与侧链的天冬酰胺残基的侧链氨基结合。

糖蛋白在体内分布十分广泛,许多酶、激素、运输蛋白、结构蛋白都是糖蛋白。糖成分的存在对糖蛋白的分布、功能、稳定性等都有影响。糖成分通过改变糖蛋白的质量、体积、电荷、溶解性、粘度等发挥着多种效应。

1.血浆糖蛋白血浆经电泳后,除清蛋白外,其他部分α1、α2、β和γ球蛋白以及纤维蛋白原都含有糖。糖分以唾液酸、氨基葡萄糖、半乳糖、甘露糖为主,也有少量氨基半乳糖和岩藻糖。血浆蛋白中具有运输作用的有:运输铜的铜兰蛋白,运输铁的转铁蛋白,运输血红蛋白的触珠蛋白,运输甲状腺素的甲状腺素结合蛋白。参与凝血过程的有凝血酶原和纤维蛋白原。肝实质性障碍时,血浆糖蛋白量减少,而在肝癌时却增加。

2.血型物质人的胃液、唾液、卵巢囊肿的粘液和红细胞中都含有血型物质,它包含约75%的糖,主要是岩藻糖、半乳糖、氨基葡萄糖和氨基半乳糖。含糖部分决定血型物质的特异性。

3.卵白糖蛋白糖分较简单,只有甘露糖和N-乙酰氨基葡萄糖。某些卵白糖蛋白对胰蛋白酶或糜蛋白酶有抑制作用,而另一些则具有强烈的抑制病毒血球凝集的作用。

二、蛋白聚糖

蛋白聚糖是以糖胺聚糖为主体的糖蛋白质复合物。蛋白聚糖以蛋白质为核心,以糖胺聚糖链为主体,在同一条核心蛋白肽链上,密集地结合着几十条至千百条糖胺聚糖糖链,形成瓶刷状分子。每条糖胺聚糖链由100到200个单糖分子构成,具有二糖重

复序列,一般无分支。糖胺聚糖主要借O-糖苷键与核心蛋白的丝氨酸或苏氨酸羟基结合。核心蛋白的氨基酸组成和序列也比较简单,以丝氨酸和苏氨酸为主(可占50%),其余氨基酸以甘氨酸、丙氨酸、谷氨酸等居多。

蛋白聚糖是细胞外基质的主要成分,广泛存在于高等动物的一切组织中,对结缔组织、软骨、骨骼的构成至关重要。蛋白聚糖具有极强的亲水性,能结合大量的水,能保持组织的体积和外形并使之具有抗拉、抗压强度。蛋白聚糖链相互间的作用,在细胞与细胞、细胞与基质相互结合,维持组织的完整性中起重要作用。糖链的网状结构还具有分子筛效应,对物质的运送有一定意义。透明质酸是关节滑液的主要成分,具有很大的粘性,对关节面起润滑作用。类风湿性关节炎患者关节液的粘度降低与蛋白多糖的结构变化有关。

在细胞膜中有糖苷转移酶,催化合成;在溶酶体中有糖苷酶催化其分解。

凝集素是能与糖特异结合的,非酶非抗体的蛋白质。动物体中的某些凝集素含有约130个氨基酸残基构成的糖识别域,与炎症及肿瘤转移有关。

1,糖的定义和分类。

***尤其要注意以葡萄糖为代表的单糖的分子结构(特别是旋光异构现象)、分类、物理性质以及化学性质(鉴别),还有一些重要的单糖要熟记。2,比较三种主要双糖(蔗糖、乳糖、麦芽糖)的组成、连接键的种类及其环状结构。

3,淀粉、糖原、纤维素的组成单位和特有的颜色反应及生物学功能。(考题出现较频繁)

4,糖胺聚糖、糖蛋白、蛋白聚糖的定义及键的连接方式。

5,常用的识别核糖、葡萄糖、果糖、蔗糖和淀粉的方法。(显色法)。

6,了解糖的生理功能。

醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。

酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。

异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。

异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。

变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。

单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。

糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。

糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。

寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。

多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。

还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。

淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。

极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。

肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。

糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。

蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。

第二章--糖类化学试题--1

第二章糖类化学 一、单项选择题 1.自然界分布最广、含量最多的有机分子是 A.蛋白质 B.核酸 C.水 D.糖类 E.脂类 2.以下哪个是碳水化合物? A.二羟丙酮 B.甘油 C.类固醇 C.乳酸 D.腺嘌呤 3.以下哪个单糖最小? A.半乳糖 B.甘油醛 C.果糖 D.核糖 E.脱氧核糖 4.以下哪个单糖是酮糖? A.半乳糖 B.果糖 C.甘油醛 D.核糖 E.脱氧核糖 5.自然界中最丰富的单糖是 A.半乳糖 B.核糖 C.葡萄糖 D.脱氧核糖 E.蔗糖 6.以下哪个含有果糖 A.淀粉 B.肝素 C.乳糖 D.麦芽糖 E.蔗糖 7.单糖分子至少含几个碳原子? A.2 B.3 C.4 D.5 E.6 8.以下哪个是不含手性碳原子的单糖? A.半乳糖 B.二羟丙酮 C.甘油醛 D.核糖 E.脱氧核糖 9.纤维素中的1个葡萄糖有几个手性碳原子? A.2 B.3 C.4 D.5 E.6 10.糖原与纤维素中的葡萄糖只有1个碳原子不同,它是几号碳原子?A.1 B.2C.3 D.4E.5 11.葡萄糖的构型是由它的几号碳原子决定的? A.1 B.2 C.3 D.4 E.5 12.在溶液中,以下哪个糖没有半缩醛结构? A.半乳糖 B.二羟丙酮 C.乳糖 D.麦芽糖 E.脱氧核糖 13.葡萄糖在中性溶液中有几种异构体? A.2 B.3 C.4 D.5 E.6 14.以下哪种分子结构中有呋喃环结构? A.胆固醇 B.核酸 C.前列腺素 D.乳糖 E.组氨酸 15.在溶液中,以下哪个糖没有旋光性? A.二羟丙酮 B.麦芽糖 C.乳糖 D.脱氧核糖 E.蔗糖 16.以下哪种单糖的构象最稳定? A.α-吡喃葡萄糖 B.α-吡喃果糖 C.α-呋喃果糖 D.β-吡喃葡萄糖 E.β-吡喃果糖17.乳糖中的半乳糖是 A.α-吡喃半乳糖 B.α-呋喃半乳糖 C.α-吡喃半乳糖和β-吡喃半乳糖 D.β-吡喃半乳糖 E.β-呋喃半乳糖18.RNA中的核糖是 A.α-吡喃核糖 B.α-呋喃核糖 C.α-呋喃核糖和β-呋喃核糖 D.β-吡喃核糖 E.β-呋喃核糖 19.以下哪个不是还原糖? A.果糖 B.麦芽糖 C.乳糖 D.脱氧核糖 E.蔗糖 20.蔗糖分子中果糖的几号碳原子有半缩醛羟

第二章 糖和苷 练习及答案

第三章 糖和苷类化合物 1.Identification (Please write the Chinese names and structural types of these compounds following ) 1. 2. H,OH O OH OH OH CH 3 O OH OH OH OH H,OH 3. O OH OH OH COOH H,OH 2.选择题 A 型题 1.芸香糖的组成是 A. 两分子葡萄糖 B. 两分子鼠李糖 C. 三分子葡萄糖 D. 一分子葡萄糖,一分子果糖 E. 一分子葡萄糖,一分子鼠李糖 2.属于氰苷的化合物是 A. 苦杏仁苷 B. 红景天苷 C. 巴豆苷 D. 天麻苷 E. 芦荟苷 3.在水和其他溶剂中溶解度都很小的苷是 A. 氧苷 B. 氮苷 C. 硫苷 D. 碳苷 E. 酯苷 4.酸水解速度最快的是 A. 葡萄糖苷 B. 鼠李糖苷 C. 2-去氧糖苷 D. 葡萄糖醛酸苷 E. 阿拉伯糖苷 5.最难被酸水解的是 A. 碳苷 B. 氮苷 C. 氧苷 D. 硫苷 E. 氰苷 6.根据苷原子分类,属于硫苷的是 A. 山慈姑A B. 萝卜苷 C. 巴豆苷 D. 芦荟苷 E. 天麻苷 7.水解碳苷常用的方法是 A. 缓和酸水解 B. 强烈酸水解 C. 酶水解 D. 碱水解 E. 氧化开裂法 8.麦芽糖酶能水解 A. α-果糖苷键 B. α-葡萄糖苷键 C. β-果糖苷键 D. β-葡萄糖苷键 E. α-麦芽糖苷键 9.提取苷类成分时,为抑制或破坏酶常加入一定量的 A. 硫酸 B. 酒石酸 C. 碳酸钙 D. 氢氧化钠 E. 碳酸钠

生物化学笔记-第二章 糖 类

第二章糖类 提要 一、定义 糖、单糖、寡糖、多糖、结合糖、呋喃糖、吡 喃糖、糖苷、手性 二、结构 1.链式:Glc、Man、Gal、Fru、Rib、dRib 2.环式:顺时针编号,D型末端羟甲基向下,α型 半缩醛羟基与末端羟甲基在两侧。 3.构象:椅式稳定,β稳定,因其较大基团均为平 键。 三、反应 1.与酸:莫里斯试剂、西里万诺夫试剂。 2.与碱:弱碱互变,强碱分解。 3.氧化:三种产物。 4.还原:葡萄糖生成山梨醇。 5.酯化 6.成苷:有α和β两种糖苷键。 7.成沙:可根据其形状与熔点鉴定糖。 四、衍生物 氨基糖、糖醛酸、糖苷 五、寡糖 蔗糖、乳糖、麦芽糖和纤维二糖的结构 六、多糖 淀粉、糖原、纤维素的结构 粘多糖、糖蛋白、蛋白多糖一般了解 七、计算 比旋计算,注意单位。 第一节概述 一、糖的命名 糖类是含多羟基的醛或酮类化合物,由碳氢氧三种元素组成的,其分子式通常以Cn(H2O)n 表示。 由于一些糖分子中氢和氧原子数之比往往是2:1,与水相同,过去误认为此类物质是碳与水的化合物,所以称为"碳水化合物"(Carbohydrate)。 实际上这一名称并不确切,如脱氧核糖、鼠李糖等糖类不符合通式,而甲醛、乙酸等虽符合这个通式但并不是糖。只是"碳水化合物"沿用已久,一些较老的书仍采用。我国将此类化合物统称为糖,而在英语中只将具有甜味的单糖和简单的寡糖称为糖(sugar)。 二、糖的分类 根据分子的聚合度分,糖可分为单糖、寡糖、多糖。也可分为:结合糖和衍生糖。 单糖是不能水解为更小分子的糖。葡萄糖,果糖都是常见单糖。根据羰基在分子中的位置,单糖可分为醛糖和酮糖。根据碳原子数目,可分为丙糖,丁糖,戊糖,己糖和庚糖。 寡糖由2-20个单糖分子构成,其中以双糖最普遍。寡糖和单糖都可溶于水,多数有甜味。 多糖由多个单糖(水解是产生20个以上单糖分子)聚合而成, 又可分为同聚多糖和杂聚多糖。同聚多糖由同一种单糖构成,杂聚多糖由两种以上单糖构成。 糖链与蛋白质或脂类物质构成的复合分子称为结合糖。其中的糖链一般是杂聚寡糖或杂聚 多糖。如糖蛋白,糖脂,蛋白聚糖等。 由单糖衍生而来,如糖胺、糖醛酸等。 1.分布糖在生物界中分布很广,几乎所有的动物,植物,微生物体内都含有糖。糖占植物干重的80%,微生物干重的10-30%,动物干重的2%。糖在植物体内起着重要的结构作用,而动物则用蛋白质和脂类代替,所以行动更灵活,适应性强。动物中只有昆虫等少数采用多糖构成外骨胳,其形体大小受到很大限制。 在人体中,糖主要的存在形式:(1)以糖原形式贮藏在肝和肌肉中。糖原代谢速度很快,对维持血糖浓度衡定,满足机体对糖的需求有重要意义。(2)以葡萄糖形式存在于体液中。细胞外液中的葡萄糖是糖的运输形式,它作为细胞的内环境条件之一,浓度相当衡定。(3)存在于多种含糖生物分子中。糖作为组成成分直接参与多种生物分子的构成。如:DNA分子中含脱氧核糖,RNA和各种活性核苷酸(ATP、许多辅酶)含有核糖,糖蛋白和糖脂中有各种复杂的糖结构。 2.功能糖在生物体内的主要功能是构成细胞的结构和作为储藏物质。植物细胞壁是由纤维素,半纤维素或胞壁质组成的,它们都是糖类物质。作为储藏物质的主要有植物中的淀粉和动物中的糖原。此外,糖脂和糖蛋白在生物膜中占有重要位置,担负着细胞和生物分子相互识别的作用。 糖在人体中的主要作用:(1)作为能源物质。一般情况下,人体所需能量的70%来自糖的氧化。(2)作为结构成分。糖蛋白和糖脂是细胞膜的重要成分,蛋白聚糖是结缔组织如软骨,骨的结构成分。(3)参与构成生物活性物质。核酸中含有糖,有运输作用

第二章 糖和苷

第二章 糖和苷 1、下列五个化合物中属于碳苷的是 H 2C CH CH 2N N N N NH 2 OH O HO O glu CH 2OH H 3CO C CH 3 O O glu C N S O SOK 3 glu A. B C. D. E. 2、Smith 裂解法所使用的试剂是( ) A 、NaIO4 B 、NaBH4 C 、均是 D 、均不是 3、糖类的纸层析常用展开剂: A. n-BuOH-HOAc-H2O (4:1:5;上层) B. CHCl3-MeOH(9:1) C. EtOAc-EtOH(6:4) D. 苯-MeOH(9:1) 3、Molish 反应的试剂组成是: A. 氧化铜-NaOH B. AgNO3-NH3·H2O C. α-萘酚-NaOH D. β-萘酚-浓H2SO4 E. α-萘酚-浓H2SO4 4.下列化合物最容易被酸水解的苷是( ) A .2-氨基六碳糖 B .六碳糖 C .七碳糖 D .甲基五碳糖 5.下列性质中,不是苷类通常具有的性质是: A 多为固体 B 有升华性 C 有旋光性 D 一般溶于醇类 E 有Molish 反应 6.不能被碱催化水解的苷键是: A. 酚苷键 B. 酰苷键 C. 醇苷键 D. 4-羟基香豆素葡萄糖苷键 7.酸催化水解时,最难水解的苷键是: A. 氨基糖苷键 B. 羟基糖苷键 C. 6-去氧糖苷键 D. 2,6-去氧糖苷键 8. 苷键难于被酸所裂解的苷是: A. O-苷 B. N-苷 C. C-苷 D. S-苷 9.α-萘酚-浓硫酸反应是苷或糖类成分的特征反应,反应结果和现象是: A 溶液棕色 B 溶液红色 C 上层红色 D 下层红色 E 两层界面处出现棕色环带 10.在水和其它溶剂中溶解度都很小的苷是() A. O-苷 B. N-苷 C. C-苷 D. S-苷 11.下列多糖中,不属于动物多糖的是: A 肝素 B 甲壳素 C 硫酸软骨素 D 粘液质 E 透明质酸 12. Smith 降解法主要开裂苷类结构中: A 酯苷键 B 碳苷键 C 糖结构中的多元醇 D 苷元中的不稳定结构 E 氧苷键,但糖结构保持不变 13.下列性质中,不是酶水解的特点是: A 专属性强 B 条件温和 C 可以保护糖和苷元结构 D 可获得次生苷 E 可水解碳苷 14. 下列有关苷键酸水解的论述,错误的是 A 呋喃糖苷比吡喃糖苷易水解 B 醛糖苷比酮糖苷易水解 C 去氧糖苷比羟基糖苷易水解

第二章糖和苷

第二章糖和苷类 一、选择题(选择一个确切的答案) 1.酸水解速度最快的是 A 葡萄糖苷 B. 鼠李糖苷 C. 2-去氧糖苷 D. 葡萄糖醛酸苷 3.最难被酸水解的是 A. 碳苷 B. 氮苷 C. 氧苷 D. 硫苷 E. 氰苷 4.麦芽糖酶能水解 A. α-果糖苷键 B. α-葡萄糖苷键 C. β-果糖苷键 D. β-葡萄糖苷键 E. α-麦芽糖苷键 5.提取苷类成分时,为抑制或破坏酶常加入一定量的 A. 硫酸 B. 酒石酸 C. 碳酸钙 6.Smith裂解法属于 A. 缓和酸水解法 B. 强烈酸水解法 C. 碱水解法 D. 氧化开裂法 E. 盐酸-丙酮水解法 7.下列有关苷键酸水解的论述,错误的是 A. 呋喃糖苷比吡喃糖苷易水解 B. 醛糖苷比酮糖苷易水解 C. 去氧糖苷比羟基糖苷易水解 D. 氮苷比硫苷易水解 8.能使β-葡萄糖苷键水解的酶是 A麦芽糖酶B苦杏仁苷酶C均可以D均不可以

9.下列对吡喃糖苷最容易被酸水解的是 A、七碳糖苷 B、五碳糖苷 C、六碳糖苷 D、甲基五碳糖苷 10.Smith裂解法所使用的试剂是 A、NaIO4 B、NaBH4 C、均是 D、均不是 11.苦杏仁苷属于下列何种苷类 12.苷类化合物的定义是 A.糖与非糖物质形成的化合物 B.糖与糖的衍生物与非糖物质形成的化合物 C.糖与糖形成的化合物 D.糖或糖的衍生物与非糖物质通过糖的半缩醛或半缩酮羟基与苷元脱水形成的物质 二、判断题 1,一般存在苷的植物中,也同时存在水解苷的酶。 2,氰苷是氧苷的一种。 3,苷、配糖体、苷元代表植物中常见的三类不同成分。 4,淀粉、纤维素均是由葡萄糖通过1α→4结合的直链葡萄糖。 5,Smith 降解适合于所有苷类化合物苷键的裂解。 三、填空 1按苷键原子不同,苷类可分苷、苷、苷、苷,最常见的是苷。这是最常见的苷类分类方式。 2苷中的苷元与糖之间的化学键称为,苷元上形成苷键

生物化学第2章 糖的化学

课外练习题 一、名词解释 1、寡糖; 2、多糖; 3、结合糖; 4、糖蛋白; 5、蛋白聚糖; 6、变旋现象; 二、填空 1、糖根据其聚合度分为()、()和(); 2、糖根据其组成可分为()、()、()和(); 3、单糖有()和()两种类型;单糖可根据其含()多少分为丙糖、丁糖、戊糖、己糖和庚糖; 4、所有的醛糖都是由()衍生而来,所有的酮糖都是由()衍生而来; 5、单糖由直链结构变成环状结构后,()成为新的手性中心,产生两个非对映异构体,手性碳原子上()基向下的为异头物; 6、还原性双糖有游离的(),具有()、()现象等; 7、重要的磷酸糖有()、()和()等; 8、构成DNA的()的脱氧位置在第2位碳原子; 9、甘油、肌醇和核醇等均是(); 10、多糖按其组成分类分为()、()、()和(); 11、较重要的多糖有()、()、()和()等; 12、重要的粘多糖有()、()和()等; 13、单糖分子除()外都含有不对称碳原子; 14、单糖分子的D-型和L-型由离()最远的不对称碳原子上的()方向来确定的,分子不对称的化合物具有旋光性; 15、单糖有()结构和()结构,它们实际上是同分异构体; 16、重要的双糖有()、()和(); 17、直链淀粉遇碘呈()色,支链淀粉遇碘呈()色,糖原遇碘呈()色; 18、糖原和支链淀粉结构上很相似,都由许多()组成,它们之间通过()和()两种糖苷键相连。二者在结构上的主要差别在于糖原分子比支链淀粉()、()和(); 19、纤维素是由()组成,它们之间通过()糖苷键相连; 20、人血液中含量最丰富的糖是(),肝脏中含量最丰富的糖是(),肌肉中含量最丰富的糖是()。

中药化学习题集第二章糖与苷吴立军

第二章糖和苷 一、写出下列糖的Fisher投影式和Haworth投影式 (寡糖只写Haworth投影式) 1.β-D-葡萄吡喃糖 2.α-L-鼠李吡喃糖 3.β-D-甘露吡喃糖 4.α-L-阿拉伯呋喃糖 5.β-D-木吡喃糖 6.β-D-核呋喃糖 7.β-D-半乳吡喃糖8.β-D-果呋喃糖 9.α-L-呋吡喃糖10.β-D-葡萄吡喃糖醛酸11.β-D-半乳吡喃糖醛酸12.新橙皮糖 13.芦丁糖14.蔗糖 15.樱草糖16.麦芽糖 17.槐糖18.海藻糖 19.棉子糖20.槐三糖 投影式如下: 1.β-D-葡萄吡喃糖 2.α-L-鼠李吡喃糖 3.β-D-甘露吡喃糖 4.α-L-阿拉伯呋喃糖 5.β-D-木吡喃糖 6.β-D-核呋喃糖 7.β-D-半乳吡喃糖8.β-D-果呋喃糖

9.α-L-呋吡喃糖10.β-D-葡萄吡喃糖醛酸11. β-D-半乳吡喃糖醛酸12.新橙皮糖 13.芦丁糖14.蔗糖 15.樱草糖

16.麦芽糖 17.槐糖18.海藻糖 19.棉子糖 20.槐三糖

二、名词解释 1. 1C和C1构象式 2.N和A构象式 3.1C4和4C1构象式 4.β构型、α构型 5.D构型、L构型 6.相对构型、绝对构型 7.吡喃型糖、呋喃型糖8.低聚糖、多糖 9.Molish反应10.还原糖、非还原糖 11.乙酰解反应12. 酶解反应 13.β-消除反应14.Smith降解(过碘酸降解)15.苷化位移16.端基碳 17.前手性碳18.Bio-gel P 19.苷化位移中的同五异十其余七 解析: 1、2、3 吡喃型糖在溶液或固体状态时,其优势构象是椅式,以C2、C3、C5、O四个原子构成的平面为准,当C4在面上,C1在面下时,称为4C1,简称为C1式或N式;当C4在面下,C1在面上时,称为1C4,简称为1C式或A式。 4、α、β表示相对构型,当C1-OH和C5(六元氧环糖-吡喃糖)或C4(五元氧环糖-呋喃糖)上的大取代基为同侧的为β型,为异侧的为α型。 5、D、L表示绝对构型,在Haworth式中,看不对称碳原子C5(吡喃糖)或C4(呋喃糖)上大取代基的方向,向上的为D,向下的为L。 6、相对构型:与包含在同一分子实体的任何其他手性中心相关的任何手性中心的构型。 绝对构型:当一个构型式按规定表达一个立体异构体时,若确定的立体异构体的真正构型与构型式所表达的构型相同时,则这种构型式所表示的构型称为绝对构型。 7、呋喃型糖:糖在形成半缩醛或半缩酮时,五元氧环的糖称为呋喃型糖。 吡喃型糖:糖在形成半缩醛或半缩酮时,六元氧环的糖称为吡喃型糖。 8、低聚糖:由2-9个单糖通过苷键结合而成的直链或支链聚糖称为低聚糖。 多糖:由十个以上单糖通过苷键连接而成的糖称为多糖。 9、Molish反应:糖在浓H2SO4(硫酸)或浓盐酸的作用下脱水形成糠醛及其衍生物与α-萘酚作用形成紫红色复合物,在糖液和浓H2SO4的液面间形成紫环,因此又称紫环反应。 10、还原糖:具有游离醛基或酮基的糖。 非还原糖:不具有游离醛基或酮基的糖。 11、乙酰解反应:乙酰解所用的试剂是醋酐和酸,反应机制与酸催化水解相似,但进攻的基团是CH3CO+而不是质子,乙酰解反应可以确定糖与糖的连接位置。 12、酶解反应:酶催化水解具有反应条件温和,专属性高,根据所用酶的特点可确定苷键构型,根据获得的次级苷、低聚糖可推测苷元与糖及糖与糖的连接关系,能够获得原苷元。 13、β-消除反应:在一个有机分子里消去两个原子或者基团的反应。根据两个消去基团的相对位置分类,若在同一个碳原子上,称为1,1消除或者α-消除。如果

第二章糖和苷练习及答案

第三章 糖和苷类化合物 (Please write the Chinese names and structural types of these compounds following ) 1. 2. H,OH O OH OH OH CH 3 O OH OH OH OH H,OH 3. O OH OH OH COOH H,OH 2.选择题 A 型题 1.芸香糖的组成是 A. 两分子葡萄糖 B. 两分子鼠李糖 C. 三分子葡萄糖 D. 一分子葡萄糖,一分子果糖 E. 一分子葡萄糖,一分子鼠李糖 2.属于氰苷的化合物是 A. 苦杏仁苷 B. 红景天苷 C. 巴豆

苷 D. 天麻苷 E. 芦荟苷 3.在水和其他溶剂中溶解度都很小的苷是 A. 氧苷 B. 氮苷 C. 硫苷 D. 碳苷 E. 酯苷 4.酸水解速度最快的是 A. 葡萄糖苷 B. 鼠李糖苷 C. 2-去氧糖苷 D. 葡萄糖醛酸苷 E. 阿拉伯糖苷 5.最难被酸水解的是 A. 碳苷 B. 氮苷 C. 氧苷 D. 硫苷 E. 氰苷 6.根据苷原子分类,属于硫苷的是 A. 山慈姑 A B. 萝卜苷 C. 巴豆苷 D. 芦荟苷 E. 天麻苷

7.水解碳苷常用的方法是 A. 缓和酸水解 B. 强烈酸水解 C. 酶水解 D. 碱水解 E. 氧化开裂法 8.麦芽糖酶能水解 A. α-果糖苷键 B. α-葡萄糖苷键 C. β-果糖苷键 D. β-葡萄糖苷键 E. α-麦芽糖苷键 9.提取苷类成分时,为抑制或破坏酶常加入一定量的 A. 硫酸 B. 酒石酸 C. 碳酸钙 D. 氢氧化钠 E. 碳酸钠 10.若提取药材中的原生苷,除了采用沸水提取外,还可以选用 A. 热乙醇 B. 氯仿 C. 乙醚 D. 冷水 E. 酸水 11.Smith裂解法属于

第三章 糖和苷类化合物习题

第三章糖和苷类化合物 一、填空题 1.糖的绝对构型,在哈沃斯(Haworth)式中,只要看六碳吡喃糖的C5(五碳呋喃糖的C4)上取代基的取向,向上的为()型,向下的为()型。 2.糖的端基碳原子的相对构型是指C1羟基与六碳糖C5(五碳糖C4)取代基的相对关系,当C1羟基与六碳糖C5(五碳糖C4)上取代基在环的()为β构型,在环的()为α构型。 3.麦芽糖酶只能使()水解;苦杏仁酶主要水解()。 4.13C-NMR谱是确定苷元和糖之间连接位置的有效方法。醇类羟基的苷化,可引起苷元α-碳向(),位移β-碳向()位移 5.确定苷键构型的方法主要有三种,即()、()和()。 二、选择题 (一)A型题:每题有5个备选答案,备选答案中只有一个最佳答案。 1.在提取原生苷时,首先要设法破坏或抑制酶的活性,为保持原生苷的完整性,常用的提取溶剂是: A.乙醇B. 酸性乙醇C. 水D. 酸水E. 碱水2.右侧的糖为: A . α-D-甲基五碳醛糖B.β-D-甲基六碳醛糖 E.β-D-六碳酮糖 3.下列糖属于多糖的是 A.半乳糖 B.蔗糖 C.芸香糖 D.果胶 E.槐糖 4.与Molish试剂反应呈阴性的化合物为: A.氮苷B.硫苷C.碳苷D.氰苷E.酚苷 5.Molish反应的阳性特征是: A.上层显红色,下层有绿色荧光B.上层绿色荧光,下层显红色 C.两液层交界面呈紫色环D.两液层交界面呈蓝色环 E.有橙-红色沉淀产生 6.Hakomori 法(箱守法)是: A.在二甲基亚砜(DMSO)溶液中,加入氢化钠,以碘甲烷进行甲基化反应。 B.在氘代氯仿(CDCl3)溶液中,加入氢化钠,以碘甲烷进行甲基化反应。 C.在二甲基亚砜(DMSO)溶液中,加入碳酸钠,以硫酸二甲酯进行甲基化反应。 D.在二甲基甲酰胺(DMF)溶液中,加入氢氧化钡,以氧化银进行甲基化反应。 E.在丙酮(Me2CO)溶液中,加入氢化钠,以碘甲烷和氧化银进行甲基化反应。 7.可用于糖类PC检查的显色剂是: A.α-萘酚-浓硫酸试剂B.茴香醛-浓硫酸试剂C.苯胺-邻苯二甲酸试剂 D.间苯二酚-硫酸试剂E.酚-硫酸试剂

第二章 糖和苷 练习及答案

第三章 糖和苷类化合物 (Please write the Chinese names and structural types of these compounds following ) 1. 2. H,OH O OH OH OH CH 3 O OH OH OH OH H,OH 3. O OH OH OH COOH H,OH 2.选择题 A 型题 1.芸香糖的组成是 A. 两分子葡萄糖 B. 两分子鼠李糖 C. 三分子葡萄糖 D. 一分子葡萄糖,一分子果糖 E. 一分子葡萄糖,一分子鼠李糖 ( 2.属于氰苷的化合物是 A. 苦杏仁苷 B. 红景天苷 C. 巴豆苷 D. 天麻苷 E. 芦荟苷 3.在水和其他溶剂中溶解度都很小的苷是 A. 氧苷 B. 氮苷 C. 硫苷 D. 碳苷 E. 酯苷 4.酸水解速度最快的是 A. 葡萄糖苷 B. 鼠李糖苷 C. 2-去氧糖苷 D. 葡萄糖醛酸苷 E. 阿拉伯糖苷 5.最难被酸水解的是 》 A. 碳苷 B. 氮苷 C. 氧苷 D. 硫苷 E. 氰苷 6.根据苷原子分类,属于硫苷的是 A. 山慈姑A B. 萝卜苷 C. 巴豆苷 D. 芦荟苷 E. 天麻苷 7.水解碳苷常用的方法是 A. 缓和酸水解 B. 强烈酸水解 C. 酶水解 D. 碱水解 E. 氧化开裂法 8.麦芽糖酶能水解 A. α-果糖苷键 B. α-葡萄糖苷键 C. β-果糖苷键 ) D. β-葡萄糖苷键 E. α-麦芽糖苷键 9.提取苷类成分时,为抑制或破坏酶常加入一定量的

A. 硫酸 B. 酒石酸 C. 碳酸钙 D. 氢氧化钠 E. 碳酸钠 10.若提取药材中的原生苷,除了采用沸水提取外,还可以选用 A. 热乙醇 B. 氯仿 C. 乙醚 D. 冷水 E. 酸水 11.Smith裂解法属于 A. 缓和酸水解法 B. 强烈酸水解法 C. 碱水解法 D. 氧化开裂法 E. 盐酸-丙酮水解法 — 12.检查苦杏仁苷,常用的试剂是 A. 三氯化铁 B. 茚三酮 C. 三硝基苯酚 D. 亚硝酰铁氰化钠 E. 硫酸铜-氢氧化钠 13.用纸色谱法检识下列糖,以BAW(4﹕1﹕5上层)溶剂系统为展开剂,展开后其R f值最大的是 A. D-木糖 B. D-葡萄糖 C. D-果糖 D. L-鼠李糖 E. D-半乳糖 14.下列有关苦杏仁苷的分类,错误的是 A. 双糖苷 B. 原生苷 C. 氰苷 D. 氧苷 E. 双糖链苷 15.下列有关苷键酸水解的论述,错误的是 \ A. 呋喃糖苷比吡喃糖苷易水解 B. 醛糖苷比酮糖苷易水解 C. 去氧糖苷比羟基糖苷易水解 D. 氮苷比硫苷易水解 E. 酚苷比甾苷易水解 16.苦杏仁苷酶水解的最终产物包括 A. 葡萄糖、氢氰酸、苯甲醛 B. 龙胆双糖、氢氰酸、苯甲醛 C. 野樱苷、葡萄糖 D. 苯羟乙腈、葡萄糖 ^ E. 苯羟乙腈、龙胆双糖 17.Molish反应的试剂组成是 A. 苯酚-硫酸 B. 酚-硫酸 C. 萘-硫酸 D. β-萘酚-硫酸 E. α-萘酚-浓硫酸 18.中药苦杏仁引起中毒的成分是 A. 挥发油 B. 蛋白质 C. 苦杏仁酶

第三章 糖与苷类

第三章糖与苷类 糖又称作碳水化合物,和核酸、蛋白质、脂质一起称为生命活动所必需的四大类化合物。苷类 又称配糖体,是由糖或糖的衍生物等与另一非糖物质通过其端基碳原子联接而成的化合物。 一、结构类型 1. 单糖的立体结构单糖是多羟基醛或酮,是组成糖及其衍生物的基本单位。单糖的结构可用 Fisher和Haworth投影式表示。2.单糖的绝对构型 : 单糖Fisher投影式中距羰基最远的那个不 对称碳原子的构型定为整个糖分子的绝对构型。其羟基向右的为D型,向左的为L-型。 在Haworth式中也是看那个不对称碳原子上的取代基,向上为D型,向下为L型。二、单糖的 端基差向异构体 (可能在B卷) 单糖成环后新形成的一个不对称碳原子称为端基碳,生成的一对差向异构体有α、β二种构型。 Fisher投影式:C1-OH与原C5(六碳糖)或C4(五碳糖)-OH,同侧的为α,异侧的为β。 Haworth投影式:C1-OH与原C5(六碳糖)或C4(五碳糖)-取代基,异侧的为α,同侧的为β。 三、单糖的氧环:自然界的糖都以六元或五元氧环的形式存在。五元氧环称呋喃糖,六元氧环称 吡喃糖。 苷类(又称配糖体)不考 糖或糖的衍生物(氨基糖,糖醛酸等)+ 非糖物质(黄酮,萜类等)==(糖的端基碳原子+苷 键α、β)==苷 苷类化合物的分类:根据生物体内的存在形式:分为原生苷、次级苷。根据连接单糖基的个数: 单糖苷、二糖苷、三糖苷……。根据苷元连接糖基的位置数:单糖链苷、二糖链苷……。根据苷 键原子的不同:氧苷、硫苷、氮苷、碳苷。一、性状:形:苷类化合物多数是固体,其中糖基少 的可以成结晶,糖基多的如皂苷,则多呈具有吸湿性的无定无形粉末。味:苷类一般是无味的。色:苷类化合物的颜色是由苷元的性质决定的。三、旋光性:多数苷类化合物呈左旋,但 水解后,由于生成的糖常是右旋的,因而使混合物呈右旋。因此,比较水解前后旋光性的变化, 也可以用以检识苷类化合物的存在。但必须注意,有些低聚糖或多糖的分子也都有类似的性质, 因此一定要在水解产物中肯定苷元的有无,才能判断苷类的存在。 四、糖的检识:化学鉴定:Molish 反应:糖或苷类遇浓硫酸/α-萘酚试剂呈紫色或棕色环。 Feiling反应:还原糖遇硫酸酮和碱性酒石酸钾钠产生砖红色的氧化亚铜沉淀。Tollen反应:还 原性糖遇硝酸银的氨水溶液析出银。 第三节苷键的裂解一、酸催化水解反应苷键属于缩醛结构,易为稀酸催化水解。水解反应是 苷原子先质子化,然后断键生成阳碳离子或半椅型的中间体,在水中溶剂化而成糖。酸水解的 规律:(1)苷原子不同,酸水解难易顺序:N-苷 > O-苷 > S –苷> C–苷(C-苷最难水解,从碱 度比较也是上述顺序)(2)呋喃糖苷较吡喃糖苷易水解。因五元呋喃环的颊性使各取代基 处在重叠位置,形成水解中间体可使张力减小,故有利于水解。呋喃糖苷>吡喃糖苷(3) 酮糖较醛糖易水解酮糖多为呋喃结构,而且酮糖端基碳原子上有-CH2OH大基团取代,水解反应 可使张力减小。(4)吡喃糖苷中:①吡喃环C5上取代基越大越难水解,水解速度为:五碳 糖 >甲基五碳糖 >六碳糖 >七碳糖(糖醛酸苷)② C5上有-COOH取代时,最难水解。(因 诱导使苷原子电子密度降低)(5)氨基取代的糖较-OH糖难水解,-OH糖又较去氧糖难水解。 2,6-二去氧糖苷 >2-去氧糖苷 >6-去氧糖苷>2-羟基糖苷 > 2-氨基糖苷(6)芳香属苷较脂肪 属苷易水解。如:酚苷> 萜苷、甾苷(因苷元部分有供电结构,而脂肪属苷元无供电结构) 酸水解方法: 5~10%HCl/H2SO4/甲醇;TLC斑点检查。

第二章 糖和苷类化合物 天然药物化学教案 沈阳药科大学

第二章糖和苷类化合物 一、教学目的 本次课要求学生掌握苷和苷键的定义,单糖结构的表示方法,单糖的绝对构型和相对构型,苷键的酸催化裂解、乙酰化裂解的反应机理及其应用,苷类化合物的理化性质及其显色反应;要求学生熟悉苷类化合物的提取通法及注意点,苷类化合物的不同分类方式;要求学生了解多聚糖的一般性状及提取分离方法,苷类化合物结构鉴定的程序和苷键构型的确定方法。 二、教学重点和难点 1、教学重点 ①糖和苷的分类;②糖的表示方法,Fischer投影式和Haworth投影式;③糖的优势构象式;④糖的相对构型和绝对构型;⑤苷类化合物的酸水解;⑥糖的显色反应;⑦苷类化合物的提取。 2、教学难点 ①糖的表示方法,Fischer投影式和Haworth投影式;②糖的相对构型和绝对构型。 三、教学方法与手段 1、教学方法 采用传统式教学方式为主,并结合启发式和课堂讨论式教学方法 2、教学手段 采用多媒体教学 四、教学内容 第一节,第二节课时安排:2学时 第一节单糖的立体化学 1、概述 糖的定义和苷的定义。 2、糖的立体化学 糖的表示式;Fischer与Haworth的转换及其相对构型;糖的绝对构型(D、

L)和糖的优势构象势。 第二节糖苷的分类 ①单糖的分类 常见单糖;氨基糖;糖醇;去氧糖;和糖醛酸。 ②苷的分类 按苷原子不同分类;按苷元不同分类;按苷键类型分类;按端基碳构型分类;按连接单糖个数分类;按糖链个数分类和按生物体内存在分类。 第三节,第四节课时安排:2学时 第三节糖的化学性质 1、糖和苷的物理性质 溶解性;味觉和旋光性及其在构型测定中的应用 2、糖的化学性质 氧化反应;糠醛形成反应(Molish反应);羟基反应:醚化反应(甲基化)、酰化反应(酯化反应)、缩酮和缩醛化反应;羰基反应;和硼酸络合反应。 第四节苷键的裂解 酸催化水解反应;乙酰解反应;碱催化水解和Β消除反应;酶催化水解反应和氧化开裂法(Smith降解法)。 第五节,第六节,第七节课时安排:2学时 1、糖的提取分离 ①提取 ②分离:活性炭柱色谱、纤维素色谱、离子交换柱色谱、凝胶柱色谱、季铵氢氧化物沉淀法、分级沉淀或分级溶解法、蛋白质除去法。 2、糖的鉴定和糖链结构的测定 ①糖的鉴定:纸层析、薄层层析、气相层析、离子交换层析、液相色谱。 ②糖链结构的测定:单糖的组成、单糖之间连接位置的决定、糖链连接顺序的决定、苷键构型的决定、13C-NMR在糖链结构测定中的应用。 五、课后思考题 1、苷键酸水解的原理是什么?各有什么规律? 2、从天然药物中提取苷类成分需要考虑哪些问题?

第二章 糖和苷类(习题)

第二章 糖和苷类 一、写出下列化合物的结构类型 H 2C CH CH 2N N N N NH 2OH O HO O glu CH 2OH H 3CO C CH 3 O glu C N S O SOK 3 glu A. B C.D. E. 二、选择题 1、下列吡喃糖苷最容易被酸水解的是( ) A 、七碳糖苷 B 、五碳糖苷 C 、六碳糖苷 D 、甲基五碳糖苷 2、芸香糖的组成是( ) A 、两分子葡萄糖 B 、两分子鼠李糖 C 、一分子葡萄糖,一分子鼠李糖 D 、一分子葡萄糖,一分子果糖 3、在水和其他溶剂中溶解度都很小的苷是( ) A 、氧苷 B 、 氮苷 C 、 硫苷 D 、 碳苷 4、水解碳苷常用的方法是( ) A 、缓和酸水解 B 、 强烈酸水解 C 、 酶水解 D 、氧化开裂法 5、纸色谱法检识下列糖,以BAW (4﹕1﹕5上层)溶剂系统为展开剂,展开后其Rf 值最大的是( ) A 、L-鼠李糖 B 、 D-葡萄糖 C 、 D-果糖 D 、D-半乳糖 6、用0.02~0.05mol/L 盐酸水解时, 下列苷中最易水解的是( ) A 、2-去氧糖苷 B 、6-去氧糖苷 C 、葡萄糖苷 D 、葡萄糖醛酸苷 7、Smith 裂解法所使用的试剂是( ) A 、NaIO 4 B 、NaBH 4 C 、均是 D 、均不是 8、按苷键原子的不同,酸水解难易程度为:( ) A 、C-苷>S-苷>O-苷>N-苷 B 、C-苷>N-苷>S-苷>O-苷 C 、N-苷>S-苷>O-苷>C-苷 D 、C-苷>O-苷>N-苷>S-苷 9、化学结构中含有 -去氧糖的苷为:( ) A 、强心苷 B 、三萜皂苷 C 、甾体皂苷 D 、环烯醚萜苷 10、葡萄糖苷键的构型有α和β两种,水解β型应选择:( ) A 、1%盐酸水溶液 B 、1%氢氧化钠水溶液 C 、纤维素酶 D 、麦芽糖酶 11、纤维素柱色谱通常用于分离:( ) A 、蒽醌类化合物 B 、三萜类化合物 C 、生物碱类化合物 D 、糖类化合物 二、填空题 1、苷类的酶水解具有 性, 是缓和的水解反应。

糖和苷类化合物

第三章糖和苷类化合物 一、名词解释: 1.配糖体 2.苷原 3.苷键、苷原子 4.氧苷 二、填空题: 1.多糖是一类由()以上的单糖键聚合而成的化合物。 2.苷类是()与另一非糖物质通过()连接而成的一类化合物,苷中的非糖部分称为()。 3.苷中的苷元与糖之间的化学键称为(),苷元上形成苷键以连接糖的原子,称为()。 4.苷元通过氧原子和糖相连接而成的苷称为(),根据形成苷键的苷元羟基类型不同,又分为()、()、()和()等。 5.苷类的溶解性与苷元和糖的结构均有关系。一般而言,苷元是()物质而糖是()物质,所以,苷类分子的极性、亲水性随糖基数目的增加而()。 6.由于一般的苷键属缩醛结构,对稀碱较稳定,不易被碱催化水解。但()、()、()和()的苷类易为碱催化水解。 7.麦芽糖酶只能使()水解;苦杏仁酶主要水解()。 8.确定苷键构型的方法主要有三种:()、()和()。 三、单选题: 1.能用碱催化水解的苷是() A.醇苷 B.碳苷 C.酚苷 D.氮苷 2.用酸水解时,最难水解的苷是() A.芦荟苷 B.水杨苷 C.苦杏仁苷 D.藏红花苦苷 3.下列有关苷类理化性质的叙述中,正确的是() A. 多具还原性 B.多无旋光性 C. 有一定亲水性 D.具有挥发性 4.对水溶解度小,且难于断裂的苷键是()

A.氧苷 B.硫苷 C.氮苷 D.碳苷 5.能确定苷键构型的是() A.酶解 B.乙酰解 C.碱解 D.酸解 四、简答题: 1.Smith裂解反应的反应式。 2.苷键具有什么性质,常用哪些方法裂解?苷类的酸催化水解与哪些因素有关?水解难易有什么规律? 3.苷键的酶催化水解有什么特点? 4.如何用斐林试剂反应鉴定多糖或苷? 答案: 一、名词解释: 1.苷类是糖或糖的衍生物与另一非糖物质通过糖的端基碳原子连接而成的一类化合物,又称为配糖体。 2. 苷中的非糖部分称为苷元(genin)或配基(aglycone)。 3. 苷中的苷元与糖之间的化学键称为苷键。苷元上形成苷键以连接糖的原子,称为苷键原子,也称为苷原子。 4. 苷元通过氧原子和糖相连接而成的苷称为氧苷。 二、填空题: 1. 2或2个以上。 2.糖,苷键,苷元。 3.苷键,苷原子。 4.氧苷,醇苷、酚苷、酯苷、氰苷。 5.亲脂性,亲水性,增强。 6.酯苷、酚苷、烯醇苷、β位吸电子基团。 7.α-葡萄糖苷;β-葡萄糖苷。 8.利用酶水解进行测定,利用Klyne经验公式进行计算,利用NMR确定苷键构型。

第二章 糖和苷

广东药学院课堂教案 日期节学时3 授课内容(章/节)第二章糖和苷/第一节单糖的立体化学 第二节糖和苷的分类 第三节糖的化学性质 教学目的和要求 1、掌握糖和苷的结构特征、分类及苷类化合物的含义; 2、掌握苷的溶解度与分子结构的内在联系,检识糖、苷类化合物反应机理与应用; 3、熟悉单糖立体化学及苷类化合物中的几个重要的名词、术语; 4、了解糖和苷类化合物研究成就与最新研究进展; 5、熟悉单糖结构中各类羟基的不同活性及作用于羟基的化学反应。 教学内容[标明重点、难点] 第一节单糖的立体化学; 1、单糖的绝对构型(重点) 2、单糖的差向异构体(重点) 3、单糖的氧环 4、单糖的构象 第二节糖和苷的分类

1、天然界常见的单糖 2、低聚糖 3、多聚糖 4、苷类:定义、分类、(重点) 第三节糖的理化学性质 1、氧化反应(难点) 2、糠醛形成反应 3、羟基反应(难点) 教学方法及教学手段 1、讲授及讨论 2、第二章糖和苷PowerPoint 课件 作业 1、苷类化合物的含义及其结构特征是什么?常见的分类方法及主要类型有哪些? 2、单糖的D、L系和α、β型的含义是什么?如何判断? 3、何谓原生苷、次生苷、苷元? 广东药学院课堂教案

日期学时3 授课内容(章/节)第二章糖和苷/第四节苷键的裂解 第五节糖的核磁共振性质 第六节糖链的结构测定 第七章糖和苷的提取分离 教学目的和要求 1、掌握苷键的裂解的反应机理及其应用; 2、熟悉多糖和苷的提取通法及常用的分离方法; 3、熟悉苷类化合物结构鉴定的程序和苷键构型的确定方法; 4、了解糖和苷的旋光性质及对结构研究的贡献; 5、了解糖和苷类化合物研究成就与最新研究进展。 教学内容[标明重点、难点] 第四节苷键的裂解 1、酸催化水解(重点) 2、乙酰解 3、碱催化水解和β消除 4、酶催化水解 5、过碘酸裂解反应(难点) 第五节糖的核磁共振性质

第二章 糖和苷作业

第二章糖和苷 一、解释下列概念 1. C1和1C构象式 2. Smith降解 3. Molish反应 4. β构型、α构型 5. Klyne法则 6. HIO4氧化反应 7. 乙酰解 二、问答题 1.苷键具有什么性质,常用哪些方法裂解? 2.苷类的酸催化水解与哪些因素有关?水解难易有什么规律? 三、填空 1.从植物中提取苷类成分时,首先应注意的问题是_________________________。 2. 葡聚糖凝胶层析法属于排阻层析,尤适于_____类成分的分离,先被洗脱下来的为___________化合物。 3. 苷类根据是生物体内原存的,还是次生的分为_____和_____;根据连接单糖基的个数分为______、_____等;根据苷键原子的不同分为______、______、______和______,其中__________为最常见。 4. 利用1HNMR谱中糖的端基质子的_____判断苷键的构型是目前常因用方法。对于葡萄糖苷来说,J=6~9Hz,应为_____构型,J=2~3Hz,为_____。 5. ___________和__________类化合物对Molish试剂呈正反应。 6. 在研究工作中,有的要利用酶的活性,有的则要抑制酶的活性,通常抑制酶的活性的方法有_________________、________________、______________和______________等。 7. 苦杏仁酶只能水解_______葡萄糖苷,纤维素酶只能水解________葡萄糖苷;麦芽糖酶只能水解__________葡萄糖苷。 8. 苷的甲基化反应常用的两种经典方法是______和______。半微量现代方法是______和______。 9. 按苷键原子的不同,酸水解的易难顺序为:______ >______ >______ >______ 。 10. 总苷提取物可依次用极性由_______到______的溶剂提取分离。 11. Smith降解水解法可用于研究难以水解的苷类和多糖,通过此法进行苷键裂解,①可获得______②从得到的_____可以获知糖的类型。 12. 苷化位移使糖的端基碳向____________移动。

中药化学习题集第二章糖与苷吴立军

精品文档 第二章糖和苷 、写出下列糖的Fisher投影式和Haworth投影式 (寡糖只写Haworth投影式) 1. 0D-葡萄吡喃糖 3. 0D-甘露吡喃糖 5. 0D-木吡喃糖 7. 0D-半乳吡喃糖 9. a L-呋吡喃糖 11?伕D-半乳吡喃糖醛酸 13芦丁糖 15. 樱草糖 17. 槐糖19.棉子糖 投影式如下: 2. a-L-鼠李吡喃糖 4. a-L-阿拉伯呋喃糖 6. 0D-核呋喃糖 8. 3-D-果呋喃糖 10. 3-D-葡萄吡喃糖醛酸 12. 新橙皮糖 14. 蔗糖 16. 麦芽糖 18. 海藻糖 20.槐三糖 4. a-L-阿拉伯呋喃糖 2. a-L-鼠李吡喃糖 OH 0H 3. 0D-甘露吡喃糖

CH2CH 0H 5. 0D-木吡喃糖 6. 0D-核呋喃糖 OH 8. 3-D-果呋喃糖 7. 0D-半乳吡喃糖 OH ----- O H 10. 3-D-葡萄吡喃糖醛酸9. a L-呋吡喃糖 OH 11.伕D-半乳吡喃糖醛酸12.新橙皮糖

COOH H OH 13.芦丁糖 15?樱草糖 OH H.OH 16?麦芽糖 14.蔗糖 HO

CH2OH J——0 CH2OH J——0 TI,OH 17?槐糖 HO—I 0H 0OH 18?海藻糖 HQH 19.棉子糖 H0 OH 20?槐三糖

二、名词解释 I. 1C 和C1构象式 3.1。和4C i 构象式 5. D 构型、L 构型 7毗喃型糖、呋喃型糖 9. Molish 反应 II. 乙酰解反应 13. 伕消除反应 15. 苷化位移 17. 前手性碳 19. 苷化位移中的同五异十其余 七 解析: 2. N 和A 构象式 4. B 构型、a 构型 6. 相对构型、绝对构型 8?低聚糖、多糖 10. 还原糖、非还原糖 12. 酶解反应 14.Smith 降解(过碘酸降解) 16. 端基碳 18. Bio-gel P 1、2、3 吡喃型糖在溶液或固体状态时,其优势构象是椅式,以 C 2、C 3、 C 5、O 四个原子构成的平面为准,当 C 4在面上,C 1在面下时,称为4C 1,简称为 1 C1式或N 式当C 4在面下,C 1在面上时,称为 C 4,简称为1C 式或A 式。 HO OH II,OH

相关主题