搜档网
当前位置:搜档网 > 20112017高考全国卷文科数学统计概率汇编

20112017高考全国卷文科数学统计概率汇编

新课标全国卷Ⅰ文科数学汇编

统计、概率

一、选择题

【2017,2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为

12,,,n x x x L ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是

A. 12,,,n x x x L 的平均数

B. 12,,,n x x x L 的标准差

C. 12,,,n x x x L 的最大值

D. 12,,,n x x x L 的中位数

【2017,4】如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )

A.

14 B.π8 C.12 D.π4

【2016,3】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ).

A .

13 B . 12 C . 23 D . 56

【2015,4】如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )

A .

310 B .15 C .110 D .120 【2013,3】从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).

A .

12 B .13 C .14 D .16

【2012,3】在一组样本数据(1x ,1y ),(2x ,2y ),…,(n x ,n y )(2n ≥,1x ,2x ,…,n x 不全相等)的散点图中,若所有样本点(i x ,i y )(i =1,2,…,n )都在直线1

12

y x =+上,则这组样本数据的样本相关系数为( ) A .-1 B .0

C .

12

D .1

【2011,6】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ).

A.13

B.

12 C.23 D.34

二、填空题

【2014,13】将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.

三、解答题

【2017,19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:

20112017高考全国卷文科数学统计概率汇编

经计算得16119.9716i i x x ===∑,

20112017高考全国卷文科数学统计概率汇编

20112017高考全国卷文科数学统计概率汇编

0.212s ==≈, 18.439

≈,()16

20112017高考全国卷文科数学统计概率汇编

1

()8.5 2.78i i x x i =--=-∑,

其中x i 为抽取的第i 个零件的尺寸,i =1,2,…,16. (1)求(),i x i (i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?

(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)

附:样本(x i ,y i )(i =1,2,…,n )的相关系数()()

n

i

i

x x y y r --=

∑0.09≈.

20112017高考全国卷文科数学统计概率汇编

20112017高考全国卷文科数学统计概率汇编

【2016,19】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图

.

频数

20112017高考全国卷文科数学统计概率汇编

x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用

(单位:元),n 表示购机的同时购买的易损零件数. (1)若19n =,求

y 与x 的函数解析式;

(2)若要求 “需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;

(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量(单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费x i ,和年销售量y i (i =1,2,3,…,8)的数据

作了初步处理,得到下面的散点图及一些统计量的值,表中8

118i i

i ωωω===∑

20112017高考全国卷文科数学统计概率汇编

20112017高考全国卷文科数学统计概率汇编

(Ⅰ)根据散点图判断,y=a+bx

与y c =+,哪一个宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);

20112017高考全国卷文科数学统计概率汇编

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;

(Ⅲ)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x ,根据(Ⅱ)的结果回答下列问题: (1)当年宣传费x=49时,年销售量及年利润的预报值时多少? (2)当年宣传费x 为何值时,年利润的预报值最大?

【2013,18】为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A 药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:

服用A药的20位患者日平均增加的睡眠时间:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B药的20位患者日平均增加的睡眠时间:

3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.4 1.60.5 1.80.6 2.1 1.1 2.5 1.2 2.7

0.5

(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?

(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?

【2012,18】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。

)(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n N

的函数解析式;

20112017高考全国卷文科数学统计概率汇编

①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,

求当天的利润不少于75元的概率。