搜档网
当前位置:搜档网 › 课程设计论文热处理工艺设计

课程设计论文热处理工艺设计

课程设计论文热处理工艺设计
课程设计论文热处理工艺设计

目录

第一章

热处理工设计目的 (1)

第二章

课程设计任务 (1)

第三章

热处理工艺设计方法 (1)

3.1 设计任务 (1)

3.2 设计方案 (2)

3.2.1 12CrNi3叶片泵轴的设计的分析 (2)

3.2.2 钢种材料 (2)

3.3设计说明 (3)

3.3.1 加工工艺流程 (3)

3.3.2 具体热处理工艺 (4)

3.4分析讨论 (11)

第四章

结束语 (13)

参考文献 (14)

12CrNi3叶片泵轴的热处理工艺设计

一. 热处理工艺课程设计的目的

热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是:

(1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。

(2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。

(3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。

二. 课程设计的任务

进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。

三. 热处理工艺设计的方法

1. 设计任务

12CrNi3叶片泵轴零件图如图3.1

图3.1 12CrNi3叶片泵轴

2、设计方案

2.1.工作条件

叶片泵是由转子、定子、叶片和配油盘相互形成封闭容积的体积变化来实现泵的吸油和压油。叶片泵的结构紧凑,零件加工精度要求高。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油再由大到小排油,叶片旋转一周时,完成两次吸油与排油。泵轴在工作时承受扭转和弯曲疲劳,在花键和颈轴处收磨损。因此,要求轴有高的强度,良好的韧性及耐磨性。

2.1.1失效形式

叶片泵轴的主要失效形式是疲劳断裂,在花键和轴颈处可能发生工作面的磨损、咬伤,甚至是咬裂。

2.1.2性能要求

根据泵轴的受力情况和失效分析可知 ,叶片泵轴主要是要求轴具有高的强度,良好的韧性及耐磨性,以保证轴在良好的服役条件下长时间的工作。

2.2钢种材料

12CrNi3A钢属于合金渗碳钢,比12CrNi2A钢有更高的淬透性,因此,可以用于制造比12CrNi2A钢截面稍大的零件。该钢淬火低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,缺口敏感性小,切削加工性能良好,当硬度为HB260~320时,相对切削加工性为60%~70%。另外,钢退火后硬度低、塑性好,因此,既可以采用切削加工方法制造模具,也可以采用冷挤压成型方法制造模具。为提高模具型腔的耐磨性,模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度、高耐磨性而心部具有很好的韧性,该钢适宜制造大、中型塑料模具。12CrNi3高级渗碳钢的淬透性较高 ,退火困难。由于不渗碳表面未经镀铜防渗 ,因此渗碳后进行低温回火 , 降低硬度 , 便于切去不渗碳表

面的渗碳层。材料加工成叶片泵轴需进行复杂的化学热处理,使心部硬度为

HRC31~HRC41,表面硬度不低于HRC60,从而使泵轴表面有较高硬度,心部呈现一定的韧性,以适应泵轴的工作环境;并且严格规定了表层的含碳量、组织均匀性、晶粒度及化学热处理等[1]。

3. 设计说明

3.1加工工艺流程

叶片泵轴的制造工序基本上相同,对于不同的钢种,在其热处理时有些许差异。一般都采用棒料经锻造—正火—机加工—渗碳—淬火—回火—矫直—机加工。

12CrNi3钢的化学成分见表3.1[2]

成分分析:

表 3.1 12CrNi3钢的化学成分

C Si Mn S P Cr Ni Cu

化学

成分

钢的含碳量可保证形成大量的合金碳化物,淬火加热时,一部分融入奥氏体中,提高其稳定性,同时也使马氏体中的合金元素含量增加,保证其硬度;而未溶的碳化物则起细化晶粒、提高韧性的作用.并提高钢的耐磨性。

Cr是12CrNi3合金钢中主要的合金元素,它使钢的淬透性大大增加,提高其回火稳定性,并产生二次硬化现象。铬与碳形成高硬度的碳化物,加热时未溶的碳化物可细化晶粒、提高钢的耐磨性的作用。

锰和硅是炼钢过程中必须加入的脱氧剂,用以去除溶于钢液中的氧。它还把钢液中的氧化铁还原成铁,并形成氧化锰和二氧化硅。锰除了脱氧作用外,还有除硫作用,即与钢液中的硫结合成MnS,从而在相当大成度上消除硫在钢中的有害影响。这些反应产物大部分进入炉渣,小部分残留与钢中,成为非金属夹杂物。脱氧剂中的

锰和硅会有一部分溶于钢液中,冷至室温后即溶于铁素体中,提高铁素体的强度。硅溶于铁素体中后有很强的固溶强化作用,显著提高钢的强度和硬度。

Ni 也是12CrNi3合金钢中的主要元素。它的存在提高了钢的强度,而不降低其塑性,改善了钢铁的低温韧性降低了钢铁的临界冷却速度,提高铁的淬透性扩大奥氏体区,是奥氏体化的有效元素[2]。

3.2具体热处理工艺

3.2.1试样热处理工艺

正火目的:正火使晶粒细化和碳化物分布均匀化,去除材料的内应力,降低零件硬度,提高切削性能,为渗碳做预处理。因为12CrNi3合金钢淬透性较高,退火困难,因此一般不用退火。

正火工艺加热温度:920℃±10℃,根据化学成分计算Ac 3温度:Ac 3=910-203C0.5-13.2Ni+44.7Si+104V+31.5Mo+13.1W≈874℃,故正火选择(Ac 3+30-50℃)即920℃±10℃。

正火保温时间:加热保温时间经验公式:t=αKD,α-加热系数,空气电阻炉-合金钢α取1.3-1.6(min/mm );K 为装炉修正系数,取1-1.5;D-工件的有效厚度(mm ),当高度(h )/壁厚(δ)≤1.5时,以h 计。故最终保温时间:t=αKD=1.6×1.5×40=96min ,取2h 。 正火后的组织:P+少量F 正火曲线:

正火炉如表3.2

温度/℃

热处理工艺课程设计

热处理工艺课程设计 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

热处理工艺课程设计高速高载齿轮的热处理工艺 姓名:成** 学号:******* 学院:扬州大学机械工程学院 专业:材料成型及控制工程 设计指导老师:黄新

前言 热处理工艺是金属材料工程的重要组成部分。通过热处理可以改变材料的加工工艺性能,充分发挥材料的潜力,提高工件的使用寿命。本课程设计是在《材料科学基础》﹑《金属热处理工艺学》﹑《失效分析》﹑《金属力学性能》等课程学习的基础上开设的,是理论与实践相结合的重要教学环节。通过该课程设计,可使学生在综合运用所学专业基础理论和专业知识能力方面得到训练,学会独立分析问题和解决问题的方法,提高工程意识和工程设计能力。 热处理工艺是整个机械加工过程种的一个重要环节,它与工件设计及其它加工工艺之间存在密切关系。如何实现工件设计时提出的几何形状和加工精度,满足设计时所要求的多种性能指标,热处理工艺制定的合理与否,有着至关重要的作用。 现代工业的飞速发展对机械零部件﹑工模具等提出的要求愈来愈高。热处理不仅对锻造机械加工的顺利进行和保证加工效果起着重要作用,而且在改善或消除加工后缺陷,提高工件的使用寿命等方面起着重要作用。为获得理想的组织与性能,保证零件在生产过程中的质量稳定性和使用寿命,就必须从工件的特点﹑要求和技术条件,认真分析产品在使用过程中的受力状况和可能失效形式,正确选择材料;再根据生产规模﹑现场条件﹑热处理设备提出几种可行的热处理方案,最后根据其经济性﹑方便性﹑质量稳定性和便于管理﹑降低成本等因素,确定出一种最佳方案。

课程设计退火炉温度控制系统资料讲解

课程设计退火炉温度 控制系统

课程设计设计题目:退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案 (5) 2.1概述 (5) 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计 (9) 3.2程序清单与电路图 (11) 3.3温度控制电路 (17) 第4章控制算法 (18) 4.1程序框图 (18) 4.2算法设计 (19) 第5章课程设计总结................................................ - 22 -

热处理设备课程设计---实验大纲

《热处理设备》课程设计教学大纲 课程编码:050251005 课程英文名称:Heat-treatment Equipment Course Design 课程总学时:3周讲课:10 实验:0 上机:40 适用专业:金属材料工程 大纲编写(修订)时间:2017.7 一、大纲使用说明 本大纲根据金属材料工程专业2017版教学计划制订。 (一)适用专业 金属材料工程。 (二)课程设计性质 本课程设计是学生在修完热处理原理与工艺学等专业基础课程,并完成工艺课程设计后进行的一次综合性和实践性很强的教学实践活动,是教学中的一个重要环节。 (三)主要先修课程和后续课程 1.先修课程:工程制图、机械设计基础、热处理原理与工艺学、热处理设备等。 2.后续课程:学生进入毕业设计教学环节。 二、课程设计目的及基本要求 课程设计教学实施目的是: 1.通过课程设计实践,树立正确的设计思想,培养综合运用热处理设备课程和其他先修课 程的理论与生产实际知识来分析和解决炉子设计问题的能力。 2.学习热处理炉设计的一般方法,掌握炉子设计的一般规律。 3.进行常规热处理炉设计基本技能的训练:例如计算、绘图、查阅资料及手册、运用标准及规范。 4.熟悉计算机Auto CAD 软件的使用操作,进行计算机辅助设计和绘图的训练。 课程设计教学的基本要求: 1.能从热处理炉功能要求出发,制订或分析设计方案,合理地选择炉型结构、确定炉体基本尺寸、合理选定耐火材料、确定炉体钢结构和钢材的规格型号。 2.能应用热平衡计算法确定热处理炉的输入总功率。能够进行电阻炉电热元件的计算或根据燃料种类进行燃料燃烧计算,进而选择燃烧装置。 3.能够从使用与维护、经济性和耐用性等问题出发,对热处理工件夹具、支架等进行结构设计。 4.绘图表达设计结果,图样符合国家制图标准,尺寸及公差标注完整、正确,技术要求合理、全面。 5.初步掌握Auto CAD 软件的使用操作,使用计算机绘制炉体总图、零件图。 三、课程设计内容及安排 1. 主要内容: 课程设计题目以箱式电阻炉、台车炉、盐浴炉、井式炉的设计为主,也可选做其它设计题目,其工作量要在3周内完成。

汽车半轴热处理工艺

40Cr钢汽车半轴的热处理工艺 *** (中国矿业大学材料科学与工程学院江苏徐州 221116) 摘要:制定40Cr 钢退火、正火、淬火、回火、调质热处理工 艺, 测定在各种热处理情况下试样的硬度和冲击韧性, 并进 行材料的金相组织分析, 得出了40Cr 钢调质处理具有良好综 合性能的结论。 关键词:汽车半轴;热处理工艺;金相组织;性能 1引言 汽车半轴是汽车的重要部件之一, 要求具有合理的最佳的静 扭强度和抗扭转疲劳性能. 是在汽车运行中承受自重和货物重量, 并传递扭矩的重要零件,常采用40Cr 钢制造, 其产品质量直接影 响着整车的性能。 40Cr 钢属于亚共析钢, 缓冷至室温后的显微组织为铁素体 加珠光体, 含有较少的合金元素, 属于低淬透性合金调质钢, 经 适当热处理后具有较高的强度、良好的塑性和韧性, 即具有良好 的综合力学性能, 常用于制造汽车的连杆、螺栓、传动轴及机床 主轴等机械零件。 2分析 汽车半轴的加工工艺流程如下:半轴材料采购→下料→花键 加热→锻造镦花键成形→另一端加热→锻造预镦制坯→加热→半 轴盘端摆辗成形→淬火→回火→校直→抛丸→铣端面钻中心孔→ 校正→粗车半轴法兰盘外端面和花键外圆→粗车法兰盘内端面和 外圆→精车法兰端和花键外圆→铣花键→清洗→中频淬火→回火 →校正→无损检测→钻半轴法兰盘孔→磨半轴法兰轴颈→精车半 轴法兰内端面→抛光→清洗→打标→包装。 对于40Cr的热处理,采用预备热处理和最终热处理。调质钢经热加工后, 必须经过预备热处理来降低硬度, 便于切削加工, 消除热加工时造成的组织缺陷,细化晶粒, 改善组织, 为最终热

处理做好准备。对于40Cr 钢而言, 可进行正火或退火处理。调质钢的最终热处理是淬火加高温回火。一般可以采用较慢的冷却速度淬火, 可以用油淬以避免热处理缺陷。当强度较高时, 采用较低的回火温度, 反之选用较高的回火温度。 铁碳合金相图 40Cr的化学成分及临界温度见表1 从铁碳合金相图可以看出:40Cr钢属于亚共析钢, 在缓慢冷却到室温后的组织为铁素体和珠光体。从钢的分类来看, 40Cr钢属于调质钢, 具有很高的强度及良好的塑性和韧性,也就是有良 好的机械性能。40Cr钢主要应用于制造业,特别是机械类制造的材料。表1所示的是40Cr 的化学成分及临界温度。40Cr钢的热处理,各种参数都有规定,在实际操作中应注意: (1)40Cr 工件淬火后应采用油冷,40Cr 钢的淬透性较好,在油中冷却能淬硬,而且工件的变形、开裂倾向小,操作者要凭

16Mn钢(热处理课程设计)

目录 第一章金属热处理课程设计简介 (1) 一、课程设计的任务与性质 (1) 二、课程设计的目的 (1) 三、设计内容与基本要求 (1) 四、设计步骤 (2) 第二章材料16Mn基本参数 (2) 一、16Mn材料简介 (2) 二、16Mn材料的性能及用途 (3) 三、16Mn材料化学成分 (3) 四、16Mn物理力学性能 (3) 第三章热处理工艺设计 (4) 一、16Mn热处理概述 (4) 二、16Mn热处理 (4) 三、基本参数确定 (9) 第四章 16Mn钢热处理分析 (10) 一、16Mn钢热处理后组织分析 (10) 二、16Mn钢热处理后材料性能检测 (13) 第五章设计与心得体会 (17) 参考文献 (19)

第一章金属热处理课程设计简介 一、课程设计的任务与性质 《金属热处理原理与工艺》课程是一门重要的专业课程,金属材料热处理工艺设计及实验操作是一种重要的教学环节,通过金属材料热处理工艺金相组织分析、性能检测等实验,可以培养学生掌握热处理实验方法、原理及相关设备,运用热处理的基本原理和一般规律对实验结果进行分析讨论,有助于强化学生解决问题、分析问题的能力。 二、课程设计的目的 1、课程设计属于《金属热处理原理与工艺》课程的延续,通过设计实践,进一步学习掌握金属热处理工艺设计的一般规律和方法。 2、培养综合运用金属学、材料性能学、金属工艺学、金属材料热处理及结构工艺等相关知识,进行工程设计的能力。 3.培养使用手册、图册、有关资料及设计标准规范的能力。 4.提高技术总结及编制技术文件的能力。 5.是金属材料工程专业毕业设计教学环节实施的技术准备。 三、设计内容与基本要求 设计内容:完成合金结构钢(16Mn)的热处理工艺设计,包括工艺方法、路线、参数的确定,热处理设备及操作,金相组织分析,材料性能检测等。 基本要求: 1.课程设计必须独立的进行,每人必须完成不同的某一种钢材热处理工艺设计,能够较清楚地表达所采用热处理工艺的基本原理和一般规律。 2.合理地确定工艺方法、路线、参数,合理选择热处理设备并正确操作。 3.正确利用TTT、CCT图等设计工具,认真进行方案分析。 4.正确运用现代材料性能检测手段,进行金相组织分析和材料性能检测等。 5.课程设计说明书力求用工程术语,文字通顺简练,字迹工整,图表清晰。 四、设计步骤 方案确定: 1.根据零件服役条件合理选择材料及提出技术要求。

箱式电阻炉课程设计

一、设计任务书 题目:设计一台中温箱式热处理电阻炉; 生产能力:160 kg/h ; 生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。 二、炉型的选择 根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度650℃,不通保护气氛。 三、确定炉体结构及尺寸 1.炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。已知生产率p 为160 kg/h ,按照教材表5-1选择箱式炉用于退火和回火时的单位面积生产率p 0为 100 kg/(m 2﹒h ),故可求得炉底有效面积: F 1=P P 0=160100 =1.6m 2 由于有效面积与炉底总面积存在关系式F 1F ?=0.60~0.85,取系数上限,得炉底实际面积: F = F 10.85=1.6 0.85 =1.88m 2 2.炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑出料方便,取L B ?=2,因此,可求得: L =√F 0.5?=√1.880.5?=1.94m B =L 2?=1.942?=0.97 m 根据标准砖尺寸,为便于砌砖,取L =1.970 m ,B =0.978 m ,如总图所示。 3.炉膛高度的确定 按照统计资料,炉膛高度H 与宽度B 之比H B ?通常在0.5~0.9之间,根据炉子工作条件,取H B ?=0.654m 。 因此,确定炉膛尺寸如下: 长 L =(230+2)×8+(230×1 2+2)=1970 m 宽 B =(120+2)×4+(65+2)×2+(40+2)×3+(113+2)×2=978mm 高 H =(65+2)×9+37=640 mm 为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为: L 效=1700 mm B 效=700 mm H 效=500 mm 4.炉衬材料及厚度的确定 由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN ?0.8轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+113mm B 级硅藻土砖。 炉顶采用113 mmQN ?1.0轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+115 mm 膨胀珍珠岩 。 炉底采用三层QN ?1.0轻质粘土砖(67×3)mm ,+50 mm 密度为250 kg m 3?的普通硅酸铝

热处理原理与工艺课程设计

* * 大学 热处理原理与工艺课程设计 题目: 50Si2Mn弹簧钢的热处理工艺设计 院(系):机械工程学院 专业班级:** 学号:******* 学生姓名:** 指导教师:** 起止时间:2014-12-15至2014-12-19

课程设计任务及评语 院(系):机械工程学院教研室:材料教研室 学号******* 学生姓名** 专业班级*** 课程设计题目50Si 2 Mn弹簧钢的热处理工艺设计 课程设计要求与任务一、课设要求 熟悉设计题目,查阅相关文献资料,概述50Si 2 Mn弹簧钢的热处理工艺,制 定出热处理工艺路线,完成工艺设计;分析50Si 2 Mn弹簧钢的成分特性;阐述 50Si 2 Mn弹簧钢淬火、回火热处理工艺理论基础;阐述各热处理工序中材料的组织和性能;阐明弹簧钢的热处理处理常见缺陷的预防及补救方法;选择设备;给出所用参考文献。 二、课设任务 1.选定相应的热处理方法; 2.制定热处理工艺参数; 3.画出热处理工艺曲线图; 4分析各热处理工序中材料的组织和性能; 5.选择热处理设备 三、设计说明书要求 设计说明书包括三部分:1)概述;2)设计内容;3)参考文献。 工作计划 集中学习0.5天,资料查阅与学习,讨论0.5天,设计6天:1)概述0.5天,2)服役条件与性能要求0.5天,3)失效形式、材料的选择0.5天,4)结构形状与热处理工艺性0.5天,5)冷热加工工序安排0.5天,6)工艺流程图0.5天,7)热处理工艺设计1.5天,8)工艺的理论基础、原则0.5天, 09)可能出现的问题分析及防止措施0.5天,10)热处理质量分析0.5天,设计验收1天。 指 导 教 师 评 语 及 成 绩成绩:学生签字:指导教师签字: 年月日

课程设计报告模板--热处理设备

北华航天工业学院《热处理设备课程设计》 课程设计报告报告题目: 作者所在系部: 作者所在专业: 作者所在班级: 作者姓名: 作者学号: 指导教师姓名: 完成时间:

《热处理设备》课程设计任务书 课题名称750 ℃60 kg/h的箱式电阻炉设计完成时间12.27-31 指导教师陈志勇、范涛职称高工、助教学生姓名班级 总体设计要求和技术要点 总体设计要求:1.通过设计,培养学生具有初步的设计思想和分析问题、解决问题的能力,了解设计的一般方法和步骤。2.初步培养学生的设计基本技能,如炉型的选择、结构尺寸设计计算、绘图、查阅手册和设计资料,熟悉标准和规范等。3.使学生掌握设计热处理设备的基本方法,能结合工程实际,选择并设计常用热处理设备,培养学生对工程技术问题的严肃认真和负责的态度。设计一台热处理箱式电阻炉,其技术要点为:1.用途:中碳钢、低合金钢毛坯或零件的淬火、正火、调质处理及回火。 2.工件:中小型零件,无定型产品,处理批量为多品种,小批量; 3.最高工作温度: 750℃; 4.生产率:60 kg/h ; 5.生产特点:周期式成批装料,长时间连续生产。 工作内容及时间进度安排 1.热处理设备设计准备 0.5天 2.箱式电阻炉结构尺寸计算、选择炉体材料、计算分配电阻炉加热功率 0.5天 3.计算电热元件尺寸、进行结构设计 0.5天 3.核算设备技术经济指标 0.5天 4.绘制电阻炉总图、电热元件零件图 1.0天 5.编写设计说明书、使用说明书 0.5天 6.设计总结 0.5天 7.答辨 1.0天 课程设计成果 1、设计说明书:设计说明书是存档文件,是设计的理论计算依据。说明书的格式如下:(1)统一模板,正规书写;(2)说明书的内容及计算说明项目:(a)、对设计课题的分析;(b)、设计计算过程;(c)、炉子技术指标;(d)、参考文献。 2、设计图纸:(1)电阻炉总图一张(A3),要求如下:(a)、图面清晰,比例正确;(b)、尺寸及其标注方法正确;(c)、视图、剖视图完整正确;(d)、注出必要的技术条件。(2)零件图3张:电热元件零件图,炉门图,炉衬图(A4)。 3、使用说明书:电阻炉的技术规范及注意事项等。

齿轮传动轴的热处理工艺

渤海船舶职业学院 毕业设计(论文)题目:42CrMo齿轮传动轴的热处理工艺 系:材料工程系专业:金属材料与热处理姓名:吴超指导教师:王学武 班级:11G541 评阅教师: 学号:17 完成日期:

42CrMo齿轮传动轴的热处理工艺 摘要:本文阐明42CrMo齿轮传动轴热处理工艺路线的选用及工艺参数的确定,具体包括,材料的选择、正火、调制处理、低温回火及齿轮的感应淬火等工艺内容。满足轧机齿轮传动轴的基本技术要求。热处理工艺的制定有利于提高传动轴的质量及加工效率。 关键词:42CrMo齿轮传动轴;调制处理;感应淬火

目录 2 42CrMo齿轮传动轴热处理工艺设计 (5) 2.1 齿轮传动轴的服役条件、失效形式及性能要求 (5) 2.1.1 服役条件、失效形式 (5) 2.1.2 性能要求 (5) 2.2 齿轮轴材料的选择 (5) 2.3 42CrMo齿轮传动轴的热处理工艺设计 (6) 2.3.1 42CrMo的工艺流程 (6) 2.3.2 42CrMo钢的热处理工艺设计 (7) (1)预备热处理工序--正火 (7) 感应加热淬火工艺原理 (9) 2.4选择设备 (10) 2.6 42CrMo齿轮传动轴热处理质量检验项目、内容及要求 (12) 2.8 42CrMo齿轮传动轴热处理常见缺陷的预防和补救方法 (13) 2.8.1加热时常见的缺陷的预防及补救方法 (13) (1)过热现象及其预防、补救 (13) 2.8.2调质时常见的缺陷的预防及补救方法 (14) 2.8.3感应加热淬火缺陷与预防、补救 (15) 3.结论 (16) 4.致谢 (17) 5.参考文献 (19)

课程设计论文热处理工艺设计

目录 第一章 热处理工设计目的 (1) 第二章 课程设计任务 (1) 第三章 热处理工艺设计方法 (1) 3.1 设计任务 (1) 3.2 设计方案 (2) 3.2.1 12CrNi3叶片泵轴的设计的分析 (2) 3.2.2 钢种材料 (2) 3.3设计说明 (3) 3.3.1 加工工艺流程 (3)

3.3.2 具体热处理工艺 (4) 3.4分析讨论 (11) 第四章 结束语 (13) 参考文献 (14)

12CrNi3叶片泵轴的热处理工艺设计 一. 热处理工艺课程设计的目的 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是: (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。 (3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 二. 课程设计的任务 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。 三. 热处理工艺设计的方法 1. 设计任务 12CrNi3叶片泵轴零件图如图3.1

图3.1 12CrNi3叶片泵轴 2、设计方案 2.1.工作条件 叶片泵是由转子、定子、叶片和配油盘相互形成封闭容积的体积变化来实现泵的吸油和压油。叶片泵的结构紧凑,零件加工精度要求高。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油再由大到小排油,叶片旋转一周时,完成两次吸油与排油。泵轴在工作时承受扭转和弯曲疲劳,在花键和颈轴处收磨损。因此,要求轴有高的强度,良好的韧性及耐磨性。 2.1.1失效形式 叶片泵轴的主要失效形式是疲劳断裂,在花键和轴颈处可能发生工作面的磨损、咬伤,甚至是咬裂。 2.1.2性能要求 根据泵轴的受力情况和失效分析可知 ,叶片泵轴主要是要求轴具有高的强度,良好的韧性及耐磨性,以保证轴在良好的服役条件下长时间的工作。 2.2钢种材料 12CrNi3A钢属于合金渗碳钢,比12CrNi2A钢有更高的淬透性,因此,可以用于制造比12CrNi2A钢截面稍大的零件。该钢淬火低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,缺口敏感性小,切削加工性能良好,当硬度为HB260~320时,相对切削加工性为60%~70%。另外,钢退火后硬度低、塑性好,因此,既可以采用切削加工方法制造模具,也可以采用冷挤压成型方法制造模具。为提高模具型腔的耐磨性,模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度、高耐磨性而心部具有很好的韧性,该钢适宜制造大、中型塑料模具。12CrNi3高级渗碳钢的淬透性较高 ,退火困难。由于不渗碳表面未经镀铜防渗 ,因此渗碳后进行低温回火 , 降低硬度 , 便于切去不渗碳表

热处理箱式电阻炉课程设计

热处理箱式电阻炉课程设计 一、设计任务 1、炉型:箱式炉 2、设计要求:(1)生产率或一次装炉量:100kg/h (2)零件尺寸:长、宽、高尺寸最大不超过150mm (3)零件材料:中、低碳钢、低合金钢及工具钢 (4)零件热处理工艺:淬火加热 3、任务分析: (1)生产率或一次装炉量为100kg/h ,属小型炉; (2)生产长、宽、高尺寸最大不超过150mm 的零件,选择箱式炉合理; (3)淬火加热工艺表明所设计的箱式炉属于中温范畴。 二、电阻炉的炉体结构设计 1、炉型选择:由于所生产的零件尺寸较小,都不大于150mm ,且品种较多,热处理 工艺为淬火加热,具体品种的淬透性不同,工艺有所差别,故采用周期作业中温箱式热处理炉进行设计。(额定温度为950℃) 2、炉膛设计 (1)典型零件的选定 参照设计任务的要求,选用40Cr 钢齿轮模拟设计 ①齿轮参数:分度圆mm d 128= 齿顶圆mm d a 136= 齿数32=z 模数 4=m 齿宽mm b 70= 全齿高mm h 9= 齿根圆mm d f 118= 齿轮孔径mm d 40=孔 ②设定工艺曲线: 加热时间 t=a ×k ×D (a :加热系数,k :工件装炉条件修正系数,D :工件 《热处理手册》第四版第二卷,机械工业出版p55 工艺周期为5h 《热处理设备》p117表5-4

有效厚度) 查表得:a 为1.2-1.5min/mm 取1.3 min/mm k 取1.8 故时间 t=1.3×1.8×70=163.8min 取加热时间3h ,保温时间2h 工艺周期为5h (2)确定炉膛尺寸 一次装炉量=生产率×周期=100kg/h ×5h=500kg 单位重量 kg kg d d 337.6108.7b ])2 ( )2[(m 322 =???-=孔π 零件个数 809.78337 .6500 ≈== n 个 查表可知,炉底单位面积生产率 h m kg P ?=20100 有效面积 22 01100 100m m P P F === 有效 由于工件之间距离为工件高度的0.3-0.5,故取工件之间距离为30mm 设计每次装炉80个零件,分两层分布,每层40个,纵向8个,横向5个 实际炉底面积 224.125.18 .01 m m K F F ≈== = 有效实 (K 为炉底利用系数,通常为0.8-0.85) 取 长 L=1.4m , 宽 B=1.0m 炉子高度一般为(0.52-0.90)B ,取0.6B ,故H=0.6m 3、炉体各部分结构 (1)炉衬:分为内层耐火层和外层保温层 内层:用QN —1.0的轻质耐火粘土砖 外层:B 级硅藻土砖,热导率为t 1023.0131.03 -?+,最高使用温度为900℃ (2)炉墙: 耐火层:QN —1.0轻质耐火粘土砖,规格为230×113×65mm ,热导率为 t 3110256.029.0-?+=λ,厚度 mm 1131=δ 保温层:B 级硅藻土砖,规格为230×113×65mm ,热导率为 t 1023.0131.03 -2?+=λ,厚度 mm 2302=δ 炉膛尺寸: L=1.4m B=1.0m H=0.6m 《热处理设备课程设计指导书》附表2

轴类零件的材料与热处理

轴类零件的材料与热处理 一般轴类零件常用中碳钢,如45钢,经正火、调质及部分表面淬火等热处理,得到所要求的强度、韧性和硬度。 对中等精度而转速较高的轴类零件,一般选用合金钢(如40Cr等),经过调质和表面淬火处理,使其具有较高的综合力学性能。对在高转速、重载荷等条件下工作的轴类零件,可选用20CrMnTi、20Mn2B、20Cr等低碳合金钢,经渗碳淬火处理后,具有很高的表面硬度,心部则获得较高的强度和韧性。对高精度和高转速的轴,可选用38CrMoAl 钢,其热处理变形较小,经调质和表面渗氮处理,达到很高的心部强度和表面硬度,从而获得优良的耐磨性和耐疲劳性。 附:钢的淬火与回火是热处理工艺中很重要的、应用非常广泛的工序。淬火能显著提高2钢的强度和硬度。如果再配以不同温度的回火,即可消除(或减轻)淬火内应力,又能得到强度、硬度和韧性的配合,满足不同的要求。所以,淬火和回火是密不可分的两道热处理工艺。

车床主轴加工工艺过程分析 ⑴ 主轴毛坯的制造方法 锻件,还可获得较高的抗拉、抗弯和抗扭强度。 ⑵ 主轴的材料和热处理 45钢,普通机床主轴的常用材料,淬透性比合金钢差,淬火后变形较大,加工后尺寸稳定性也较差,要求较高的主轴则采用合金钢材料为宜。 ①毛坯热处理 采用正火,消除锻造应力,细化晶粒,并使金属组织均匀。 ②预备热处理 粗加工之后半精加工之前,安排调质处理,提高其综合力学性能 ③最终热处理 主轴的某些重要表面需经高频淬火。 最终热处理一般安排在半精加工之后,精加工之前,局部淬火产生的变形在最终精加工时得以纠正。 加工阶段的划分 ①粗加工阶段

用大的切削用量切除大部分余量,及时发现锻件裂纹等缺陷。 ②半精加工阶段 为精加工作好准备 ③精加工阶段 把各表面都加工到图样规定的要求。 粗加工、半精加工、精加工阶段的划分大体以热处理为界。 工序顺序的安排 毛坯制造——正火——车端面钻中心孔——粗车——调质——半精车表面淬火——粗、精磨外圆——粗、精磨圆锥面——磨锥孔。 在安排工序顺序时,还应注意下面几点:①外圆加工顺序安排要照顾主轴本身的刚度,应先加工大直径后加工小直径,以免一开始就降低主轴钢度。 ②就基准统一而言,希望始终以顶尖孔定位,避免使用锥堵,则深孔加工应安排在最后。但深孔加工是粗加工工序,要切除大量金属,加工过程中会引起主轴变形,所以最

热处理工艺设计课程设计

北华航天工业学院 《热处理工艺设计》 课程设计报告 报告题目:CA8480轧辊车床主轴 和淬火量块 热处理工艺的设计 作者所在系部:材料工程系 作者所在专业:金属材料工程 作者所在班级:B10821 作者学号:20104082104 作者姓名:倪新光 指导教师姓名:翟红雁 完成时间:2013.06.27

课程设计任务书 课题名称 CA8480轧辊车床主轴和淬火量块 热处理工艺的设计 完成时间06.27 指导教师翟红雁职称教授学生姓名倪新光班级B10821 总体设计要求 一、设计要求 1.要求学生在教师指导下独立完成零件的选材; 2.要求学生弄清零件的工作环境。 3.要求学生通过对比、讨论选择出最合理的预先热处理工艺和最终热处理工艺方法; 4.要求学生分别制定出预先热处理和最终热处理工艺的正确工艺参数,包括加热方式、加热温度、保温时间以及冷却方式; 5.要求学生写出热处理目的、热处理后组织以及性能。 工作内容及时间进度安排 内容要求时间备注 讲解并自学《金属热处理工艺》课本第六章;收集资料, 分析所给零件的工作环境、性能要求, 了解热处理工艺设计的方法、内容和步骤; 通过对零件的分析,选择合适的材料以及技术要 求 0.5天 热处理工艺方法选择和工艺路线的制定 确定出几种(两种以上)工艺 线及热处理 方案,然后进行讨论对比优缺点, 确定最佳工艺 路线及热处理工艺方案 1.5天 热处理工艺参数的确定及热处理后组织、性能 查阅资料,确定出每种热处理工艺的参数, 包括加热方式、温度和时间,冷却方式等,并绘 出相应的热处理工艺曲线 1.5天 编写设计说明书按所提供的模板 0.5天 答辩1天 课程设计说明书内容要求 一. 分析零件的工作环境,确定出该零件的性能要求,结合技术要求,选出合适的材料,并阐述原因。 二. 工艺路线和热处理方案的讨论。要求两种以上方案进行讨论,条理清晰,优缺点明确。 三. 每种热处理工艺参数的确定(工序中涉及到的所有热处理工艺)。写出确定参数的理由和根据,(尽可能写出所使用的设备)要求每一种热处理工艺都要画出热处理工艺曲线; 四. 写出每个工序的目的以及该零件热处理后常见缺陷。

热处理设备课程设计淬火盐水槽的设计

2015—2016学年第二学期 热处理设备课程设计淬火盐水槽设计 设计者: 班级: 指导教师: 设计日期:

目录 一.淬火槽设计 1.基本要求 2.设计内容 二.设备计算和选择 1.淬火盐水槽的尺寸确定 1.1淬火盐水槽的结构形式 1.2淬火盐水槽的尺寸计算 2.冷却循环系统的组成 3.冷却器的计算与选择 三.绘图 四.收获总结 致谢

一、淬火槽设计 1.基本要求 冷却是热处理生产的重要组成部分。淬火冷却设备的主要作用是实现对材料的淬火冷却,达到所要求的组织和性能;同时减少或避免工件在冷却过程中开裂和变形。 对淬火冷却设备的基本要求是: ①能容纳足够的淬火介质,以满足吸收高温工件的热量的需要; ②能控制淬火介质的温度、流量和压力参数等,以充分发挥淬火介质的功能; ③能造成淬火介质与淬火工件之间的强烈运动,,以加快热交换过程; ④对容易开裂和变形的工件,应设置适当的保护装置,以防止开裂和减少变形; ⑤设置介质冷却循环系统,以维持介质温度和运动; ⑥保护环境和生产安全。 2.设计内容 ①根据工件的特性、淬火方法、淬火介质、生产量和生产线的组成情况,确定淬火槽的结构类型; ②根据每批淬火件的最大重量、最大淬火尺寸确定淬火槽的容积; ③选择淬火介质在槽内的运动形式,确定供排介质的位置。确定驱动介质运动装置的安装位置; ④选择淬火槽的结构材料,考虑材料的抗蚀性和避免应用催化介质变质的材料; ⑤绘制水槽结构图,给出用料明细表; ⑥给出配套冷却器(型号、换热量)。 二、设备计算和选择 1.淬火槽的尺寸确定 1.1淬火槽的结构形式 此次设计的淬火槽结构形式为普通型间隙作业淬火槽,主体结构由槽体、介质进排液管及溢流槽组成。 ①槽体 淬火槽槽体材质采用Q235钢。其屈服强度δs=235MPa,抗拉强度δ

曲轴的热处理工艺

曲轴的热处理工艺 曲轴是引擎的主要旋转机件,装上连杆后,可承接连杆的上下(往复)运动变成循环(旋转)运动。是发动机上的一个重要的机件,其材料是由碳素结构钢或球墨铸铁制成的。曲轴的性能在很大程度上影响着汽车发动机的可靠性与寿命。曲轴在发动机中承担着最大的负荷和全部的功率,承担着强大的方向不断变化的弯矩和扭矩,同时承受着长时间的高速运转的磨损,圆角过渡处处于薄弱环节,主轴颈与圆角的过渡处更为严重。因而,需要合适的热处理工艺,以保证其达到所要求的各项性能指标。 在曲轴工作的过程中,往复的惯性力和离心力使之承受很大的弯曲---扭转应力,轴颈表面容易磨损,且轴颈与曲臂的过渡圆角处最为薄弱。除曲轴的材质,加工因素外,曲轴的工作条件(温度、环境介质、负荷特性)等都是影响曲轴服役的。 曲轴的主要失效形式有(1)疲劳断裂:多数断裂时曲柄与轴颈的圆角处产生疲劳裂纹,随后向曲柄深处发展,造成曲柄的断裂,其次是曲柄中部的油道内壁产生裂纹,发展为曲柄处的断裂。(2)轴颈表面的严重磨损。 因此,曲轴的选材十分重要,既需要满足曲轴的力学性能,也需要考虑强度和耐磨性。由于曲轴需要承受交变的弯曲---扭转载荷以及发动机的大的功率,因此,要求其具有高的强度,良好的耐磨、耐疲劳性以及循环韧性等。因而,根据曲轴材料的要求,各项技术要求,及材料的成分,机械性能,淬透性,同时需考虑成本的经济性,最终可以选择40Cr作为汽车发动机的材料。 所以曲轴的大致加工路线是,锻造→正火→机械加工→去应力退火→调质处理→表面热处理(高频淬火+低温回火),其中预备热处理为正火,然后可能有必要进行去应力退火,最终热处理为调质处理和表面热处理的高频淬火和低温回火。 40Cr的显微组织不均匀,且晶粒粗大,需要进行预备热处理来细化晶粒和改善其内部组织。翻阅书籍后我决定采用正火的方法来作为预备热处理。正火温度为Ac3或Acm以上40到60℃,故取正火温度为880℃,来改善晶粒大小,使晶粒细化,可以获得更好的切削加工性能,并为后续热处理工艺打好基础。 正火后组织变成了片状P和片状渗碳体,此时的钢的切削性能较好,硬度较低,便于切削加工。在进行粗加工后组织内部可能会产生一些残余应力,影响后续热处理工艺,于是需要用去应力退火来消除组织应力。一般去应力退火加热温度低于回火温度,故取540℃,再保温2小时,以防止产生新的残余应力。 完成上述工序后40Cr的性能任未满足曲轴的要求,需要进行更进一步的操作,即最终热处理,在这里选择的是调质处理以及表面高频淬火。 对于调质处理,40Cr是亚共析钢,淬火温度为Ac3+30到50℃,所以取淬火温度为830℃,而40Cr淬透性较好,为了避免40Cr钢在淬火时出现淬裂现象,因此选择淬火介质——油,保温10分钟。淬透之后采用高温回火,加热温度在560℃左右,保温两个小时空冷。 实现淬火的必要条件是加热温度必须高于临界点温度以上,以获得奥氏体组织,其冷却速度必须大于临界冷却速度,而淬火得到的组织是马氏体或下贝氏体。对40Cr进行淬火前,其组织状态为珠光体,而淬火后组织为马氏体。马氏体具有很高的硬度,但很脆,所以需要高温回火来提高韧性适当降低硬度。回火后40Cr的组织为回火索氏体,保留了淬火效应,索氏体均匀细密,晶粒细小,具

课程设计论文--热处理工艺设计(精选.)

沈阳理工大学热处理工艺课程设计 目录 第一章 热处理工设计目的 (1) 第二章 课程设计任务 (1) 第三章 热处理工艺设计方法 (1) 3.1 设计任务 (1) 3.2 设计方案 (2) 3.2.1 12CrNi3叶片泵轴的设计的分析 (2) 3.2.2 钢种材料 (2) 3.3设计说明 (3) 3.3.1 加工工艺流程 (3) 3.3.2 具体热处理工艺 (4) 3.4分析讨论 (11) 第四章 结束语 (13) 参考文献 (14)

沈阳理工大学热处理工艺课程设计 12CrNi3叶片泵轴的热处理工艺设计 一. 热处理工艺课程设计的目的 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是: (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。 (3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 二. 课程设计的任务 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。 三. 热处理工艺设计的方法 1. 设计任务 12CrNi3叶片泵轴零件图如图3.1 图3.1 12CrNi3叶片泵轴

2、设计方案 2.1.工作条件 叶片泵是由转子、定子、叶片和配油盘相互形成封闭容积的体积变化来实现泵的吸油和压油。叶片泵的结构紧凑,零件加工精度要求高。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油再由大到小排油,叶片旋转一周时,完成两次吸油与排油。泵轴在工作时承受扭转和弯曲疲劳,在花键和颈轴处收磨损。因此,要求轴有高的强度,良好的韧性及耐磨性。 2.1.1失效形式 叶片泵轴的主要失效形式是疲劳断裂,在花键和轴颈处可能发生工作面的磨损、咬伤,甚至是咬裂。 2.1.2性能要求 根据泵轴的受力情况和失效分析可知 ,叶片泵轴主要是要求轴具有高的强度,良好的韧性及耐磨性,以保证轴在良好的服役条件下长时间的工作。 2.2钢种材料 12CrNi3A钢属于合金渗碳钢,比12CrNi2A钢有更高的淬透性,因此,可以用于制造比12CrNi2A钢截面稍大的零件。该钢淬火低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,缺口敏感性小,切削加工性能良好,当硬度为HB260~320时,相对切削加工性为60%~70%。另外,钢退火后硬度低、塑性好,因此,既可以采用切削加工方法制造模具,也可以采用冷挤压成型方法制造模具。为提高模具型腔的耐磨性,模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度、高耐磨性而心部具有很好的韧性,该钢适宜制造大、中型塑料模具。12CrNi3高级渗碳钢的淬透性较高 ,退火困难。由于不渗碳表面未经镀铜防渗 ,因此渗碳后进行低温回火 , 降低硬度 , 便于切去不渗碳表面的渗碳层。材料加工成叶片泵轴需进行复杂的化学热处理,使心部硬度为 HRC31~HRC41,表面硬度不低于HRC60,从而使泵轴表面有较高硬度,心部呈现

轴用材料及其热处理

45号钢为优质碳素结构用钢,硬度不高易切削加工,模具中常用来做模板,梢子,导柱等,但须热处理。1. 45号钢淬火后没有回火之前,硬度大于HRC55(最高可达HRC62)为合格。实际应用的最高硬度为HRC55(高频淬火HRC58)。 2. 45号钢不要采用渗碳淬火的热处理工艺。调质处理后零件具有良好的综合机械性能,广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。但表面硬度较低,不耐磨。可用调质+表面淬火提高零件表面硬度。渗碳处理一般用于表面耐磨、芯部耐冲击的重载零件,其耐磨性比调质+表面淬火高。其表面含碳量0.8--1.2%,芯部一般在0.1--0.25%(特殊情况下采用0.35%)。经热处理后,表面可以获得很高的硬度(HRC58--62),芯部硬度低,耐冲击。如果用45号钢渗碳,淬火后芯部会出现硬脆的马氏体,失去渗碳处理的优点。现在采用渗碳工艺的材料,含碳量都不高,到0.30%芯部强度已经可以达到很高,应用上不多见。0.35%从来没见过实例,只在教科书里有介绍。可以采用调质+高频表面淬火的工艺,耐磨性较渗碳略差。GB/T699-1999标准规定的45钢推荐热处理制度为850℃正火、840℃淬火、600℃回火,达到的性能为屈服强度≥355MPa GB/T699-1999标准规定45钢抗拉强度为600MPa,屈服强度为355MPa,伸长率为16%,断面收缩率为40%,冲击功为39J 一、轴类零件的功用、结构特点及技术要求 果是卡车传动轴,首先要确定用钢,建议:细一些轴选用40Cr,40Cr、40MnB、40MnVB、 粗一些轴选用40CrNiMo、42CrMo等中碳低合金钢; 传动轴一般由两部分组成:一是实芯轴或空心厚壁管;二是与万向节连接的花键轴。实芯轴与花键轴一般为一根钢料加工而成,也有将其焊接而成。 轴的热处理为:整根轴轧为棒料后进行退火或正火处理(含Mo、V、Ti的钢一般退火:840-860度加热一定时间后炉冷,得到铁素体+珠光体组织;低合金含量的钢一般正火:840-860度加热一定时间后空冷,得到铁素体+珠光体组织),获得较好的切削加工性能,加工后整体进行调质热处理(一般为:840-860度加热一定时间后油淬,再进行550-650度的高温回火,得到回火索氏体组织),获得强度、韧性、塑性都较好的综合力学性能(抗扭、抗弯、无脆性断裂),然后对其花键进行精加工,此时的花键硬度较低(约HRC35-40)不耐磨,还需要对花键进行二次热处理强化,目前多为高频感应热处理,获得隐晶马氏体,花键表面硬度可达到HRC58-62,具有较高的抗磨寿命。 表l一31钢铁材料的力学性能 名称量的符号单位符号含义 强度指金属在外力作用下,抵抗塑性变形和断裂的能力 1强度 1)抗拉强度ób 金属试样拉伸时,在拉断前所承受的最大负荷与试样原横截面面积之比称为抗拉强度 ób=Pb/Fo 式中Pb——试样拉断前的最大负荷(N) Fo——试样原横截面积(mm2) 2)抗弯强度óbb MPa 试样在位于两支承中间的集中负荷作用下,使其折断时,折断截面所 承受的最大正压力 对圆试样:óbb=8PL/Лd³; 对矩形试样:óbb=3PL/2bh² 式中 P——试样所受最大集中载荷(N) L——两支承点间的跨距(mm)

课程设计退火炉温度控制系统

课程设计设计题目: 退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB 仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案?5 2.1概述?5 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计?9 3.2程序清单与电路图 (11) 3.3温度控制电路................................ 错误!未定义书签。第4章控制算法?18 4.1程序框图? 18 4.2算法设计 (19) 第5章课程设计总结?错误!未定义书签。

第1章 绪论 1.1 设计背景与算法 背景:退火炉是冶金和机械行业常用的热处理工业设备。一般说来,退货处理工艺师冶金和机械产品的最后处理工序,它的处理效果将直接影响产品的质量。因此,对退火炉的基本要求就是根据退火处理工艺曲线,提供准确的升温,保温及降温操作,同时保证颅内各处的温度均匀。在目前实际生产中,退火炉的种类很多,按燃料分有燃油炉、燃气炉、电炉等。电炉按台数计算占80%,燃油炉和燃气炉占20%。 退火是金属热处理中的重要工序,它是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。目的是使经过铸造、锻轧、焊接或切削加工的材料或工件软化,改善其塑性和韧性,使其化学成分均匀化,并去除其参与应力,或得到预期的物理性能。温度控制是热处理质量控制的重要技术措施,是退火控制的核心。智能温控将大大提高热处理质量,消除认为的不稳定因素,提高温度控制的精确程度,满足特殊材料的热处理要求。 同时,退火炉采用自动化技术控制温度,对保护生态环境方面也具有重要意义。退火炉的炉温动态特性直接影响产品的质量,生产过程中对钢材的温升曲线有较高的要求,温度过低,达不到退火的预期目的;温度过高将导致过热,甚至过烧。通过对退火炉中生产过程的优化控制和自动工艺管理控制,不但可以缩短生产周期,提高产量和质量,还可以减少人为因素造成的废品率。热处理后产生的废气对自然环境的污染很大,退火炉的燃料如果是欠氧燃烧,燃料燃烧不充分,则会产生大量黑烟,而过氧燃烧又会产生氮氧化合物等有害气体。若通过对燃烧过程进行有效控制,使燃烧在合理的空燃比下运行,则可以极大的减少退火炉对周边环境的污染,对构建科持续发展型社会就有积极的意义。 目前世界各国对能源消耗和大气环境的污染越来越重视,而我国既是钢铁大国又是能源大国,因此研究高性能退火炉温度控制系统具有极为重要的现实意义。 算法:在数字随动控制系统中,要求系统的输出值尽快地跟踪给定值的变化,最少拍控制是满足这一要求的一种离散化设计方法。 最少拍控制是一种直接数字设计方法。所谓最少拍,就是要求闭环系统对于某种特定的输入在最少个采样周期内达到无静差的稳态,是系统输出值尽快地跟踪期望值的变化。 闭环Z传函具有形式 z z z z N N ---+++=Φφφφ 221)(1

相关主题