搜档网
当前位置:搜档网 › 飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

飞思卡尔MC9S12XS128单片机中断优先级设置简易教程
飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

本教程试图用最少的时间教你飞思卡尔XS128单片机的中断优先级设置方法和中断嵌套的使用,如果是新手请先学习中断的基本使用方法。

先来看看XS128 DataSheet 中介绍的相关知识,只翻译有用的:

七个中断优先级

每一个中断源都有一个可以设置的级别

高优先级中断的可以嵌套低优先级中断

复位后可屏蔽中断默认优先级为1

同一优先级的中断同时触发时,高地址(中断号较小)的中断先响应

注意:高地址中断只能优先响应,但不能嵌套同一优先级低地址的中断

下面直接进入正题,看看怎么设置中断优先级:

XS128中包括预留的中断一共有128个中断位,如果为每个中断都分配一个优先级寄存器的话会非常浪费资源,因此飞思卡尔公司想出了这样一种办法:把128个中断分为16个组,每组8个中断。每次设置中断时,先把需要的组别告诉某个寄存器,再设置8个中断优先寄存器的某一个,这样只需9个寄存器即可完成中断的设置。

分组的规则是这样的:中断地址位7到位4相同的中断为一组,比如MC9SX128.h中

这些中断的位7到位3都为D,他们就被分成了一组。0~F正好16个组。

INT_CFADDR就是上面说到的用来设置组别的寄存器:

我们需要设置某个组别的中断时,只要写入最后8位地址就行了,比如设置SCI0的中断优先级,就写入0xD0。

设置好组别之后,我们就要该组中相应的中断进行设置,设置中断的寄存器为

这其实是一组寄存器,一共有8个,每个都代表中断组中的一个中断。对应规则是这样的:中断地址的低四位除以2

比如还是SCI0,低四位是6,除以二就是3,那么我们就需要设置INT_CFDATA3 往INT_CFDATAx中写入0~7就能设置相应的中断优先级了

拿我本次比赛的程序来举个例子:我们的程序中需要3个中断:PIT0,PORTH,SCI0。PIT0定时检测传感器数值,PORTH连接干簧管进行起跑线检测,SCI0接收上位机指令实现急停等功能。因此中断优先级要SCI0>PORTH>PIT0。

我们先要从头文件中找出相应中断的地址:

PIT0【7:4】位为7,选择中断组:

INT_CFADDR=0x70;

【3:0】为A,A/2=5,设置为第5优先级那么

INT_CFDATA5=5;

porth【7:4】位为C,选择中断组:

INT_CFADDR=0xC0;

【3:0】为C,C/2=6,设置为第6优先级那么

INT_CFDATA6=6;

Sci0【7:4】位为D,选择中断组:

INT_CFADDR=0xD0;

【3:0】为6,6/2=3,设置为第7优先级那么

INT_CFDATA3=7;

最终程序为:

void Interrupt_Priority_Set(void){

INT_CFADDR=0x70;

INT_CFDATA5=0x05;

INT_CFADDR=0xC0;

INT_CFDATA6=0x06;

INT_CFADDR=0xD0;

INT_CFDATA3=0x07;

}

还要注意一点,如果要实现中断嵌套,需要在低级中断中再开一次总中断,比如

这样才能实现中断的嵌套

QufuNormalUniversity

SonicTeam2011

飞思卡尔单片机LED控制例程详解

我的第一个LED程序 准备工作: 硬件:Freescale MC9S08JM60型单片机一块; 软件:集成开发环境codewarrior IDE; 开发板上有两个LED灯,如下图所示: 实验步骤: 1.首先,确保单片机集成开发环境及USBDM驱动正确安装。其中USBDM的安装步骤如下:?假设之前安装过单片机的集成开发环境6.3版本:CW_MCU_V6_3_SE; ?运行USBDM_4_7_0i_Win,这个程序会在c盘的程序文件夹下增加一个目录C:\Program Files\pgo\USBDM 4.7.0,在这个目录下: 1〉C:\ProgramFiles\pgo\USBDM 4.7.0\FlashImages\JMxx下的文件 USBDM_JMxxCLD_V4.sx是下载器的固件文件; 2〉C:\Program Files\pgo\USBDM 4.7.0\USBDM_Drivers\Drivers下有下载器的usb 驱动 所以在插入usb下载器,电脑提示发现新的usb硬件的时候,选择手动指定驱动 安装位置到以上目录即可。 ?运行USBDM_4_7_0i_Win之后,还会在目录: C:\Program Files\Freescale\CodeWarrior for Microcontrollers V6.3\prog\gdi 下增加一些文件,从修改时间上来看,增加了6个文件,这些文件是为了在codewarrior 集成开发环境下对usb下载器的调试、下载的支持。

2.新建一个工程,工程建立过程如下: ?运行单片机集成开发环境codewarrior IDE ?出现如下界面 ●Create New Project :创建一个新项目工程 ●Load Example Project :加载一个示例工程 ●Load Previous Project :加载以前创建过的工程 ●Run Getting started Tutorial:运行CodeWarrior软件帮助文档 ●Start Using CodeWarrior:立刻使用CodeWarrior ?点击Create New project按钮,以创建一个新的工程,出现选择CPU的界面 如下,请选择HCS08/HCS08JM Family/MC9S08JM60,在右边的Connection窗口

飞思卡尔单片机mc9s12dg128的pwm参考程序

飞思卡尔单片机mc9s12dg128的pwm参考程序大学生参考网发表时间:10月13日 17:44 提交:demon #include <> /* common defines and macros */ #include <> /* derivative information */ #pragma LINK_INFO DERIVATIVE "mc9s12dg128b" /* *** *pwm初始化函数北华大学王盼宝by demon 2007-5-12 ***/ void pwm_initial()//pwm初始化函数 { PWME=0x22;//通道01,45使能? PWMPOL=0x22;//通道01,45输出波形开始极性为1 PWMCTL=0x50;//通道01,45级联 PWMCLK=0x02;//通道01选择SA为时钟源 PWMSCLA=0X04;//通道01时钟SA为3MHz(24/(2*4)) PWMPER01=60000;//设定通道01输出频率(50Hz) PWMPER45=12000;//设定通道45输出频率(2KHz) } /* ***

*pwm输出函数by demon 2007-5-12 *程序描述;由输入参数向舵机和电机输出相应pwm *参数:舵机方向:3300-5700 速度:0-12000 ***/ void pwm(int speed,int direction)//pwm { pwm_initial(); if(direction<3300) direction=3300;? if(direction>5700) direction=5700;? PWMDTY01=direction; if(speed>12000) speed=12000; PWMDTY45=speed; } 飞思卡尔单片机mc9s12dg128的io口初始化参 考程序 大学生参考网发表时间:10月13日17:47 提交:demon #include <> /* common defines and macros */ #include <> /* derivative information */ #pragma LINK_INFO DERIVATIVE "mc9s12dg128b"北华大学王盼宝 void main() { DDRA=0x00;

飞思卡尔单片机寄存器及汇编指令详解

附录I:寄存器地址列表 直接页面寄存器总结

高页面寄存器总结

非易失寄存器总结 注:直接页面寄存器表地址的低字节用粗体显示,直接寻址对其访问时,仅写地址低字节即可。第2列中寄存器名用粗体显示以区别右边的位名。有0的单元格表示未用到的位总是读为0,有破折号的单元格表示未用或者保留,对其读不定。

附录II 指令接与寻址方式 HCS08指令集概括 运算符 () = 括号种表示寄存器或存储器位置的内容 ← = 用……加载(读: “得到”) & = 布尔与 | = 布尔或 ⊕= 布尔异或 ×= 乘 ÷ = 除 : = 串联 + = 加 - = 求反(二进制补码) CPU registers A =>累加器 CCR =>条件代码寄存器 H =>索引寄存器,高8位 X => 索引寄存器,低8位 PC =>程序计数器 PCH =>程序计数器,高8位 PCL =>程序计数器,低8位 SP =>堆栈指针 存储器和寻址 M =>一个存储区位置或者绝对值数据,视寻址模式而定 M:M + 0x0001 => 两个连续存储位置的16位值.高8位位于M的地址,低8位位于更高的连续地址. 条件代码寄存器(CCR)位 V => 二进制补码溢出指示,第7位 H => 半进位,第4位 I => 中断屏蔽,第 3位 N => 求反指示器, 第2位 Z => 置零指示器, 第1位 C => 进/借, 第0位 (进位第 7位 ) CCR工作性符号 – => 位不受影响 0 = > 位强制为0 1 = > 位强制为1

= >根据运算结果设置或清除位 U = > 运算后没有定义 机器编码符号 dd =>一个直接寻址0x0000–0x00FF的低8位(高字节假设为0x00) ee => 16位偏移量的高8位 ff => 16位偏移量的低8位 ii => 立即数的一个字节 jj => 16位立即数值的高位字节 kk => 16位立即数值的低位字节 hh => 16位扩展寻址的高位字节 ll => 16位扩展寻址的低位字节 rr => 相对偏移量 n —任何表达范围在0–7之间的一个有符号数的标号或表达式 opr8i —任何一个表达8位立即值的标号或表达式 opr16 —任何一个表达16位立即值的标号或表达式 opr8a —任何一个表达一个8位值的标号或表达式.指令对待这个8位值为直接页面64K 字节地址空间(0x00xx)中地址的低8位. opr16a —任何一个表达16位值的标号或表达式.指令对待这个值为直接页面64K字节地址空间. oprx8 —任何一个表达8位无符号值的标号或表达式,用于索引寻址. oprx16 —任何一个16位值的标号或表达式.因为HCS08有一个16位地址总线,这可以为一个有符号或者无符号值. rel —任何指引在当前指令目标代码最后一个字节之后–128 to +127个字节之内的标号或表达式.汇编器会计算包括当前指令目标代码在内的8位有符号偏移量. 寻址方式 隐含寻址(Inherent)如CLRA,只有操作码,无操作数,需要操作的数据一般为CPU寄存器,因此不需要再去找操作数了。(INH) 立即寻址 (Immediate)如LDA #$0A,“$”表示16进制,此时操作数位于FLASH空间,与程序一起存放。(IMM) 直接寻址 (Direct)如 LDA $88,只能访问$0000-$00FF的存储器空间,指令短速度快; (DIR) 扩展寻址 (Extended)如果操作数地址超出了$00FF,自动为扩展寻址;(EXT) 相对寻址(Relative)如BRA LOOP,指令中一般给出8位有符号数表示的偏移量。(REL) 变址寻址 (Indexed) 采用[H:X]或SP作为指针的间接寻址方式。( IX )( IX1 )( IX2 ) 变址寻址 (Indexed) 1〉无偏移量:CLR ,X 简写(IX) 2〉无偏移量,指令完成后指针加1(H:X = H:X + 0x0001) ,简写(IX+)只用于指令MOV和CBEQ指令中;

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤w

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤 /*****************************************************************************/ *本人用此法成功解救了4块板子【窃喜!】,此说明是本人边操作边截图拼成的,有些是在别的说明上直接截图【有些图本人不会截取,就利用现成的了,不过那也是本人用豆和财富值换来的】,表达不清之处还望见谅,大家将就着看吧!如能有些许帮助,我心甚慰!!! ————武狂狼2014.4.23 /*****************************************************************************/ 编译软件:CW5.1版本,下载器:飞翔BDMV4.6 【1】,连接好单片机,准备下载程序,单击下载按钮出现以下界面 或 (图1.1) 图 1.1——4中所有弹出窗口均单击“取消”或红色“关闭”按钮依次进入下一界面

(图1.2) (图1.3)

(图1.4) ******************************************************************************* ******************************************************************************* 【2】单击出现如下图所示下拉列表,然后单击 (图2.1) 出现下图(图2.2)对话框,按下面说明操作 (图2.2)

飞思卡尔单片机编程

关于Codewarrior 中的 .prm 文件 网上广泛流传的一篇文章讲述的是8位飞思卡尔单片机的内存映射,这几天,研究了一下Codewarrior 5.0 prm文件,基于16位单片机MC9S12XS128,一点心得,和大家分享。有什么错误请指正。 正文: 关于Codewarrior 中的.prm 文件 要讨论单片机的地址映射,就必须要接触.prm文件,本篇的讨论基于Codewarrior 5.0 编译器,单片机采用MC9S12XS128。 通过项目模板建立的新项目中都有一个名字为“project.prm”的文件,位于Project Settings->Linker Files文件夹下。一个标准的基于XS128的.prm文件起始内容如下: .prm文件范例: NAMES END SEGMENTS RAM = READ_WRITE DATA_NEAR 0x2000 TO 0x3FFF;

READ_ONLY DATA_NEAR IBCC_NEAR 0x4000 TO 0x7FFF; ROM_C000 = READ_ONLY DATA_NEAR IBCC_NEAR 0xC000 TO 0xFEFF; //OSVECTORS = READ_ONLY 0xFF10 TO 0xFFFF; EEPROM_00 = READ_ONLY DATA_FAR IBCC_FAR 0x000800 TO 0x000BFF; EEPROM_01 = READ_ONLY DATA_FAR IBCC_FAR 0x010800 TO 0x010BFF; EEPROM_02 = READ_ONLY DATA_FAR IBCC_FAR 0x020800 TO 0x020BFF; EEPROM_03 = READ_ONLY DATA_FAR IBCC_FAR 0x030800 TO 0x030BFF; EEPROM_04 = READ_ONLY DATA_FAR IBCC_FAR 0x040800 TO 0x040BFF; EEPROM_05 = READ_ONLY DATA_FAR IBCC_FAR 0x050800 TO 0x050BFF; EEPROM_06 = READ_ONLY DATA_FAR IBCC_FAR 0x060800 TO 0x060BFF; EEPROM_07 = READ_ONLY DATA_FAR IBCC_FAR 0x070800 TO 0x070BFF; PAGE_F8 = READ_ONLY DATA_FAR IBCC_FAR 0xF88000 TO 0xF8BFFF;

飞思卡尔单片机知识点

1、单片机组成:1> CPU 2> 存储器3>I/O ; 2、存储器包括2大类:ROM , RAM 3、标准ASCII码使用(1)个字节表示字符; 4、BCD码是用()进制表示的()的数据; 5、HCS08QG8的最小系统包括(电源电路,复位电路,下载口,(内部时钟)); 6、QG8管脚数量(16)、只能输入的是(PTA5)、只能输出的是(PTA4)、程序下载的是、接外部时钟的是; 7、QG8的管脚可以作为数字输入输出、也可以作为模拟输入,可以作为模拟输入的有(); 8、QG8管脚复用优先级最低的功能是(I/O); 9、QG8存储器配置中,不同资源的分界线……; 10、CPU寄存器有(A, HX, PC, CCR, SP); 11、可以执行位操作的地址范围(0X0000~0X005F); 12、有地址的寄存器分成了(3)块(0页,高页,非易失); 13、如何在C语言中定义常数(数据类型变量名;),如何指定变量的地址(数据类型变量名@ 地址;); 14、堆栈的管理者是寄存器(SP); 15、SP的复位缺省值是(0X00FF); 16、堆栈对数据的操作特点是(向上生长型:先压后涨、先减后弹); 17、堆栈一般在RAM的高地址区域还是低地址区域?高地址区 18、内部时钟源包括哪4大部分? 19、外部时钟分哪2大类;振荡器,整形外部时钟 20、内部时钟中FLL固定倍频(512倍频); 21、ICS的7种工作模式(FEI, FEE, FBI, FBILP, FBE, FBELP, stop); 22、ICS的内部参考时钟是可以校准、微调的,调整的寄存器名(ICSTRM);该寄存器的数值越大,输出时钟频率越(低); 23、FLASH是按页管理的,页大小(512)字节,每页分(8)行; 24、高页寄存器位于FLASH的最后一页的(第六行/0xFFB0~0xFFBF)位置; 25、FLASH的最后一页最后一行是(中断向量); 26、FLASH块保护寄存器(FPROT);块加密寄存器(FOPT);对应的非易失寄存器分别是(NVOPT, NVPROT); 27、FLASH操作的一般过程是(); 28、FLASH操作的有效命令有(空检查,字节编程,突发模式编程,页擦除,全部ROM 擦除); 29、记录程序运行状态的CPU寄存器是(CCR); 30、指令系统包括6大类指令,分别是(算术运算指令、数据传送指令、数据和位操作、逻辑运算、程序控制、堆栈处理); 31、寻址方式是指(CPU访问操作数和数据的方法); 32、寻址方式包括7大类16种,分别是: INH IMM DTR EXT IX,IX1,IX2,SP1,SP2,IX+,IX1+ REL IMD, DD,IX+D,DIX+ 33、8指令模板和6指令模板分别是(); 34、QG8是高电平复位还是低电平复位?低电平 35、QG8数据存储器RAM的大小为(512)字节; 36、上电复位期间将管脚(A4)设置为(低)电平可以进入调试模式 37、QG8的存储器结构为冯·诺伊曼还是哈佛结构?冯诺依曼

飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

本教程试图用最少的时间教你飞思卡尔XS128单片机的中断优先级设置方法和中断嵌套的使用,如果是新手请先学习中断的基本使用方法。 先来看看XS128 DataSheet 中介绍的相关知识,只翻译有用的: 七个中断优先级 每一个中断源都有一个可以设置的级别 高优先级中断的可以嵌套低优先级中断 复位后可屏蔽中断默认优先级为1 同一优先级的中断同时触发时,高地址(中断号较小)的中断先响应 注意:高地址中断只能优先响应,但不能嵌套同一优先级低地址的中断 下面直接进入正题,看看怎么设置中断优先级: XS128中包括预留的中断一共有128个中断位,如果为每个中断都分配一个优先级寄存器的话会非常浪费资源,因此飞思卡尔公司想出了这样一种办法:把128个中断分为16个组,每组8个中断。每次设置中断时,先把需要的组别告诉某个寄存器,再设置8个中断优先寄存器的某一个,这样只需9个寄存器即可完成中断的设置。 分组的规则是这样的:中断地址位7到位4相同的中断为一组,比如MC9SX128.h中 这些中断的位7到位3都为D,他们就被分成了一组。0~F正好16个组。

INT_CFADDR就是上面说到的用来设置组别的寄存器: 我们需要设置某个组别的中断时,只要写入最后8位地址就行了,比如设置SCI0的中断优先级,就写入0xD0。 设置好组别之后,我们就要该组中相应的中断进行设置,设置中断的寄存器为 这其实是一组寄存器,一共有8个,每个都代表中断组中的一个中断。对应规则是这样的:中断地址的低四位除以2 比如还是SCI0,低四位是6,除以二就是3,那么我们就需要设置INT_CFDATA3 往INT_CFDATAx中写入0~7就能设置相应的中断优先级了 拿我本次比赛的程序来举个例子:我们的程序中需要3个中断:PIT0,PORTH,SCI0。PIT0定时检测传感器数值,PORTH连接干簧管进行起跑线检测,SCI0接收上位机指令实现急停等功能。因此中断优先级要SCI0>PORTH>PIT0。 我们先要从头文件中找出相应中断的地址: PIT0【7:4】位为7,选择中断组: INT_CFADDR=0x70;

飞思卡尔单片机 DG128 Timer寄存器说明

Timer寄存器说明 1、定时器/计数器系统控制寄存器1(TSCR1) TSCR1 寄存器是定时器模块的总开关,它决定模块是否启动以及在中断等待、BDM 方式下的行为,还包括标志的管理方式。其各位的意义如下: TEN:定时器使能位,此外它还控制定时器的时钟信号源。要使用定时器模块的IC/OC 功能,必须将TEN 置位。如果因为某种原因定时器没有使能,脉冲累加器也将得不到ECLK/64 时钟,因为ECLK/64 是由定时器的分频器产生的,这种情况下,脉冲累加器将不能进行引脚电平持续时间的累加。 0:定时器/计数器被禁止,有利于降低功耗。 1:定时器/计数器使能,正常工作。 TSWAI:等待模式下计时器关闭控制位。 【注意】定时器中断不能用于使MCU 退出等待模式。 0:在中断等待模式下允许MCU 继续运行。 1:当MCU 进入中断等待模式时,禁止计时器。 TSFRZ:在冻结模式下计时器和计数器停止位。 0:在冻结模式下允许计时器和计数器继续运行。 1:在冻结模式下禁止计时器和计数器,用于仿真调试。 【注意】TSFRZ 不能停止脉冲累加。 TFFCA:定时器标志快速清除选择位。 0:定时器标志普通清除方式。 1:对于TFLGl($0E)中的各位,读输入捕捉寄存器或者写输出比较寄存器会自动清除相应的标志位CnF。对于TFLG2($0F)中的各位,任何对TCNT 寄存器($04、$05)的访问均会清除TOF 标志;任何对PACN3 和PACN2 寄存器($22,$23)的访问都会清除PAFLG 寄存器($21)中的PAOVF 和PAIF 位。任何对PACN1 和PACN0 寄存器($24,$25)的访问都会清除PBFLG 寄存器($21)中的PBOVF 位。 【说明】这种方式的好处是削减了另外清除标志位的软件开销。此外,必须特别注意避免对标志位的意外清除。 2、计时器系统控制寄存器2(TSCR2) 寄存器偏移量:$000D

飞思卡尔HC12系列单片机USBDM烧录操作指导

飞思卡尔HC12系列单片机USBDM烧录操作指导 步骤一 将USBDM烧录器连接到电脑的USB口,然后,双击桌面的“hiwave.exe”图标,出现图1的窗口。 图1 假如USBDM没有连接或者连接不良,会出现如下图2的窗口,关掉程序,检查连接,再启动程序,直到出现图1的窗口。

步骤二. 将USBDM连接到需要烧录的仪表上,点击图1的“OK”按钮,将窗口最大化,然后看显示器的右下角,见图3所示,有“ACKN SYNC STOPPED”,表示连接正常。假如出现图4的窗口,表示BDM没有和仪表连接上,检查下载线。点击Cancel按钮。直到出现图3的“ACKN SYNC STOPPED”状态。 图3 图4 步骤三 点击图5的菜单栏的“TBDML HCS12”,然后点击“Load”,出现目标文件选择的窗口。见图6

图6 选择烧录的目标文件,目标文件的后缀名为“.abs”, 这里举例 1:选择DM281HZ-V1.2.abs, 2:勾选Automatically erase and program into FLASH and EEPROM 3:不勾选V erify memory image after loading code,为了节省烧录时间,不勾选这个选项。 3: 勾选Run after successful load.(可以在程序烧完的时候,自动的运行程序,看仪表是否能工作,可以作为仪表的第一次粗测) 4:点击“打开” 5:等待烧录完成, 图7,正在擦除……

图8,正在编程…… 图8 6:如果在完成编程后,仪表没有自动的进入工作状态,有以下几种可能: a.仪表有问题 b.烧录时出现问题,这个问题可以通过配置烧录选项来排除,见图6, 可以勾选选项V erify memory image after loading code ,在编程后会进行程序校验,如果校验错误表示烧录出现问题,一般来说出现烧录错误的几率很小,但也不排除。为了在批量烧录的时候,节省时间,没有选择校验。 c.烧录文件选择错误 7:如果仪表正常,拔掉USBDM和仪表的下载线,直接换上新的仪表,重复步骤三。 给程序建立快捷方式,方便操作 由于hiwave.exe程序在桌面没有快捷方式,可以自己建立一个快捷方式。 1. 打开路径C:\Program Files\Freescale\CodeWarrior for S12(X) V5.0\Prog,找到“hiwave.exe”文件 (如果CodeWarrior不是安装在C盘,则请按照…Freescale\CodeWarrior for S12(X) V5.0\Prog 寻找。)2.在文件上点击右键选择“发送到”—选择“桌面快捷方式”,就可以在桌面看到一个“hiwave.exe”程 序文件的快捷图标。以后再启动程序的时候,只需点击桌面的这个图标即可。 图1

《Freescale8位单片机入门与实践》 第五章_codewarrior应用综述

第五章CodeWarrior应用综述 (在线调试、VisualTools的使用、专家系统可选学) 修改图形编号 5.1 在线编程 注意:实验电路板电源开关断开。JP2的3、4两个端子短接。 1、确立目标 在“True-Time Simulator & Real-Time Debug”工具界面,点击:Component->Set Target 在Processor栏,选择HC08,在Target栏,选择P&E Target Interface,然后点击OK, 如图5-1所示 图5-1 确立目标 最后关闭“True-Time Simulator & Real-Time Debug”工具界面,在主界面中重新按下“Debug”,进入“True-Time Simulator & Real-Time Debug”调试。 2、在线调试 重新进入后,PEDebug->Mode:Full Chip Simulation->In-Circuit ……如图5-2所示。

图5-2 调试界面系统将自动弹出如下的界面,如图5-3所示。 图5-3 连接界面点击Close Port。出现界面如图5-4。

图5-4 关闭串口界面 闭合目标板电源开关,给目标板供电,最后点击Contact target with these settings…。 出现图5-5界面,最后点击YES,程序就下载到实验板上了。 注:如果此时不出现图5-19,断开目标板电源,再次点击图5-18中Refresh List,然后再给目标板供电。 图5-5 查询是否擦除、下载程序 然后在DEBUG界面上进行调试,如图5-6所示。

飞思卡尔单片机各种功能程序

流水灯四种效果: #include /* common defines and macros */ #include #include /* derivative information */ #pragma LINK_INFO DERIV ATIVE "mc9s12xdp512" #include "main_asm.h" /* interface to the assembly module */ unsigned char temp; //unsigned char pa @0x200; //unsigned char pb @0x202; unsigned char key; static void delay(void) { volatile unsigned long i; for(i=0;i<100000;i++); } static unsigned char random; static void Random(void) { random = (unsigned char)rand(); } void effect1() { unsigned char c; for(c=0;c<=6;c++) { delay(); PORTB = ~(1<=1;c--) { delay(); PORTB = ~(1<=1;c--) {

基于飞思卡尔的Bootloader程序下载更新

基于飞思卡尔的Bootloader程序下载更新 前言 写这篇文档是因为大三暑假时在一家公司实习,做一个基于飞思卡尔的bootloader远程更新项目,刚开始定的技术指标是基于MC9S12XS128单片机的Bootloader程序、远程(基于GSM网络)和CAN总线通信。但因为我只是一个本科实习生而且实习时间只有一个多月,所以只完成了基于SCI的本地写入.S19文件的更新。这大概也就是这篇文档所包含的内容啦。 整个程序是存在瑕疵甚至基本上可以说是不成功的,但是我觉得自己在做这个项目的过程中确实也解决了网上没有提到或者没有答案的一些问题,特写此文档,希望大家各取所需,如果有什么高见或者发现了我明显错误的地方,也非常欢迎大家给我指出。欢迎大家前来指教。 小目录 一、Bootloader的含义---------------------------------------------------------2 二、SCI串口的使用------------------------------------------------------------3 三、Flash的擦除和写入--------------------------------------------------------5 四、.S19文件的写入-----------------------------------------------------------13 五、心得体会-----------------------------------------------------------------14

飞思卡尔单片机mc9s12dg128的pwm参考程序

飞思卡尔单片机mc9s12dg128的pwm参考程序 大学生参考网(https://www.sodocs.net/doc/2a7846957.html,) 发表时间:10月13日 17:44 提交: demon #include /* common defines and macros */ #include /* derivative information */ #pragma LINK_INFO DERIVATIVE "mc9s12dg128b" /* ********************************************************* *pwm初始化函数wangpanbao@https://www.sodocs.net/doc/2a7846957.html,北华大学王盼宝by demon 2007-5-12 *********************************************************/ void pwm_initial()//pwm初始化函数 { PWME=0x22;//通道01,45使能 PWMPOL=0x22;//通道01,45输出波形开始极性为1 PWMCTL=0x50;//通道01,45级联 PWMCLK=0x02;//通道01选择SA为时钟源 PWMSCLA=0X04;//通道01时钟SA为3MHz(24/(2*4)) PWMPER01=60000;//设定通道01输出频率(50Hz) PWMPER45=12000;//设定通道45输出频率(2KHz) } /* ********************************************************* *pwm输出函数 by demon 2007-5-12 *程序描述;由输入参数向舵机和电机输出相应pwm *参数:舵机方向:3300-5700 速度:0-12000 *********************************************************/ void pwm(int speed,int direction)//pwm { pwm_initial(); if(direction<3300) direction=3300; if(direction>5700) direction=5700; PWMDTY01=direction; if(speed>12000) speed=12000; PWMDTY45=speed; }

飞思卡尔单片机编程 之天职师大

天职师大期末必考 关于Codewarrior 中的 .prm 文件 网上广泛流传的一篇文章讲述的是8位飞思卡尔单片机的内存映射,这几天,研究了一下Codewarrior 5.0 prm文件,基于16位单片机MC9S12XS128,一点心得,和大家分享。有什么错误请指正。 来源:(https://www.sodocs.net/doc/2a7846957.html,/s/blog_60281b700100gbp6.html) - 关于Codewarrior 中的 .prm 文件_LiangXiangTai_新浪博客 正文: 关于Codewarrior 中的.prm 文件 要讨论单片机的地址映射,就必须要接触.prm文件,本篇的讨论基于Codewarrior 5.0 编译器,单片机采用MC9S12XS128。 通过项目模板建立的新项目中都有一个名字为“project.prm”的文件,位于Project Settings->Linker Files文件夹下。一个标准的基于XS128的.prm文件起始内容如下: .prm文件范例:

NAMES END SEGMENTS RAM = READ_WRITE DATA_NEAR 0x2000 TO 0x3FFF; ROM_4000 = READ_ONLY DATA_NEAR IBCC_NEAR 0x4000 TO 0x7FFF; ROM_C000 = READ_ONLY DATA_NEAR IBCC_NEAR 0xC000 TO 0xFEFF; //OSVECTORS = READ_ONLY 0xFF10 TO 0xFFFF; EEPROM_00 = READ_ONLY DATA_FAR IBCC_FAR 0x000800 TO 0x000BFF; EEPROM_01 = READ_ONLY DATA_FAR IBCC_FAR 0x010800 TO 0x010BFF;

飞思卡尔讲解

哈尔滨工程大学本科生毕业论文 第1章绪论 1.1论文研究的背景 闭环控制是自动控制论的一个基本概念,也称反馈控制,在日常生活的各种控制实例中有具体的表现方式,比如常用交通工具中电车的速度控制,汽车的速度控制,冰箱的温度调节等,其中采用闭环控制方案对直流电机进行调速是生产生活中最常见的一种闭环控制实例。在工业自动化飞速发展的今天,利用高性能单片机来完成对仪器设备的自动化控制是其中最重要的一个环节。本文研究对象是基于Freescale单片机的移动小车控制系统设计,涉及到对直流电机的速度控制,倒车防撞报警器设计,LCD(Liquid Crystal Display)显示等功能,既应用了本科阶段所学的电路基础知识、自动控制理论知识,又充分利用了Freescale单片机的高性能与可靠性。 1.1.1速度闭环控制系统 随着工业自动化以及电子信息技术和自动控制技术的不断发展,电机的种类不断增加,性能也更加出色。以电机为动力的车辆的自动化程度也越来越高,对车辆自动化程度的要求也越来越高,电车近几十年来发展十分迅速,直流电机电瓶车的速度控制水平也得到了极大的提高。转速控制作为电机控制中最关键的部分,具体反映到电车就是在车体速度控制上,而速度闭环控制作为重要的控制方式,得到了最广泛的应用。 直流电机速度闭环控制系统包括以下内容: (1)直流电机在接到起动电压后起动; (2)转速达到预设速度后,利用PWM脉宽调制电路产生方波,并通过单片机设定占空比,达到无级调速; (3)采用直流电机反接制动原理来调速,在增量PID控制算法下达到稳定转速的效果。 1

哈尔滨工程大学本科生毕业论文 速度闭环控制系统硬件组成: (1)PWM脉宽调制电路 (2)测速装置(电压输出型光电码盘) (3)动力装置(直流电机) (4)直流电机驱动器 1.1.2超声波倒车防撞系统 改革开放以后,我国经济快速发展,汽车的拥有量大大增加,一些大中型城市交通拥挤,导致交通事故频发。安全驾驶逐渐成为大家关注的焦点,倒车防撞系统的需求非常迫切,因此对其进行设计生产显得非常重要。此倒车防撞系统利用了超声波的特点和优点,将超声波测距和飞思卡尔单片机结合为一体,设计出一种基于MC9S12DG128B单片机的超声波倒车防撞报警系统。 1、超声波测距模块 在本系统中,超声波模块的主要任务是:通过单片机产生40KHz的脉冲,来激发发射探头发出超声波,接收探头接收到超声波后反馈给单片机一段脉冲。单片机定时器记录发射跟接收的40KHz脉冲的时间,算出时间间隔,然后通过编程算法计算出距离。 2、防撞报警系统 本系统采用LED发光二极管作为报警器。在车体逐渐逼近障碍物的过程中,通过编程使单片机引脚产生一定频率的脉冲,驱动发光二极管。当倒车时候,如果逼近障碍物,则发光二极管闪烁频率会加快,进而判定有障碍物,达到防撞报警的作用。 1.1.3LCD液晶显示系统 在日常生活中,我们对液晶显示器并不陌生。液晶显示模块已作为很多电子产品的最大辅助功能,如在计算器、万用表、电子表及很多家用电子产品中都可以看到,显示的主要是数字、专用符号和图形。在单片机的人机交 2

飞思卡尔S12单片机ECT模块使用实例

/** ################################################################### ** Filename : Project_2.c ** Project : Project_2 ** Processor : MC9S12XEP100CAG ** Version : Driver 01.14 ** Compiler : CodeWarrior HCS12X C Compiler ** Date/Time : 2014-5-21, 8:55 ** Abstract : ** Main module. ** This module contains user's application code. ** Settings : ** Contents : ** No public methods ** ** ###################################################################*/ /* MODULE Project_2 */ /* Including needed modules to compile this module/procedure */ #include "Cpu.h" #include "Events.h" #include "Bit1.h" #include "Bit2.h" /* Include shared modules, which are used for whole project */ #include "PE_Types.h" #include "PE_Error.h" #include "PE_Const.h" #include "IO_Map.h" /* User includes (#include below this line is not maintained by Processor Expert) */ /************************************************************/ /* 初始化ECT模块*/ /************************************************************/ void initialize_ect(void){ //ECT_TSCR1_TFFCA = 1; // 定时器标志位快速清除 ECT_TSCR1_TEN = 1; // 定时器使能位. 1=允许定时器正常工作; 0=使主定时器不起作用(包括计数器) ECT_TIOS = 0x03; //指定所有通道为输出比较方式 ECT_TCTL2_OM0 = 0; // 后四个通道设置为定时器与输出引脚断开 ECT_TCTL2_OL0 = 1; // 前四个通道设置为定时器与输出引脚断开 ECT_TCTL2_OM1 = 0; // 后四个通道设置为定时器与输出引脚断开 ECT_TCTL2_OL1 = 1; // 前四个通道设置为定时器与输出引脚断开 //ECT_DL YCT = 0x00; // 延迟控制功能禁止 // ECT_ICOVW = 0x00; // 对应的寄存器允许被覆盖; NOVWx = 1, 对应的寄存器不允许覆盖

单片机(飞思卡尔)课程设计

课程设计报告 课程设计名称: 系: 学生姓名: 班级: 学号: 成绩: 指导教师: 开课时间:学年学期

目录 第一章系统概要 (1) 1.1 系统背景 (1) 第二章系统硬件设计 (2) 2.1 系统原理图 (2) 2.2 单片机(MCU)模块 (3) 2.2.1 MC9S08AW60单片机性能概述 (3) 2.2.2 内部结构简图 (3) 2.3 串行通信模块 (4) 2.3.1 MAX232引脚图 (4) 2.3.2 串行通信的电路原理 (5) 2.4 液晶显示模块 (6) 第三章系统软件设计 (8) 3.1 MCU方(C)程序 (8) 3.1.1串行通信子程序 (14) 3.1.2 LCD子程序 (18) 第四章系统测试 (21) 第五章总结展望 (24) 5.1 总结 (24) 5.2 展望 (24) 参考文献 (24)

第一章系统概要 1.1 系统背景 单片机(MCU)的基本定义是:在一块芯片上集成了中央处理器(CPU)、存储器(RAM/ROM等)、定时器/计数器及多种输入输出(I/O)接口的比较完整的数字处理系统。单片机自1976年由Intel公司推出MCS-48开始,迄今已有二十多年了。由于单片机集成度高、功能强、可靠性高、体积小、功耗地、使用方便、价格低廉等一系列优点,目前已经渗入到人们工作和生活的方方面面,几乎“无处不在,无所不为”。单片机的应用领域已从面向工业控制、通讯、交通、智能仪表等迅速发展到家用消费产品、办公自动化、汽车电子、PC机外围以及网络通讯等广大领域。 Freescale的S08系列8位MCU由于稳定性高、开发周期短、成本低、型号多样、兼容性好被广泛应用。HC08是Freescale的08系列之一S08表示增强型HC08,它是在HC08基础上发展起来的,兼容HC08系列。S08是2004年左右推出8位MCU,资源丰富,功耗低,性价比很高,是08系列MCU发展趋势,其性能与许多16位MCU相当。MC9S08AW60是低成本、高性能8位微处理器S08家族中的成员,本次课程设计就是以该芯片为基础,来进行嵌入式的设计。 1.2 系统功能 当按下启动键,电子时钟从当前设定值开始走时。按秒刷新,要求在LCD 屏上显示。若按启动键,则时间暂停,再按,时间继续按秒刷新。 时间格式是”时:分:秒”(00:00:00)。通过向通用I/O端口的引脚输入高或低(1或0)电平,作为启动键,对电子钟进行控制——电子钟开始运行、暂停和继续运行。显示数据时,先把要显示的数据送到数据寄存器中,再通过发送寄存器将数据输入要LCD中显示。

飞思卡尔S12xs128单片机BDM调试器使用技巧

S12(X)单片机BDM调试器使用技巧 第五届全国大学生“飞思卡尔”杯智能气车竞赛限制采用最新的MC9S12XS128(以下简称XS128)单片机作为主控芯片,替代MC9S12DG128。XS128是Freescale公司推出的S12系列单片机中的一款增强型16位单片机。片内资源丰富,接口模块有SPI、SCI、IIC、A/D、PWM等常见模块,在汽车电子应用领域具有广泛用途。XS128和以往大赛使用的S12DG128系列单片机一样,调试接口都是使用Freescale公司传统的BD M(Background Debug Module)接口。 1 MC9S12XS128单片机介绍 (1)CPU:增强型16位HCS12 CPU,片内总线时钟最高40 MHz; (2)片内资源:8 KB RAM、128 KB程序闪存、2 KB数据闪存; (3)串行接口模块:SCI、SPI; (4)脉宽调制模块(PWM)可设置成4路8位或者2路16位,逻辑时钟选择频率宽; (5)1个16路12位精度A/D转换器; (6)控制器局域网模块(CAN); (7)增强型捕捉定时器。 MC9S12XS128单片机有112、80和64引脚3种封装形式。80-pin封装的单片机没有引出用于扩展方式的端口,仅引出了一个8路A/D接口。竞赛可使用112或80引脚封装器件。 2 BDM接口和使用 BDM调试器内部有一个8位的MC9HC08JB16单片机,该单片机有USB接口,可与PC 机信息交互。HC08单片机和S12单片机间仅使用一根 I/O线通信,这根相连的信号线名为BKGD。HC08单片机将BKGD置为输出,以串行发送命令,发送完成后转为输入,以接收信息。S12单片机收到命令后转为输出,根据调试器发来的命令回送信息,然后立即转入接收态。BDM工具以此方式实现S12单片机的在线调试、内部闪存的烧写等功能。关于BDM接口的实现,读者可以参考Freescale任何一款S12单片机的器件手册,其对BDM接口的命令字、交互模式等都有详细描述。这里主要介绍如何使用 B DM接口。BDM接口虽然只有BKGD一根信号线,但实际使用过程中,Freescale规定用一个双排、6引脚的接插件做BDM接口,如图1所示,引脚间距为2.54 mm(100 mil)。 虽然使用的是6引脚接插件,实际上有用引脚只有4个。其中BKGD连接到S12处理器的BKGD引脚,RESET连接到S12处理器的RESET引脚,GND是S12目标板的地信号,而VDD信号是来自目标板的电源信号。VDD信号的连接将在下文中详细阐述。 BDM接口的使用,需要配合PC上安装的CodeWarrior软件和BDM调试工具TTBDM。

相关主题