搜档网
当前位置:搜档网 › 高层建筑结构时程分析的地震波输入

高层建筑结构时程分析的地震波输入

高层建筑结构时程分析的地震波输入
高层建筑结构时程分析的地震波输入

在 ansys 中如何 施加 地震波

三向输入简化后的单向输入 首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据: -0.227109E-02 -0.209046E+00 0.467072E+01 -0.413893E-02 -0.168195E+00 0.261523E+01 -0.574753E-02 -0.157890E+00 0.809014E-01 -0.731227E-02 -0.152996E+00 0.119975E+01 -0.876865E-02 -0.138102E+00 0.130902E+01 -0.101067E-01 -0.131582E+00 0.143611E+00 ....................... 然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据: 0.100000E-01 0.200000E-01 0.300000E-01 0.400000E-01 0.500000E-01 0.600000E-01 ....................... 编写如下的命令流文件,并命名为acce.inp *dim,ACCEXYZ,TABLE,2000,3 !01行 *vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行 *vread,ACCEXYZ(1,0),time,txt !04行 (e16.6) !05行 ACCEXYZ(0,1)=1 !06行 ACCEXYZ(0,2)=2 !07行,同上 ACCEXYZ(0,3)=3 !08行,同上 finish /SOLU ANTYPE,trans btime=0.01 !定义计算起始时间 etime=15.00 !定义计算结束时间 dtime=0.01 !定义计算时间步长 *DO,itime,btime,etime,dtime time,itime AUTOTS,0 NSUBST,1, , ,1 KBC,1 acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度 SOLVE

时程分析中地震波输入位置的讨论

时程分析中地震波输入位置的讨论 摘要:时程分析法通过直接动力分析可得到结构相应随时间的变化关系,能真实地反应结构地震相应随时间变化的全过程,是抗震分析的一种重要方法[1]。目前有限元软件可以实现结构的时程分析,但是在不同的软件中,其实现方式不同,主要区别在地震波的输入位置不同。本文通过有限元软件ABAQUS采用不同的地震波输入位置对同一结构进行时程分析分析,对比结构相同位置的时程位移曲线,结果表明结构在采用不同地震波输入位置的时程分析中,结构的地震响应基本一致。 关键词:时程分析、有限元软件、钢筋混凝土剪力墙 Abstract: The time history analysis method to analyze the available structure through direct power to the relationship between the corresponding changes over time, truly reflect the structure of earthquake corresponding to the whole process of change over time, is an important method of seismic analysis [1]. Finite element software can be time-history analysis of the structure, but in different software in different ways, the main difference between the different positions in the seismic wave input. In this paper the finite element software ABAQUS using different seismic wave input location on the same structure, process analysis analysis, contrast structure the same location of when the process displacement curve, the results show that the structure using different seismic waves enter the position time history analysis, the seismic response basically the same. Keywords: time history analysis, finite element software, reinforced concrete shear walls 一、引言 在时程分析等动力学问题中,地震力以加速度形式从基础固定处输入。由于结构的刚度不是无限大,在结构上的加速度反应与基础输入的加速度并不相同。在很多时候,结构的加速度比基础输入的加速度更大,即对输入的加速度有一个动力放大效应。在单自由度弹性体系中,体系最大绝对加速度与地面运动最大加速度的比值,即称为动力系数[2] (1) 动力系数与结构的动力学特性和输入的地震波的频率特性有关。它与地震系数k的乘积即为单自由度体系的地震影响系数。 因此,从原理上讲,时程分析是将地震波的加速度时程曲线作用到结构的基础约束处,得到上部结构的各种地震反应。但是在不同的软件中,其实现方

时程分析中地震波选取浅析

时程分析中地震波选取浅析 通过介绍时程分析法中输入地震波的选择原则、地震动幅值和频率特性等一系列问题,使初学者对输入地震波的选择有初步认识和了解,为以后更深层次的研究打下基础。 标签:时程分析法;地震波选择 1、引言 随着社会、经济和科技的不断发展以及人口数量的迅速膨胀,高层、超高层以及复杂形状的建筑的数量定会快速增长。抗震设计规范规定,对于此类重要、复杂并超过规定高度的建筑,其抗震设计中的地震作用计算都要通过时程分析法进行补充验证。而在时程分析法的计算过程中最重要,最影响地震作用计算结果的莫过于地震波的选取。所以,本文将从地震波选取原则、地震动幅值、频谱特性、持续时间、地震波数量、地震波转动分量等多个方面对地震波的选取进行浅析。 2、地震波的选取原则 时程分析中的地震波如何选取的问题,一直是时程分析法中的一个难点。在选择地震波输入时,要满足两点要求: 1)首先要使选择输入的地震波的某些参数和建筑物所在地的条件相一致。参数主要包括:场地的土壤类别、地震烈度、地震强度参数、卓越周期和反应谱等。 2)其次还要满足地震活动三要素的要求。即频谱特性、地震加速度时程曲线持续时间和幅值,选取的地震波中的这三者,要满足相关规定。相关规定要求:选用数字化的地震波应按照建筑场地类别和设计地震分组进行选取,选用不少于两组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱分析法所采用的地震影响系数曲线在统计意义上相符。在统计意义上相符是指:其平均地震影响曲线与振型分解反应谱法所用到的地震影响系数曲线相比,在各个周期点上相差不大于20%。弹性时程分析时,每条时程曲线计算所得的结构底部剪力不应小于阵型分解反应谱法计算结果的65%。多条时程曲线计算结果的结构底部剪力平均值不应小于振型分解反应谱计算结果的80%[1]。 3、地震动幅值 地震动幅值有两种意义,即可以指地震加速度、位移和速度中的任何一种的最大值,又可以指在某种意义下的等代值。在一定程度上,地震波的峰值能够反应并代表地震波的强度,所以,建筑物所在地的设防烈度所要求的多遇地震或罕

高层建筑案例分析.

高层建筑案例分析—帕拉玛塔广场大厦分析自古以来,人类就有脱离地面,接近苍穹的渴望,在当今社会,用地愈加紧张,技术也愈加成熟,各种各样的高层建筑拔地而起,高层建筑不仅解决了很多如节地、拥挤及环保等城市问题,更成为各个国家及城市的地标性建筑,成为所在地区的“名片”,在一定意义上代表了该地区的形象定位及经济发展,因此,越来越多的高层、超高层建筑在城市中心耸立,他们往往位置险要、造型突出、视觉效果强烈,作为现代建筑技术的结晶,成为展示城市发展成就的有效手段。 高层建筑的发展得益于载客电梯的发展和使用,而其在世界范围内普遍发展起来是20世纪50年代,尤其是近三十年以来,由于一系列全新结构的出现及电子计算机等先进技术的应用,为高层、超高层建筑的出现创造了条件。高层建筑除先进的结构体系及轻质、高强材料以外,其内部诸如自动控制的一系列消防、报警、通讯、高速电梯及管理监测等系统,离不开计算机与电气化,因而它是二十世纪科学技术成就的体现。 目前,作为城市地标的高层建筑十分多见,担负着集办公、商业、居住等众多功能,它们大多是某一地区的综合体建筑,朝着智能化、多样化及绿色环保的方向发展,以下以澳大利亚帕拉玛塔广场大厦为例,解析当今高层建筑的发展现状。 澳大利亚帕拉玛塔,是西悉尼的市中心,为悉尼地区内第二重镇,澳大利亚第三大经济区,是澳目前发展最快的地区之一。随着西悉尼的崛起,被誉为“西部三热点心脏”之称的帕拉玛塔,成为了备受关

注的投资热点。帕市是澳大利亚历史上最古老的城市之一。 帕拉玛塔市举办了一个 比赛,要建造一栋商业高楼, 突出节能高效的设计理念。对 此,urban office architecture事务所设计了 以“城市上升”为主题的这一 建筑。 该建筑共有66层,集商业与办公为一体,是两个楼的结合体,楼的底部是融合在一起的,之后随着楼层的升高而分成两栋。以各自扭转的姿态向上延伸,在其中间以连廊相接,创造了大量的公共平台,姿态呈现出一种生动的流动感,富有韵律又不失节奏。 卡洛恩佐的纽约办公室已 经设想把这里建成公共领域,从 帕拉马塔广场延伸到北部。因 此,创造大量供行人共享的公共 活动区域成为设计的一大要点, 在人流量如此集中地广场区域 地带,需要解决人车共行的交通 拥堵问题,尤其是对于底部空间 的处理及契合绿色城市生活的 主题需要十分到位。

地震波使用说明

地震波使用说明 此目录下提供了四类场地土的地震波时程曲线和上海人工波。 按照场地土类型(1,2,3或4),选择时程曲线。在定义时程工况时,对于多遇或罕遇地震,按比例调整时程曲线的最大值。中国抗震规范规定,作为抗震计算中底部剪力法和振型分解反应谱法的补充方法,对于特别不规则,特别重要的和较高的结构应采用时程分析法进行多遇地震下的补充计算。 可取多条时程曲线的计算结果的平均值与振型分解反应谱法计算结果的较大值。 采用时程分析法时,应咱建筑场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。 其加速度时程最大值可按规范中对于多遇和罕遇地震在不同烈度下的值。 弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80% 。 可使用弹塑性时程分析法计算罕遇地震下结构的变形。 时程分析是一个承受随时间变化的指定荷载结构的逐步动态反应分析,可以是线性或非线性的。 此章对时程分析进行一般的描述,特别是线性时程分析。 定义时程函数 用户可使用“从文件中添加函数”,导入已定义的文本文件,即实测的时程曲线;也可使用程序内置的时程函数。

时程函数定义对话框 时程函数定义对话框中的条目解释如下: ?函数名 通过在编辑框中直接键入以指定或修改时程函数的名称。 ?函数文件 1.在函数文件域点击浏览按钮以调出一个对话框,在此可找出包含时程函数的 文本文件名。注意文件名显示在文件名框中 2.在 "要跳过的标题行" 编辑框中输入一个希望ETABS在文本文件中跳过的 行数。 3.在 "每行要跳过的前缀字符" 编辑框中输入一个希望ETABS在文本文件中 每行要跳过的字符数。 4.在 "每行的点数" 编辑框中输入一个数告诉ETABS文本文件每行的绘图点 数。

汶川地震波加速度时程

FILTER POINTS: NPTS= 25000, DT= .0200 SEC 单位cm/s2 -85.18660303 -26.81310797 29.69681739 17.66375925 10.74725598 5.89307633 10.53329077 8.38328838 -6.60304626 -7.29547636 11.29502428 13.67286273 -5.92602216 -23.83117937 -24.01378573 -10.41018086 -1.73061627 -1.68681541 -0.25120385 5.69817713 22.27844984 29.26687041 14.37719476 -0.78176094 14.85243403 43.59400018 29.38438838 3.43393402 5.49481755 6.23200112 -21.87622974 -52.48408787 -47.05050653 -6.35843868 26.04376039 16.94997018 8.10590549 14.56990612 8.61432565 -0.67444454 1.37721874 -3.94592499

14.4976265 15.78556387 8.14483834 -6.35078639 -12.80601727 -7.48203698 -38.05952669 -47.252601 -22.58282251 4.85801197 24.94937343 15.78910797 -7.89294083 -27.34878362 -7.67345164 21.73423697 33.04934899 5.07072495 5.38605227 29.29248964 32.47681472 63.38543891 78.60146871 41.15192422 16.98456088 24.67915562 29.25445807 -12.85852194 -52.13522708 -27.93999245 9.73808504 20.14985389 -1.49063292 -17.18407036 -9.30291165 -0.51966159 7.96338525 -7.54802444 -11.34591285 19.42029186 0.6700927 -5.71160065 -26.02061476

高层建筑案例分析

高层建筑案例分析

高层建筑案例分析—帕拉玛塔广场大厦分析自古以来,人类就有脱离地面,接近苍穹的渴望,在当今社会,用地愈加紧张,技术也愈加成熟,各种各样的高层建筑拔地而起,高层建筑不仅解决了很多如节地、拥挤及环保等城市问题,更成为各个国家及城市的地标性建筑,成为所在地区的“名片”,在一定意义上代表了该地区的形象定位及经济发展,因此,越来越多的高层、超高层建筑在城市中心耸立,他们往往位置险要、造型突出、视觉效果强烈,作为现代建筑技术的结晶,成为展示城市发展成就的有效手段。 高层建筑的发展得益于载客电梯的发展和使用,而其在世界范围内普遍发展起来是20世纪50年代,尤其是近三十年以来,由于一系列全新结构的出现及电子计算机等先进技术的应用,为高层、超高层建筑的出现创造了条件。高层建筑除先进的结构体系及轻质、高强材料以外,其内部诸如自动控制的一系列消防、报警、通讯、高速电梯及管理监测等系统,离不开计算机与电气化,因而它是二十世纪科学技术成就的体现。 目前,作为城市地标的高层建筑十分多见,担负着集办公、商业、居住等众多功能,它们大多是某一地区的综合体建筑,朝着智能化、多样化及绿色环保的方向发展,以下以澳大利亚帕拉玛塔广场大厦为例,解析当今高层建筑的发展现状。 澳大利亚帕拉玛塔,是西悉尼的市中心,为悉尼地区内第二重镇,澳大利亚第三大经济区,是澳目前发展最快的地区之一。随着西悉尼的崛起,被誉为“西部三热点心脏”之称的帕拉玛塔,成为了备受关

注的投资热点。帕市是澳大利亚历史上最古老的城市之一。 帕拉玛塔市举办了一个 比赛,要建造一栋商业高楼, 突出节能高效的设计理念。对 此,urban office architecture事务所设计了 以“城市上升”为主题的这一 建筑。 该建筑共有66层,集商业与办公为一体,是两个楼的结合体,楼的底部是融合在一起的,之后随着楼层的升高而分成两栋。以各自扭转的姿态向上延伸,在其中间以连廊相接,创造了大量的公共平台,姿态呈现出一种生动的流动感,富有韵律又不失节奏。 卡洛恩佐的纽约办公室已 经设想把这里建成公共领域,从 帕拉马塔广场延伸到北部。因 此,创造大量供行人共享的公共 活动区域成为设计的一大要点, 在人流量如此集中地广场区域 地带,需要解决人车共行的交通 拥堵问题,尤其是对于底部空间 的处理及契合绿色城市生活的 主题需要十分到位。

abaqus如何施加地震波

施加地震波: 1 *amplitude,name=amp,input=seismicdata.dat 输入地震波 2 *boundary,type=acceleration,amplitude=amp施加荷载 方法:module选load,在tools-----amplitude-----creat默认的continue在Edit A mplitude里面输入时间和加速度,点OK。点creat boundary condition,涌现对 话框creat boundary condition,选择acceleration/angular acceleration,continu e---选择要施加的边界---done----涌现对话框edit bondary condition对话框,在 amplitude里选择你所定义的时间和加速度。点ok就完工了。 在网上查了些方法: module选load,在tools-----amplitude-----creat默认的continue在Edit Amplitude 里面输入时间和加速度,点OK。点creat boundary condition,出现对话框creat boundary condition,选择acceleration/angular acceleration,continue---选择要施加的边界---done----出现对话框edit bondary condition对话框,在amplitude里选择你所定义的时间和加速度。点ok就完工了。 这是在CAE里输入地震波的方式,我用的方法是直接在inp文件里加地震波的。 首先在CAE里建好模型,定义两个分析步。 第一个分析步是加自重,采用线性加载的方式。 (a) 加载方式:ABAQUS在施加Gravity时,默认为Instantaneous(瞬时加载),如果把结构自重以瞬间加载方式加到结构上,相当于对结构施加了一个脉冲荷载,会引起结构在竖向的振动,在不考虑结构阻尼的情况,这种振动会一直持续下去。如果是混凝土结构,这种竖向振动也会造成混凝土受拉损伤,所以这种加载方式不太合理。 (b)新建加载方式:创建一个新的Amplitude,Type=smooth tpye,0时刻Am=0,然后再选择一个0.5s~1s时刻,Am=1,在这个区间内线性插值,实现幅值从0到1。这种方式加载要优于上述瞬时加载,但是在起初的0.5s(或者1s,即smooth tpye中设置的终点时间)内计算结果是不准确的,所以要把这部分的计算结果剔除,剔除方法就是,创建2个step,第一个step主要分析自重作用,待自重稳定后开始第二个step地震时程反应分析。 第二个分析步就是加地震波。 输入地震波有两种方法: 1、在如下位置加入下面加黑的字体部分。格式如下:时间,地震波,时间,地震波,时间, 地震波,时间, 地震波…………每行8个数据(我下到的地震波文件是不带时间的,自己用C++处理了一下)。%%%%%%%%%%%%%%%%%%%%%% *End Assembly *Amplitude, name=Amp-1 0.005, -7.5e-08, 0.01, -3.55e-07, 0.015, -7.03e-07, 0.02, -4.53e-07 0.025, 1.82e-06, 0.03, 7.01e-06, 0.035, 1.5e-05, 0.04, 2.49e-05 0.045, 3.54e-05, 0.05, 4.5e-05, 0.055, 5.2e-05, 0.06, 5.5e-05 ………………

ANSYS地震波的输入

对于地震波的输入,可以把荷载记录作成文件,利用apdl的读取功能读入数据库中。下面的例子是自己编的一个小文件。修改一下可以更简洁。 Fini /config,nres,1000 *dim,aceX,TABLE,3000,1 *dim,aceY,TABLE,3000,1 *dim,aceZ,TABLE,3000,1 *creat,ff *vread,aceX(1,1),acex,txt,,1 (e16.6) *vread,aceX(1,0),acexTT,txt,,,1 (e16.6) ACEX(0,1)=1 *end /input,ff *creat,ff *vread,aceY(1,1),txt,,1 (e16.6) *vread,aceY(1,1),ACETT,,,1 (e17.6) ACEY(0,1)=1 *end /input,ff *creat,ff *vread,aceZ(1,1),txt,,1 (e16.6) *vread,aceZ(1,0),ACETT,,,1 (e17.6) ACEZ(0,1)=1 *end /input,ff !地震波时程记录分成了3个文件,每个文件是一列。分别记录x,y,z方向的加速度。Accett是时间记录。 这样就可以把加速度记录读取到ansys数据库中作为数组。 也可以把加速度记录作成一个文件,这样程序就简单多了。 下面是计算部分语句: /SOLU ANTYPE,trans !求解其自己选了 TM_START=0.01 TM_END=15.00 TM_INCR=0.01 *DO,TM,TM_START,TM_END,TM_INCR TIME,tm

结构抗震设计时程分地震波的选择

(1)设计用地震记录的选择和调整 用规范的确定性方法和地震危险性分析方法所确定的设计地震动参数,是选择天然地震加速度记录的依据。 (一)实际地震记录的选择方法 选择地震记录应考虑地震动三要素,即强度(峰值)、频谱和持续时间。对某一建筑的抗震设计,最好是选用该建筑所在场地曾经记录 到的地震加速度时间过程。但是,这种机会极少。为此,人们只能从现有的国内外常用的地震记录中去选择,尽可能挑选那些在震级、震中距和场地条件等方面都比较接近设计地震动参数的记录。他的文章给出了相应的地震数据的记录目录。 (二)实际地震记录的调整 1.强度调整。将地震记录的加速度值按适当的比例放大或缩小,使其峰值加速度等于事先所确定的设计地震加速度峰值。即令 其中a(为记录的加速度值为调整后的加速度值;A众为设计地震加速度峰值;。为记录的加速度峰值。这种调整只是针对原记录的强度进行的,基本上保留了实际地震记录的特征。也就是所说的(强度修正。将地震波的加速度峰值及所有的离散点都按比例放大或缩小以满足场地的烈度要求)

2.频率调整考虑到场地条件对地震地面运动的影响,原则上所选择的实际地震记录的富氏谱或功率谱的卓越周期乃至形状,应尽量与场地土相应的谱的特性一致。如果不一致,可以调整实际地震记录的时间步长,即将记录的时间轴“拉长”或“缩短”,以改变其卓越周期而加速度值不变也可以用数字滤波的方法滤去某些频率成分,改变谱的形状。另外,为了在计算中得到结构的最大反应,也可以根据建筑结构基本自振周期,调整实际地震记录的卓越周期,使二者接近。这种调整的结果,改变了实际地震记录的频率结构,从物理意义上分析是不合理的。 另外,在测定场地土和建筑结构的卓越周期时,运用不同的测试仪器和测试技术,往往得到不同的结果。即使是对同一个测试结果,在频谱上确定卓越周期时,不同的分析方法也会导致不同的结果。有的选取谱的第一个峰值所对应的周期作为卓越周期,有的选最大峰值时的,也有的取某一段周期等,很不一致。对如何确定地震加速度记录的卓越周期,也是各行其是,有的利用加速度反应谱,有的用伪速度谱,有的用富氏谱,结果当然是不一样的。上述各种作法在工程中引起了一些混乱。 王亚勇认为,用脉动测试方法测定场地土和结构的卓越周期及自振周期时,应采用速度摆型或加速度摆型的地震仪测定地运动和结构振动,然后计算其富氏谱或功率谱,以谱的最大峰值所对应的周期作为卓越周期和自振周期比较合适。反应而相应地根据记录的位移谱或速度谱。 这也就是所谓的滤波修正。可按要求设计滤波器,对地震波进行时域或频域的滤波修正。这样修正的地震资料不仅卓越周期满足要求,功率谱的形状和面积也可控制。卓越周期修正。将地震波的离散步长按人为比例改变,

时程分析时地震波的选取及地震波的反应谱化

时程分析时地震波的选取及地震波的反应谱化 摘要:目前我国规范要求结构计算中地震作用的计算方法一般为振型分解反应 谱法。时程分析法作为补充计算方法,在不规则、重要或较高建筑中采用。进行 时程分析时,首先面临正确选择输入的地震加速度时程曲线的问题。时程曲线的 选择是否满足规范的要求,则需要首先将时程曲线进行单自由度反应计算,得到 其反应谱曲线,并按规范要求和规范反应谱进行对比和取舍。本文通过介绍常用 的数值计算方法及计算步骤,实现将地震加速度时程曲线计算转化成反应谱曲线,从而为特定工程在时程分析时地震波的选取提供帮助。 关键词:时程分析,地震波,反应谱,动力计算 1 地震反应分析方法的发展过程 结构的地震反应取决于地震动和结构特性。因此,地震反应分析的水平也是随着人们对 这两个方面认识的深入而提高的。结构地震反应分析的发展可以分为静力法、反应谱法、动 力分析法这三个阶段。在动力分析法阶段中又可分为弹性和非弹性(或非线性)两个阶段。[1] 目前,在我国和其他许多国家的抗震设计规范中,广泛采用反应谱法确定地震作用,其 中以加速度反应谱应用得最多。反应谱是指:单自由度弹性体系在给定的地震作用下,某个 最大反应量(如加速度、速度、位移等)与体系自振周期的关系曲线。反应谱理论是指:结 构物可以简化为多自由度体系,多自由度体系的地震反应可以按振型分解为多个单自由度体 系反应的组合,每个单自由度体系的最大反应可以从反应谱求得。其优点是物理概念清晰, 计算方法较为简单,参数易于确定。 反应谱理论包括如下三个基本假定:1、结构物的地震反应是弹性的,可以采用叠加原理 来进行振型组合;2、现有反应谱假定结构的所有支座处地震动完全相同;3、结构物最不利 的地震反应为其最大地震反应,而与其他动力反应参数,如最大值附近的次数、概率、持时 等无关。[1] 时程分析法是对结构物的运动微分方程直接进行逐步积分求解的一种动力分析方法。由 于此法是对运动方程直接求解,又称直接动力分析法。可直接计算地震期间结构的位移、速 度和加速度时程反应,从而描述结构在强地震作用下弹性和非弹性阶段的内力变化,以及结 构构件逐步开裂、屈服、破坏甚至倒塌全过程。 根据我国《建筑抗震设计规范》(GB5011-2010)(以下简称《抗规》)第5.1.2-3条要求,特 别不规则的建筑、甲类建筑和表5.1.2-1所列高度范围的高层建筑,应采用时程分析法进行多 遇地震下的补充计算。此外《高层建筑混凝土结构技术规程》(JGJ3-2010) (以下简称《高规》)第4.3.4条也有相关要求。 2 时程分析时地震波的选取要求 在进行时程分析时,首先面临地震波选取的问题。所选的地震波需要符合场地条件、设 防类别、震中距远近等因素。《抗规》对于地震波的选取主要有以下几点要求: 1、当取三组加速度时程曲线输入时,计算结果宜取时程法的包络值和振型分解反应谱法 的较大值;当取七组及七组以上的时程曲线时,计算结果可取时程法的平均值和振型分解反 应谱法的较大值(其中实际强震记录的数量不应少于总数的2/3)。 2、弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计 算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计 算结果的80%。 3、多组时程曲线的平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数 曲线在统计意义上相符。根据规范条文说明,所谓“统计意义上相符”指的是,多组时程波的 平均地震影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在对应于结构主 要振型的周期点上相差不大于20%。但计算结果也不能太大,每条地震波输入计算不大于135%,平均不大于120%。 4、时程曲线要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间均要符合规

高层建筑案例分析

高层建筑案例分析. 高层建筑案例分析—帕拉玛塔广场大厦分析自古以来,人类就有脱离地面,接近苍穹的渴望,在当今社会,高用地愈加紧张,技术也愈加成熟,各种各样的高层建筑拔地而起,

更成为各个层建筑不仅解决了很多如节地、拥挤及环保等城市问题,,在一定意义上国家及城市的地标性建筑,成为所在地区的“名片”超高代表了该地区的形象定位及经济发展,因此,越来越多的高层、视觉效果强他们往往位置险要、造型突出、层建筑在城市中心耸立,烈,作为现代建筑技术的结晶,成为展示城市发展成就的有效手段。而其在世界范围高层建筑的发展得益于载客电梯的发展和使用,由于一系尤其是近三十年以来,内普遍发展起来是20世纪50年代,超高层为高层、列全新结构的出现及电子计算机等先进技术的应用,高强材建筑的出现创造了条件。高层建筑除先进的结构体系及轻质、料以外,其内部诸如自动控制的一系列消防、报警、通讯、高速电梯因而它是二十世纪科学及管理监测等系统,离不开计算机与电气化,技术成

就的体现。商业、担负着集办公、作为城市地标的高层建筑十分多见,目前,居住等众多功能,它们大多是某一地区的综合体建筑,朝着智能化、以下以澳大利亚帕拉玛塔广场大厦为多样化及绿色环保的方向发展,例,解析当今高层建筑的发展现状。为悉尼地区内第二重镇,澳大利亚帕拉玛塔,是西悉尼的市中心,随着西悉尼是澳目前发展最快的地区之一。澳大利亚第三大经济区,成为了备受关被誉为“西部三热点心脏”之称的帕拉玛塔,的崛起, 注的投资热点。帕市是澳大利亚历史上最古老的城市之一。 帕拉玛塔市举办了一个比赛,要建造一栋商业高楼,

突出节能高效的设计理念。对此,urban office architecture事务所设计了以“城市上升”为主题的这一建筑。 该建筑共有66层,集商业与办公为一体,是两个楼的结合体,楼的底部是融合在一起的,之后随着楼层的升高而分成两栋。以各自扭转的姿态向上延伸,在其中间以连廊相接,创造了大量的公共平台,姿态呈现出一种生动的流动感,富有韵律又不失节奏。 卡洛恩佐的纽约办公室已

地震波的选取方法

地震波的选取方法 2010-10-20 22:32:00| 分类:默认分类|举报|字号订阅 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话 的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件) 应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期 Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时Td的定义可分为两大类,一类是以 地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对 值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最 后一个k*amax之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般 持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度EPA=Sa/2.5 (1) 有效峰值速度EPV=Sv/2.5 (2) 特征周期Tg = 2π*EPV/EPA (3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平

为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度 反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采 用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中 同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周 期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期 T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2 之间的谱值求平均得Sv,加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式 (1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震 波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所 述方法计算Sv、Sa、Tg。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将 抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数,将其代入到地震波调整系数中。将地 震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组 选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度 EPA=Sa/2.5 (1) 有效峰值速度 EPV=Sv/2.5 (2) 特征周期 Tg = 2π*EPV/EPA(3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv(注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg=Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数(即放大系数),将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDAS程序中,可选取两组实际强震记录生成两个SGS文件(调整Sa后的),然后将一组人

弹塑性时程分析用地震波选取的基本原则(转载)

弹塑性时程分析用地震波选取的基本原则 地震动具有强烈随机性,分析表明,结构的地震反应随输入地震波的不同而差距很大,相差高达几倍甚至十几倍之多。故要保证时程分析结果的合理性,必须合理选择输入地震波。归纳起来,选择输入地震波时应当考虑以下几方面的因素:峰值、频谱特性、地震动持时以及地震波数量,其中,前三个因素称为地震动的三要素。 1、峰值调整 地震波的峰值一定程度上反映了地震波的强度,因此要求输入结构的地震波峰值应与设防烈度要求的多遇地震或罕遇地震的峰值相当,否则应按下式对该地震波的峰值进行调整。 A′(t) = (A′max/Amax) A (t) 其中,A′(t) 和A′max分别为地震波时程曲线与峰值,A′max取设防烈度要求的多遇或罕遇地震的地面运动峰值; A (t) 和Amax分别为原地震波时程曲线与峰值。 2、频谱特性 频谱即地面运动的频率成分及各频率的影响程度。它与地震传播距离、传播区域、传播介质及结构所在地的场地土性质有密切关系。地面运动的特性测定表明,不同性质的土层对地震波中各种频率成分的吸收和过滤的效果是不同的。一般来说,同一地震,震中距近,则振幅大,高频成分丰富;震中距远,则振幅小,低频成分丰富。因此,在震中附近或岩石等坚硬场地土中,地震波中的短周期成分较多,在震中距很远或当冲积土层很厚而土质又较软时,由于地震波中的短周期成分被吸收而导致长周期成分为主。合理的地震波选择应从两个方面着手:1) 所输入地震波的卓越周期应尽可能与拟建场地的特征周期一致。2) 所输入地震波的震中距应尽可能与拟建场地的震中距一致。 3、地震动持时 地震动持时也是结构破坏、倒塌的重要因素。结构在开始受到地震波的作用时,只引起微小的裂缝,在后续的地震波作用下,破坏加大,变形积累,导致大的破坏甚至倒塌。有的结构在主震时已经破坏但没有倒塌,但在余震时倒塌,就是因为震动时间长,破坏过程在多次地震反复作用下完成,即所谓低周疲劳破坏。总之,地震动的持续时间不同,地震能量损耗不同,结构地震反应也不同。工程实践中确定地震动持续时间的原则是:1) 地震记录最强烈部分应包含在所选持续时间内。2) 若仅对结构进行弹性最大地震反应分析,持续时间可取短些;若对结构进行弹塑性最大地震反应分析或耗能过程分析,持续时间可取长些。3) 一般可考虑取持续时间为结构基本周期的5 倍~10 倍。 4、地震波数量 输入地震波数量太少,不足以保证时程分析结果的合理性;输入地震波数量太多,则工作量较大。研究表明,在充分考虑以上三个因素的情况下,采用3 条~5 条

新输入地震波

[结构分析] 地震波输入的问题 三向输入简化后的单向输入 首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据:-0.227109E-02 -0.209046E+00 0.467072E+01 -0.413893E-02 -0.168195E+00 0.261523E+01 -0.574753E-02 -0.157890E+00 0.809014E-01 -0.731227E-02 -0.152996E+00 0.119975E+01 -0.876865E-02 -0.138102E+00 0.130902E+01 -0.101067E-01 -0.131582E+00 0.143611E+00 ....................... 然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据: 0.100000E-01 0.200000E-01 0.300000E-01 0.400000E-01 0.500000E-01 0.600000E-01 ....................... 编写如下的命令流文件,并命名为acce.inp *dim,ACCEXYZ,TABLE,2000,3 !01行 *vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行 (3e16.6) !03行 *vread,ACCEXYZ(1,0),time,txt !04行 (e16.6) !05行 ACCEXYZ(0,1)=1 !06行 ACCEXYZ(0,2)=2 !07行,同上 ACCEXYZ(0,3)=3 !08行,同上 finish /SOLU ANTYPE,trans btime=0.01 !定义计算起始时间 etime=15.00 !定义计算结束时间 dtime=0.01 !定义计算时间步长 *DO,itime,btime,etime,dtime time,itime AUTOTS,0 NSUBST,1, , ,1 KBC,1

相关主题