搜档网
当前位置:搜档网 › 可溶性有机碳的测定

可溶性有机碳的测定

可溶性有机碳的测定
可溶性有机碳的测定

可溶性有机碳测定:

1. 取10 g 新鲜土样,按照土:水为1∶5的比例混匀,在25℃条件下,以250 r/min 的速度振荡1

h,接着在转速为15 000 r/min 离心10min,上部悬浮液过0·45μm 薄滤膜[1],以后的步骤采取测有机碳的方。

2. 取过0·45μm 薄滤膜的溶液放入消煮管中,加5ml 0.8000mol/L 的1/6K 2Cr 2O 7标准溶液,

然后用注射器注人5ml 浓硫酸,旋转摇匀,在消煮管上加一小漏斗。

3. 将盛土样的消煮放人铁丝笼架中,放入已预热至185 -190oC 的油浴锅中(豆油)加热。

此时应控制锅内温度在170-180oC ,沸腾开始,准确加热5min ,取出冷却,如溶液呈绿色,表示重铬酸钾用量不足,应再取较少的样品(或适当增加重铬酸钾的量)重做。

4. 冷却后的溶液呈橙黄色或黄绿色,用洗瓶将消煮管中的溶液洗人250ml 三角瓶中,使三

角瓶内溶液体积在60-80ml 左右,加邻啡啰啉指示剂3—4滴,用0.2mol /L FeSO 4滴定,溶液的颜色变化为:橙黄—→蓝绿—→棕红色,记录硫酸亚铁用量(V )。 每批分析样,应做2—3个空白;空白标定用0.1-0.5g 石英砂代替土样,其它步骤与测定土样时完全相同,记录硫酸亚铁用量(V 0)。

5. 计算方法

有机碳(g/kg )=10001.1003.0)(0.58000.02100????-??K m V V V

有机质(g/kg )=有机碳(g/kg )×1.724

式中:0.8000——1/6 K 2Cr 2O 7标准溶液的浓度(mol/L );

5.0——1/6 K 2Cr 2O 7标准溶液的体积(ml );

V 0——空白标定用去硫酸亚铁溶液体积(ml );

V ——滴定土样用去硫酸亚铁溶液体积(ml );

0.003——1/4碳原子的摩尔质量(g/m mol);

1.1——氧化校正系数;

1.724——将有机碳换算成有机质的系数;

m 1——风干土样质量(g );

K 2——将风干土换算成烘干土系数。土壤碳氮比的计算:

)/()

/(kg g kg g 全氮有机碳碳氮比=

1.耕作措施对土壤有机碳和活性有机碳的影响.严昌荣,刘恩科,何文清,刘爽,刘勤.

水质——总有机碳(TOC)的测定

本标准参照采用国际标准ISO 8245—1987《水质——总有机碳(TOC)的测定——导则》。 1 主题内容和适用范围 1.1 本标准规定了测定地面水中总有机碳的非色散红外线吸收法。 1.2 测定范围 本标准适用于地面水中总有机碳的测定,测定浓度范围为0.5~60mg/L,检测下限为0.5mg/L。 1.3 干扰 地面水中常见共存离子超过下列含量(mg/L)时,对测定有干扰,应作适当的前 处理,以消除对测定的干扰影响:SO 42-400;Cl-400:NO 3 -100;PO 4 3-100;S2-100。 水样含大颗粒悬浮物时,由于受水样注射器针孔的限制,测定结果往往不包括全部颗粒态有机碳。 2 原理 2.1 差减法测定总有机碳 将试样连同净化空气(干燥并除去二氧化碳)分别导入高温燃烧管(900℃)和低温反应管(160℃)中,经高温燃烧管的水样受高温催化氧比,使有机化合物和无机碳酸盐均转化成为二氧化碳,经低温反应管的水样受酸化而使无机碳酸盐分解成二氧化碳。其所生成的二氧化碳依次引入非色散红外线检测器。由于一定波长的红外线被二氧化碳选择吸收,在一定浓度范围内二氧化碳对红外线吸收的强度与二氧化碳的浓度成正比,故可对水样总碳(TC)无机碳(IC)进行定量测定。 总碳与无机碳的差值,即为总有机碳。 2.2 直接法测定总有机碳 将水样酸比后曝气,将无机碳酸盐分解生成二氧化碳驱除、再注入高温燃烧管中,可直接测定总有机碳。 3 试剂 除另有说明外,均为分析纯试剂,所用水均为无二氧化碳蒸馏水。 3.1 无二氧化碳蒸馏水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%)稍冷,装入插有碱石灰管的下口瓶中备用。 3.2 邻苯二甲酸氢钾(KHC 8H 4 O 4 ):优质纯。

TOC总有机碳分析仪产品简介

TOC总有机碳分析仪仪器原理:通过燃烧炉中的高性能氧化催化剂将样品在高温下充分燃烧分解成二氧化碳和水,水蒸气通过冷凝器冷却后除去,二氧化碳用非分散红外检测器(NDIR)测定,从而确定样品中总有机碳测的含量;通过酸试剂将样品中无机碳分解成二氧化碳和水,水蒸气通过冷凝器冷却后除去,二氧化碳用非分散红外检测器(NDIR)测定,从而确定样品中总无机碳TIC的含量;总有机碳TOC=TC-TIC。 仪器产品特点 1、7英寸触摸屏,人性化界面,操作简单便捷; 2、三管程电子冷凝脱水技术,确保整个系统的脱水效率; 3、高反射的镀金气室、高聚光的红外光源及高灵敏的红外探测器,保证NDIR优异的性能,测量ppb级的数据具有足够的灵敏度和准确度; 4、MAX温度可达1100℃,可根据样品选择不同的催化剂(如CeO、Pt,CuO)和设置不同的温度; 5、检测曲线实时可见,更直观; 6、液体样品自动进样,精密的电磁计量泵,保证进样量的准确性和稳定性; 7、多处温度、压力、流量实时自我监测; 8、燃烧炉加热采用多重保护,过热能自动切断加热,提高产品安全性能; 9、无机碳反应池设计有加热装置,消除了样品峰的拖尾,缩短了样品测定时间; 10、内置针式打印机,减少占用空间; 11、2年数据存储量,查询方便,并可按时间段查询; 12、具有密码保护功能;

13、可选配在线模块,实现在线监测; 14、可选配自动取样仪,实现无人值守,节约人力和时间; 15、可配置固体进样器,对固体样品进样舟进样; 16、符合国际标准ISO8245、中华人民共和国国家环境保护标准HJ501-2009、中华人民共和国国家计量检定规程JJG 821-2005。 应用范围 1、制药行业清洁验证 2、自来水、地表水、江河、湖泊水 3、生活污水、工业废水 4、化工用水(清洗水、冷却水、回收水等) 5、实验室科研 聚创环保是一家集设计、研发、生产、销售、服务于一体的高新技术,坐落于美丽的滨海城市-青岛,专注于环境检测类仪器仪表,业务涉及到水环境、大气环境、土壤固废、工业环境、食品安全、生物仪器、实验室等几大领域,服务的客户群体包含环保系统、安监系统、科研院校、第三方检测、石油化工、金属冶炼等生产制造行业。

土壤溶解性有机碳

约旦水资源部秘书长:海水淡化是一个解决方案 2012-03-18 约旦水资源部秘书长认为,海水淡化是约旦必须采取的解决方案,采用这一方案可以补充水资源缺口,解决复杂的跨界水资源、缺少资金、政策的和能力建设等问题。 约旦是全球第四个最为缺水的国家,人均占有水资源量最低。 来源:中国水利网站 2012年3月18日 】

1.1真空冷冻原理 海水三相点是使海水汽、液、固三相共存并达到平衡的一个特殊点。若压力或温度偏离该三相点,平衡被破坏,三相会自动趋于一相或两相。真空冷冻法海水淡化正是利用海水的三相点原理,以水自身为制冷剂,使海水同时蒸发与结冰,冰晶再经分离、洗涤而得到淡化水的一种低成本的淡化方法。与蒸馏法、膜法相比,能耗低,腐蚀、结垢轻,预处理简单,设备投资小,并可处理高含盐量的海水,是一种较理想的海水淡化法[!]。国外早在20世纪60年代就已开始研究,但目前为止尚没有商业化,主要原因在于过程中产生的三相点蒸汽难以去除和冰晶的输送、洗涤较难。华东理工大学研究开发的真空冻-汽相冷凝海水淡化技术采用低温金属表面,使三相点蒸汽直接冷凝成冰的方法,成功的解决了蒸汽的去除问题,并在实验室完成了小型试验装置。真空冷冻-汽相冷凝海水淡化技术工艺包括脱气、预冷、蒸发结晶、冰晶洗涤、蒸汽冷凝等步骤,淡化水产品可达到国家饮用水标准。 1.2工艺研究 1.2.1脱气 由于海水中溶有的不凝性气体在低压条件下将几乎全部释放,且又不会在冷凝器内冷凝。这将升高系统的压力,使蒸发结晶器内压力高于二相点压力,破坏操作的进行。显然减压脱气法适合本系统。 1.2.2预冷 海水脱气后可与蒸发结晶器内排出的浓盐水和淡化水产生热交换,预冷至海水的冰点附近。 1.2.3温度和压力 它们是影响海水蒸发与结冰速率的主要因素。 1.2.4冰-盐水是一固液系统 普通的分离方法均可使冰-盐水得到分离,但分离方法不同,得到的冰晶含盐量也不同。实验结果表明减压过滤方法得到的冰晶含盐量比常压过滤方法得到的冰晶含盐量低得多。 1.2.5蒸汽冷凝 在蒸发结晶器内,除海水析出冰晶以外,还将产生大量的蒸汽,这些蒸汽必须及时移走,才能使海水不断蒸发与结冰。 2蒸馏法海水淡化及其特点 2.1蒸馏法原理 把海水加热使之沸腾蒸发,再把蒸汽冷凝成淡水的过程即为蒸馏法。蒸馏法是最早采用的淡化法,其优点是结构简单、操作容易,所得淡水水质好等。蒸馏法有很多种,如多效蒸发、多级闪蒸、压气蒸馏、膜蒸馏等。 2.2蒸馏法特点

水中总有机碳TOC的测定

水中总有机碳(TOC)的测定 一、实验目的: 通过本实验,了解本仪器的工作原理,熟悉各操作步骤。 二、方法原理: 总有机碳TOC(Total Organic Carbon),是以构成有机物成分之一的碳的数量表示有机污染物质的量。它是把水中所含有机物质里面的碳转化成二氧化碳后加以测定而求得的。 TOC-10B自动测定仪采用分别测出总碳量和无机碳量,并从两者的差值求得TOC的方法。测定原理如下: 用空气泵将空气引入吸气管,吸气管置于TC电炉内。900℃的高温足以把空气中含碳的物质变成CO2,由吸气管而来的空气经由空气过滤器除尘,由CO2吸收器除CO2制成载气。 载气被通入TC和IC两个通道,它们由各自的流量控制阀控制在给定的流速下,空气按给定的流速进入燃烧管(不是T C燃烧管就是IC反应管,这要根据所需要的途径来选择)。一定量的样品由微量注射器通过注射口注入,使其燃烧或分解。分解或燃烧后的气体直接通过T C一IC选择部分到除水器以除去剩余水气。经这样处理的气体引入红外分析部分去测量CO2浓度。 (1)总碳量(TC )的测定: 用微量注射器将样品注入燃烧管中,在900℃的高温及C O304催化剂的作用下样品中所有含碳物质(T C)燃烧和氧化成CO2,被载气带到红外线分析部分检测,样品所含C的浓度正比于记录议出出现的峰高。 (2) 无机碳(IC)的测量: 用微量注射器将样品注入IC反应管中,在160℃的温度及磷酸催 化剂的作用下样品中所含无机碳(IC)分解产生CO2,被载气带到红外分析部分检测,样品所含C的浓度正比于记录议出出现的峰高。 (3)TOC (总有机碳)的测量: 从T C(总碳)减去IC(无机碳)得到TOC (总有机碳),或者将样 品预处理除去IC,然后在TC通道中进行测量,这样就能直接测量TOC。 (4)红外线分析原理: 由一种原子组成的那些分子如N2、O2、和H2不吸收红外线,由两种原子组成的分子,如CO2和CH3吸收红外线,所吸收的红外线的波长与组成分子的原子种类、结合状态有关。在TOC-10B中,载气中的N2和O2不吸收红外线。但是CO2吸收4.3μm的红外线。所吸收的光量正比于气体的浓度。根据朗勃-比尔定律,气体的浓度可由吸收的光量来测定。红外线分析部分原理如下: 为了测量起见,采用非色散系统代替色散光谱,两股间断平行光由检测器测量,并 对之进行选择,被测气体引入测定池光路中的样品池,在另一光路上的参比池封有不吸

可溶性有机碳的测定

可溶性有机碳测定: 1. 取10 g 新鲜土样,按照土:水为1∶5的比例混匀,在25℃条件下,以250 r/min 的速度振荡1 h,接着在转速为15 000 r/min 离心10min,上部悬浮液过0·45μm 薄滤膜[1],以后的步骤采取测有机碳的方。 2. 取过0·45μm 薄滤膜的溶液放入消煮管中,加5ml 0.8000mol/L 的1/6K 2Cr 2O 7标准溶液, 然后用注射器注人5ml 浓硫酸,旋转摇匀,在消煮管上加一小漏斗。 3. 将盛土样的消煮放人铁丝笼架中,放入已预热至185 -190oC 的油浴锅中(豆油)加热。 此时应控制锅内温度在170-180oC ,沸腾开始,准确加热5min ,取出冷却,如溶液呈绿色,表示重铬酸钾用量不足,应再取较少的样品(或适当增加重铬酸钾的量)重做。 4. 冷却后的溶液呈橙黄色或黄绿色,用洗瓶将消煮管中的溶液洗人250ml 三角瓶中,使三 角瓶内溶液体积在60-80ml 左右,加邻啡啰啉指示剂3—4滴,用0.2mol /L FeSO 4滴定,溶液的颜色变化为:橙黄—→蓝绿—→棕红色,记录硫酸亚铁用量(V )。 每批分析样,应做2—3个空白;空白标定用0.1-0.5g 石英砂代替土样,其它步骤与测定土样时完全相同,记录硫酸亚铁用量(V 0)。 5. 计算方法 有机碳(g/kg )=10001.1003.0)(0.58000.02100????-??K m V V V 有机质(g/kg )=有机碳(g/kg )×1.724 式中:0.8000——1/6 K 2Cr 2O 7标准溶液的浓度(mol/L ); 5.0——1/6 K 2Cr 2O 7标准溶液的体积(ml ); V 0——空白标定用去硫酸亚铁溶液体积(ml ); V ——滴定土样用去硫酸亚铁溶液体积(ml ); 0.003——1/4碳原子的摩尔质量(g/m mol); 1.1——氧化校正系数; 1.724——将有机碳换算成有机质的系数; m 1——风干土样质量(g ); K 2——将风干土换算成烘干土系数。土壤碳氮比的计算: )/() /(kg g kg g 全氮有机碳碳氮比= 1.耕作措施对土壤有机碳和活性有机碳的影响.严昌荣,刘恩科,何文清,刘爽,刘勤.

有机碳测定及方法

1.活性有机碳(CL) 土壤活性有机质是土壤有机质的活性部分,是指土壤中有效性较高、易被土壤微生物分解利用、对植物养分供应有最直接作用的那部分有机质。土壤活性有机质在指示土壤质量和土壤肥力的变化时比总有机质更灵敏,能够更准确、更实际的反映土壤肥力和土壤物理性质的变化、综合评价各种管理措施对土壤质量的影响。土壤活性有机质还可以表征土壤物质循环特征,作为土壤潜在生产力和由土壤管理措施变化而引起土壤有机质变化的早期预测指标。 (1)活性有机碳(CL):高锰酸钾氧化法。秤取过0.25mm筛的风干土样1.59于l00ml离心管中,加入333mM(或167mM、33mM)高锰酸钾25ml(易氧化态碳),振荡1小时,离心5分钟(转速2000次/min),取上清液用去离子水按1:250稀释,然后将稀释液在565nm比色。根据高锰酸钾浓度的变化求出样品的活性有机碳。 (2)总有机碳:重铬酸钾氧化法。 (3)非活性有机碳(CNL):总有机碳与活性有机碳的差值为非活性有机碳(CNL) (4)碳库活度(L):土壤碳的不稳定性,即碳库活度(L)等于土壤中的CL与CNL之比:L=样本中的活性有机碳CL/样本中的非活性有机碳CNL。 (5)碳库指数(CPI)=样品总有机碳含量(mg/g)/参考土壤总有机碳含量(mg/g) (6)活度指数(LI):碳损失及其对稳定性的影响,LI=样本的不稳定性(L)/对照的不稳定性(L) (7)基于以上指标可以得到碳库管理指数(CMI):CMI=CPI*LI*100 2.水溶性碳水化合物 碳水化合物是土壤中最重要、最易降解的有机成分之一,其对气候变化、耕作、生物处理等外界影响的敏感程度高于有机质总量。而且作为土壤微生物细胞必需的组成物质和主要能源,碳水化合物与土壤微生物存在密切的关系。 按Grandy 等的方法测定,操作过程为:称取一定量的风干土(根据有机质含量而定) 加入去离子水(水土比为10:1) ,在85℃下培养24 h 后用孔径为0.45μm的玻璃纤维滤纸过滤,将虑液按1:4的比例进行稀释,然后吸取5 ml 稀释液放入比色管中,再加入10 ml 蒽酮溶液,最后在625 nm 处进行比色测定,其含量用葡萄糖表示。 Grandy AS , Erich MS , Porter GA. 2000. Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts [J]. Soil Biol . Biochem. ,32 :725~727.

水质 总有机碳的测定

水质总有机碳的测定 燃烧氧化-非分散红外吸收法 1 适用范围 本标准规定了测定地表水、地下水、生活污水和工业废水中总有机碳(TOC)的燃烧氧化-非分散红外吸收方法。 本标准适用于地表水、地下水、生活污水和工业废水中总有机碳(TOC)的测定,检出限为0.1 mg/L,测定下限为0.5 mg/L。 注1:本标准测定TOC分为差减法(3.1)和直接法(3.2)。当水中苯、甲苯、环己烷和三氯甲烷等挥发性有机物含量较高时,宜用差减法测定;当水中挥发性有机物含量较少而无机碳含量相对较 高时,宜用直接法测定。 注2:当元素碳微粒(煤烟)、碳化物、氰化物、氰酸盐和硫氰酸盐存在时,可与有机碳同时测出。 注3:水中含大颗粒悬浮物时,由于受自动进样器孔径的限制,测定结果不包括全部颗粒态有机碳。 2 术语和定义 下列术语和定义适用于本标准。 2.1 总有机碳total organic carbon,TOC 指溶解或悬浮在水中有机物的含碳量(以质量浓度表示),是以含碳量表示水体中有机物总量的综合指标。 2.2 总碳total carbon,TC 指水中存在的有机碳、无机碳和元素碳的总含量。 2.3 无机碳inorganic carbon,IC 指水中存在的元素碳、二氧化碳、一氧化碳、碳化物、氰酸盐、氰化物和硫氰酸盐的含碳量。 2.4 可吹扫有机碳purgeable organic carbon,POC 指在本标准规定条件下水中可被吹扫出的有机碳。 2.5 不可吹扫有机碳non-purgeable organic carbon,NPOC 指在本标准规定条件下水中不可被吹扫出的有机碳。

3 方法原理 3.1 差减法测定总有机碳 将试样连同净化气体分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生成的二氧化碳分别被导入非分散红外检测器。在特定波长下,一定质量浓度范围内二氧化碳的红外线吸收强度与其质量浓度成正比,由此可对试样总碳(TC)和无机碳(IC)进行定量测定。 总碳与无机碳的差值,即为总有机碳。 3.2 直接法测定总有机碳 试样经酸化曝气,其中的无机碳转化为二氧化碳被去除,再将试样注入高温燃烧管中,可直接测定总有机碳。由于酸化曝气会损失可吹扫有机碳(POC),故测得总有机碳值为不可吹扫有机碳(NPOC)。 4 干扰及消除 水中常见共存离子超过下列质量浓度时:SO42?400 mg/L、Cl? 400 mg/L、NO3?100 mg/L、PO43? 100 mg/L、S2? 100 mg/L,可用无二氧化碳水(5.1)稀释水样,至上述共存离子质量浓度低于其干扰允许质量浓度后,再进行分析。 5 试剂和材料 本标准所用试剂除另有说明外,均应为符合国家标准的分析纯试剂。所用水均为无二氧化碳水(5.1)。 5.1 无二氧化碳水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%),冷却后备用。也可使用纯水机制备的纯水或超纯水。无二氧化碳水应临用现制,并经检验TOC质量浓度不超过0.5 mg/L。 5.2 硫酸(H2SO4):ρ(H2SO4)=1.84 g/ml。 5.3 邻苯二甲酸氢钾(KHC8H4O4):优级纯。 5.4 无水碳酸钠(Na2CO3):优级纯。 5.5 碳酸氢钠(NaHCO3):优级纯。 5.6 氢氧化钠溶液:ρ(NaOH)=10 g/L。 5.7 有机碳标准贮备液:ρ(有机碳,C)= 400 mg/L。准确称取邻苯二甲酸氢钾(预先在110~120℃下干燥至恒重)0.850 2 g,置于烧杯中,加水(5.1)溶解后,转移此溶液于1 000 ml容量瓶中,用水(5.1)稀释至标线,混匀。在4℃条件下可保存两个月。 5.8 无机碳标准贮备液:ρ(无机碳,C)=400 mg/L。准确称取无水碳酸钠(预先在105℃下干燥至恒重)1.763 4 g和碳酸氢钠(预先在干燥器内干燥)1.400 0 g,置于烧杯中,加水(5.1)溶解后,转移此溶液于1 000 ml容量瓶中,用水(5.1)稀释至标线,混匀。在4℃条件下可保存两周。 5.9 差减法标准使用液:ρ(总碳,C)= 200 mg/L,ρ(无机碳,C)= 100 mg/L。用单

水质 总有机碳

水质总有机碳(TOC)的测定非色散红外线吸收法 water quality—Determination of TOC by nondispersive infrared absorption method GB 13193-91 本标准参照采用国际标准ISO 8245—1987《水质——总有机碳(TOC)的测定——导则》。 1 主题内容和适用范围 1.1 本标准规定了测定地面水中总有机碳的非色散红外线吸收法。 1.2 测定范围 本标准适用于地面水中总有机碳的测定,测定浓度范围为0.5~60mg/L,检测下限为0.5mg/L。 1.3 干扰 地面水中常见共存离子超过下列含量(mg/L)时,对测定有干扰,应作适当的前处理,以消除对测定的干扰影响:SO42-400;Cl-400:NO3-100;PO43-100;S2-100。水样含大颗粒悬浮物时,由于受水样注射器针孔的限制,测定结果往往不包括全部颗粒态有机碳。 2 原理 2.1 差减法测定总有机碳 将试样连同净化空气(干燥并除去二氧化碳)分别导入高温燃烧管(900℃)和低温反应管(160℃)中,经高温燃烧管的水样受高温催化氧比,使有机化合物和无机

碳酸盐均转化成为二氧化碳,经低温反应管的水样受酸化而使无机碳酸盐分解成二氧化碳。其所生成的二氧化碳依次引入非色散红外线检测器。由于一定波长的红外线被二氧化碳选择吸收,在一定浓度范围内二氧化碳对红外线吸收的强度与二氧化碳的浓度成正比,故可对水样总碳(TC)无机碳(IC)进行定量测定。 总碳与无机碳的差值,即为总有机碳。 2.2 直接法测定总有机碳 将水样酸比后曝气,将无机碳酸盐分解生成二氧化碳驱除、再注入高温燃烧管中,可直接测定总有机碳。 3 试剂 除另有说明外,均为分析纯试剂,所用水均为无二氧化碳蒸馏水。 3.1 无二氧化碳蒸馏水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%)稍冷,装入插有碱石灰管的下口瓶中备用。 3.2 邻苯二甲酸氢钾(KHC8H4O4):优质纯。 3.3 无水碳酸钠(Na2CO3):优质纯。 3.4 碳酸氢钠(NaHCO3)优质纯,存放于干燥器中。 3.5 有机碳标准贮备溶液:C=400mg/L。 称取邻苯二甲酸氢钾(3.2)(预先在110~120℃干燥2h,置于干燥器中冷却至室温)0.8500g,溶解于水(3.1)中,移入1000mL容量瓶内,用水(3.1)稀释至标线,混匀,在低温(4℃)冷藏条件下可保存48d。 3.6有机碳标准溶液:c=80mg/L。准确吸取10.00mL有机碳标准溶液(3.5),置于50mL容量瓶内,用水(3.1)稀释至标线混匀。此溶液用时现配。

总有机碳分析仪(TOC)使用规则

大仁科技大學貴重儀器中心 總有機碳分析儀(TOC)使用規則 96.11.14 貴重儀器管理委員會議通過 一、儀器設備與功能: 廠牌:Multi N/C 3000/ Analytik Jena AG/ Germany 高溫燃燒(850℃;以CeO2當做催化劑) 偵檢器;非分散紅外線測定儀(NDIR) 二、預約方式: 1.使用本儀器需事先至貴儀中心外公佈欄上確認本儀器可預之時 段,於填寫申請表並完成預約後,方得使用本儀器。 2.使用者需至少於三天前完成預約,若於預約時間無法進行實驗, 需於前一日取消預約。 3.每次只能預約一次,每次使用完畢後需將申請表交付中心存查後 方得預約下次使用時間。 三、儀器操作資格: 1.本儀器可由操作員代為操作。 2.經由貴儀中心訓練合格並取得操作證書者方得以自行操作。 四、自備耗材及分析樣本之前處理: 1.中心備有填充觸媒催化劑之高溫石英管,然若有被污染之疑者, 可自行準備同等級之高溫石英管。 2.進入該系統之水樣均需經0.45 μm孔徑之濾膜,自行過濾,以避 免管線阻塞,過濾水樣均需以純水清洗乾淨不含肉眼可見顆粒物 質存在之玻璃材質容器盛裝,並於排定時間前,將水樣送至操作 員處進行確認。

五、收費標準: 1.操作員代測: (1)樣品數1~5個(含檢量線),每個樣品收費300元;若需進行查核 及添加時,每個樣品收費300元。 (2)樣品數6~10個(含檢量線),每個樣品收費250元;若需進行查核 及添加時,每個樣品收費300元。 (3)樣品數11~20個(含檢量線),每個樣品收費200元;若需進行查 核及添加時,每個樣品收費400元。 (4)樣品數20個以上(含檢量線),每個樣品收費150元;若需進行查 核及添加時,每個樣品收費500元。 2.自行操作者: 依操作員代測收費標準之六折計算。 3.以上收費標準,於每學期得檢討修正並公告之。 4.以上收費標準適用校內師生,校外的收費標準則為校內收費標準 之二倍。 5.自行操作者樣品數以儀器電腦紀錄為主。 六、規範 1.無法如期於預約時間進行實驗,需於前一日取消預約,否則停權 一個月。 2.儀器若發生異常狀況,應立即停止操作且標示警語,並儘快通知 指導教師,違反者停權一個月;如導致儀器更嚴重損害時則須負 部份損害賠償。 3.使用者需維持使用區域之清潔並將使用物品歸定位,違反者停權 兩週。。 七、本規則如有未盡事宜,得由使用者提出具體意見,經儀器管理委

测量水中的TOC总有机碳

测量水中的TOC总有机碳 有机碳化合物种类繁多,由于碳有形成长链分子的能力,有机化合物的种类几乎是无限的。气相色谱仪(GC) 或高效液相色谱仪(HPLC)可以用来定量分析特定的有机化合物,当然前提是要知道分析什么物质。 测量总有机碳(TOC)并不分析某种特定的有机化合物,实际测量的样品中往往非常复杂,含有多种混合的有机物质,总有机碳(TOC)表征的就是所有这类物质的总和。测量TOC的原因不外乎过程控制或法规限制,以下是一些常见的TOC测量应用: 自来水厂:有机碳与消毒剂例如氯或臭氧形成消毒副产物(DBP),有可能有致癌性。 在消毒前减少有机碳含量可以大大降低消毒副产物(DBP)对公众健康的危害。 市政污水处理厂:监测进水的TOC含量测量,有助于指导工艺控制,提高处理效率。出水的TOC含量需要达到相应标准才能排放到地表水系中。 工业污水处理:监测出水的TOC含量,确保达标排放。 发电厂:过程水中的TOC含量测量和控制,有助于减少腐蚀性成分对昂贵设备的损害。 制药厂:监测并控制水中的TOC含量,阻止有害细菌的生长。 半导体厂:芯片生产需要超纯水,集成度越高的芯片,对水的纯度要求越高,也需要监测其中的TOC含量。 TOC 的相关概念 无机碳只与氧原子结合,例如二氧化碳,碳酸氢盐或碳酸盐。有机碳可以与不同的原子结合,例如氢原子,氮原子或其它碳原子。下面是关于有机碳的常用概念: TC: 总碳 TOC: 总有机碳 TIC: 总无机碳 DOC: 总溶解有机碳 POC: 可清除有机碳(也叫VOC 挥发性有机碳) NPOC: 不可清除有机碳 总有机碳可以用总碳减去总无机碳来计算,写成公式如下: TC – TIC = TOC

TOC(总有机碳分析仪)测定原理方法

下面针对TOC仪器的测定原理、TOC分析方法及分析的步骤进行介绍。 一、TOC仪器的测定原理 总有机碳(TOC),由专门的仪器——总有机碳分析仪(以下简称TOC 分析仪)来测定。TOC分析仪,是将水溶液中的总有机碳氧化为二氧化碳, 并且测定其含量。利用二氧化碳与总有机碳之间碳含量的对应关系,从而 对水溶液中总有机碳进行定量测定。 仪器按工作原理不同,可分为燃烧氧化—非分散红外吸收法、电导法、 气相色谱法等。其中燃烧氧化—非分散红外吸收法只需一次性转化,流程 简单、重现性好、灵敏度高,因此这种TOC分析仪广为国内外所采用。 TOC分析仪主要由以下几个部分构成:进样口、无机碳反应器、有机碳 氧化反应(或是总碳氧化反应器)、气液分离器、非分光红外CO2分析器、数据处理部分。 二、燃烧氧化——非分散红外吸收法 燃烧氧化—非分散红外吸收法,按测定TOC值的不同原理又可分为差 减法和直接法两种。 1.差减法测定TOC值的方法原理 水样分别被注入高温燃烧管(900℃)和低温反应管(150℃)中。经 高温燃烧管的水样受高温催化氧化,使有机化合物和无机碳酸盐均转化成 为二氧化碳。经反应管的水样受酸化而使无机碳酸盐分解成为二氧化碳, 其所生成的二氧化碳依次导入非分散红外检测器,从而分别测得水中的总 碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。 2.直接法测定TOC值的方法原理 将水样酸化后曝气,使各种碳酸盐分解生成二氧化碳而驱除后,再注 入高温燃烧管中,可直接测定总有机碳。但由于在曝气过程中会造成水样 中挥发性有机物的损失而产生测定误差,因此其测定结果只是不可吹出的 有机碳值。 三、水样中TOC的分析步骤 1.试剂准备 (1)邻苯二甲酸氢钾(KHC8H4O)4:基准试剂 (2)无水碳酸钠:基准试剂 (3)碳酸氢钠:基准试剂 (4)无二氧化碳蒸馏水 2.标准贮备液的制备 (1)有机碳标准贮备液:称取干燥后的适量KHC8H4O,4用水稀释, 一般贮备液的浓度为400mg/L碳。 (2)无机碳标准贮备液:称取干燥后适量比例的碳酸钠和碳酸氢钠, 用水稀释,一般贮备液的浓度为400mg/L无机碳。 3.有机碳、无机碳标准溶液的配制 从各自的贮备液中按要求稀释得来。

总有机碳(TOC)分析仪测定土壤中TOC的研究

2014年第5期 分析仪器 通讯作者:何海龙,男,1984年出生,硕士研究生,主要从事环境监测方面研究,E ‐mail :hailonghe 1984@126.com 。 总有机碳(T O C )分析仪测定土壤中T O C 的研究 何海龙*  君 珊 张学宽 (呼伦贝尔市环境监测中心站,呼伦贝尔021000) 摘 要:建立了总有机碳(TOC )分析仪测定土壤中TOC 的方法,绘制了总碳(TC )和无机碳(IC )的标准曲线。在此条件下,通过连续测定标准样品(GSS -16)验证了该方法的精密度,同时测试了实际土壤样品中TOC 的含量。结果显示二者曲线相关系数r =0.9998,表明该方法的标准曲线具有良好的相关线性。实验室内相对标准偏差RSD <0.05,充分体现了TOC 分析仪法精密度高,结果重现性好等优点。 关键词:总有机碳测定仪;土壤;有机碳DOI :10.3936/j .issn .1001-232x .2014.05.012 Analysis of total organic carbon in soil by TOC analyzer .H e H ailon g * ,Jun Shan ,Zhan g X uekuan (H ulunbeir Env ironmental Monitorin g Centre Station ,H ulunbeir 021000,China ) Abstract :A method was developed for determination of total organic carbon in soil by T OC analyzer .TC and IC calibration curve were established .Under the optimal conditions ,the method was used for simul ‐taneously precision determination of national standard matter (GSS ‐16)and total organic carbon in soil .T he results showed that the calibration curve of TC and IC were 99.98%and the relative standard devia ‐ tion (RSD )was lower than 5%,T he method show s the advantages of good reproducibility and better preci ‐ sion . Key word :T OC analyzer ;soil ;organic 1 前言 总有机碳(T OC )是土壤和沉积物中一个重要的组成成分,对土壤的性质及有机污染物在土壤中的迁移和转化有很大影响。作为土壤肥沃程度的主要表征,T OC 常用于指示土壤中有机质的含量,并成为土壤研究中一项十分重要的理化性质指标。T OC 是影响土壤肥力和农业可持续发展的重要因子,其含量和动态在土壤质量演变和全球碳循环中起着十分重要的作用。因此准确测定土壤中的T OC ,对于研究土壤碳转化、调整和优化土壤管理 具有重要意义[1-2] 。目前测定土壤中TOC 的方法有重铬酸钾外加热法和TOC 分析仪法。传统的重铬酸钾外加热法,操作复杂,费工费时,且污染较大,而且存在氧化不完全等缺点,分析中所用的校正系数是各种土壤的平均值,这会使实验结果产生较大的系统误差。T OC 分析仪法测定土壤中T OC 是将土壤中的有机物全部高温燃烧生成的二氧化碳即总碳(TC )与使用磷酸作为反应酸反应生成的二氧化碳即无机碳(IC )分别通过非分散红外线吸收(NDIR )检测器进行测定,二者的差值即为总有机碳的含量。该方法具有样品处理简单、仪器操作快捷、实验数据准确等一系列优点,已成为当今测 定TOC 的首选方法[3,4] 。本文使用岛津T OC -L -CPH -SSM 5000A 型TOC 分析仪,建立了土壤中TOC 含量测定的方法,对标准物质和实际土壤样品进行了分析,取得了理想的实验结果。 2 实验部分 2.1 仪器和试剂 岛津总有机碳测定仪(TOC -L -CPH -SSM 5000A 型)。测试条件:载气(高纯氧气)压力:300kpa ;流量:500mL /min 。TC 条件:温度900℃,氧化钴铂金触媒催化剂。IC 条件:温度200℃, 9 5

中国土壤有机碳研究综述.kdh

中国土壤有机碳研究综述 刘敏 (中国林业科学研究院热带林业研究所,广东省,广州市,510520) 摘要 本文介绍了目前为止中国土壤有机碳的研究现状和进展,主要从有机碳库的计算和研究方法、有机碳库的影响因子和有机碳运动及转化等方面的研究进行了述论,为土壤有机碳,特别是森林土壤的固碳研究提供了科学的依据,为对照国外土壤有机碳的研究水平提供了参考依据,也为全球碳库的统计研究提供了数据理论基础。 关键词:土壤有机碳 影响因子 动态 方法 引言 碳是生命物质中的主要元素之一,是有机质的重要组成部分。总的来说,地球上主要有四大碳库,即大气碳库、海洋碳库、陆地生态系统碳库和岩石圈碳库,碳元素在大气、陆地和海洋等各大碳库之间不断地循环变化。陆地生态系统碳库主要由植被和土壤两个分碳库组成,内部组成和各种反馈机制最为复杂,是受人类活动影响最大的碳库。土壤在全球的碳排放和隔离潜能中被认为是一个活跃和重要的角色。研究土壤可持续利用的核心问题是土壤有机质,有机质数量的耗竭和质量的恶化可直接导致土壤生态功能的衰退。土壤有机质在微生物分解过程中,大部分的碳以CO2形式释放到空气中,迅速与大气进行交换,对大气碳库有重要的调节作用,其他部分以土壤有机碳或碳酸盐的形式储藏在土壤碳库中。于东升[1]等计算出中国的土壤面积共有928.10×104 km2,有机碳储量(SOC)为89.14Pg(1 Pg = 1015g),土壤平均碳密度为9.60 kg·m-2。植物有机质进入土壤后经过腐解,生成成复杂的土壤有机碳。李晓阳[2]等认为土壤有机碳的变化与土壤特性、土壤管理方式及土壤有机碳检测方法有关。周莉[3]等认为理解土壤有机碳蓄积过程对生物、物理和人为因素的响应和把握关键的控制因子是准确预测土壤有机碳在全球变化情景下对大气 CO2的源、汇方向及准确评估碳收支的关键。 1 土壤有机碳库的计算方法 土壤有机碳库计算方法主要有5种:土壤类型法、生命带研究方法、GIS估算土壤有机碳储量、相关关系估算法、统计估算法等。根据研究对象的不同主要有4种类型:根据植被类型推算、根据土壤类型推算、根据生命气候带推算、利用模型计算。于东升[1],王义祥[4]用土壤类型推算法进行了研究,数据结果的准确性与数据基础有很大的关系。甘海华[5],邱建军[6]运用模型也作了这方面的研究;童成立[7]等比较了有机碳计算机模拟模型(SCNC)模型和英国洛桑模型(ROTHC-26.3),结果显示了SCNC的接近真值的效果,他们认为输入量的要求成为了取得研究的成功的关键。赵永存[8]等认为回归克里格预测土壤有机碳的空间分布效果最好,能更好地反映碳密度与地形的关系以及局部变异。 2 土壤有机碳库的影响因子 2.1土壤化学性质对土壤有机碳影响 土壤的化学性质是影响土壤有机碳库的关键因子。李明锋[9]等研究表明SOC和TN的含量直接或间接地决定生态系统CO2排放通量,并且姜勇[10]认为自然生态系统的SOC与TN的相关性略高与农田生态系统。郭胜利[11]认为Q m(P素的最大吸附量),DPS(土壤磷素吸附饱和度)和EPC o(零净吸附磷浓度)变化与SOC存在显著或极显著的线性相关关系(P<0.001)。根据不同林分有机碳、氮组分的不同,徐秋芳[12]认为灌木林和阔叶林土壤表层的微生物生物碳(C MB)、易氧化态碳(C R)与土壤总有机碳(C T)含量间相关性均达显著水平,而灌木林水溶性有机碳(C WS)与C T的相关性达到极显著水平;阔叶林土壤蔗糖酶、脲酶、蛋白酶及磷酸酶活性与C T、C MB及C R含量间均存在显著相关性,而灌木林只有蔗糖酶活性与各类碳有机碳有显著相关性。姜培坤[13]认为雷竹土壤的C T与活性碳含量(C A)、C WS之间,C A与C WS之间以及C T、C A、C WS与土壤(TN)、水解氮、有效磷(AvP)、速效钾(AvK)之间相关性均达极显著水平(P<0.01),而雷竹C MB与C T、C A、C WS、TN、水解氮、AvP、AvK之间相关性均不显著。彭佩钦[14]认为湿地土壤C MB 作者简介 刘敏,女,1974年出生,硕士,工程师。主要从事森林生态(群落基本特征分析);植物水分生理(耐旱、耐水研究);土壤(基本理化性状及有机碳研究);3S技术的应用。 Email:liumin27@https://www.sodocs.net/doc/2b11137600.html,。

水中总有机碳(TOC)的测定 ——非色散红外吸收法

11.TOC的测定——非色散红外吸收法

一、目的和要求 (1)掌握总有机碳的测定原理 (2)了解德国elementar TOC总有机碳分析仪的使用方法

二、原理 水中总有机碳(TOC),是以碳的含量表示水体中有机物质总量的综合指标。由于TOC的测定采用燃烧法,能将有机物全部氧化,它比BOD5或COD更能直接表示有机物的总量,因此TOC经常被用来评价水体中有机物污染的程度。 近年来,国内外已研制成各种类型的TOC分析仪。按工作原理不同,可分为燃烧氧化—非色散红外吸收法、电导法、气相色谱法、湿法氧化—非色散红外吸收法等。其中,燃烧氧化—非色散红外吸收法只需一次性转化,流程简单、重现性好,灵敏度高,因此这种TOC分析仪被国内外广泛采用。

(1)差减法测定TOC值的方法原理水样被分别注入高温燃烧管和低温反应 管中,经高温燃烧管的水样受高温催化氧化,使有机物和无机碳酸盐均转化为二氧化碳;经低温反应管的水样受酸化而使无机碳酸盐分解成二氧化碳,两者所生成的二氧化碳导入非色散红外检测器,从而分别测得水中的总碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。

(2)直接法测定TOC值的方法原理将水样酸化后曝气,使各种碳酸盐分解成二氧化碳而驱除后,再注入高温燃烧管中,可直接测定总有机碳,但由于在曝气过程中会造成水样中挥发性有机物的损失而产生测定误差,因此,其测定结果只是不可吹出性的有机碳值。

地面水中常见共存例子硫酸根超过 400mg/L、Cl-超过400mg/L、NO 3-超过 100mg/L、PO 43-超过100mg/L、S 2 -超过 100mg/L时,对测定有干扰,应做适当的前处理,以消除对测定结果的影响。水样中含大颗粒悬浮物时,由于受水样的、注射器针孔的限制,测定结果往往不包含全部颗粒态碳。

TOC总有机碳总结

TOC总有机碳总结 总有机碳是反映水质受到有机物污染的替代水质指标之一,和其它水质替代指标一样,它不反映水质受到那些具体的有机物的特性.而是反映各个污染物中所含碳的量,其数量愈高.表明水受到的有机物污染愈多。根据本市发展的要求,我站为更好、及时的监督,监测本市的水质,故扩展此项目。 选用标准 方法标准GB13193-91规定的测定范围为“地面水”,HJ/T71-2001规定的测定范围为“地表水和废水”。虽然目前我国现行的环境质量评价标准中,没有对地表水、地下水中总有机碳含量的评价指标,但以后有可能制定。又因这两个标准的方法和原理基本没有差别,所以我站选用国标GB13193-91来做为TOC的方法依据。 排放标准有两个:《生活饮用水卫生标准》GB5749—2006和广东省地方标准《水污染物排放限值》DB44/26—2001 有关测定的技术信息 峰面积的测定 向TOC-V注入试样时,自动地检测产生峰的开始和结束,求出峰面积。峰的开始和结束的检测是采用峰的斜度(时刻变化地连线的斜度)。峰的检测在斜度达到预先设定值的以上时开始。相反,达到负的斜度设定值以下时峰的检测结束。 注释 ·分离峰:在TC回路的测定中,进样量大时有可能产生多数的峰。这时,只检测最后峰的结束,多数峰的全面积累计计算。 ·基线校正:在基线变动状态下产生的峰,进行基线校正后求出准确的峰面积。 图1 峰面积的求法 峰的形状 TOC-V测定TC时,测定峰的形状有时会成为多数的分离峰。特别是,使用高灵敏度催化剂进样量在100 L以上的条件下测定时这种倾向非常显著。

这是由于注入在催化剂上的试样中易气化的有机物与结晶性的有机物的燃烧时间不同,出现数次产生二氧化碳而形成的多数峰所致。容易气化的有机物最好是水溶液加热蒸发时与水一起气化类型的有机物,乙醇等就是例子。结晶性有机物是水溶液蒸发干燥时最后成为固体剩下类型的有机物,例如葡萄糖。 另外,进样的状态也对峰的形状有影响,试样注入到燃烧管的中央时与注入到周围时在燃烧时间上也会有差别,使峰成为多数。 然而,因上述有机物的种类和注入位置产生的峰形状异常,由于TOC-V是按二氧化碳产生的峰的全面积测定求出TOC(或TC),峰的形状对测定结果没多大影响。 标准曲线 标准曲线的种类 1点标准曲线和2点标准曲线 本仪器的输出信号是直线化的。而且,TC/TN燃烧部和IC反应部的反应系统上几乎没有使浓度-输出特性偏离直线的因素。标准曲线通常使用只有量程点1点标准曲线和有零点和量程点的2点标准曲线。 虽然也按调制标准液的纯水中所含的TC、IC或TN的浓度,但是,制作50~100mg/L以上的标准曲线时几乎都通过原点,因此,实用上1点标准曲线完全可以对应。 在调制标准液的纯水中所含的TC、IC或TN对标准浓度不能忽视时,使用2点标准曲线。它的操作请参照下边的「标准曲线的移动处理」。 多点标准曲线 为评价标准曲线,可制作最多为10点的多点标准曲线。3点以上的标准曲线时采用折线或最小二乘法制作回归直线的标准曲线。采用最小二乘法的回归直线时表示相关系数。 标准曲线的移动处理 向原点移动处理 含调制标准液用水的TC、IC或TN对标准液浓度不可忽视时必须制作校正水中所含TC或TN的校准校。校正时,使用向原点移动处理的功能。例如,使用含0.5mg/L TC的水调制TC 10mg/L(实际是10+0.5mg/L)的标准曲线,制成2点标准曲线时,是如图2的实线所示的标准曲线。直接使用此标准曲线时,试样的测定值通常是低0.5mg/L程度进行测定。但是,使用向原点移动处理功能,进行如图2虚线所示的移动时,将校正含标准液调制用水的0.5mg/L的TC标准曲线

土壤水溶性有机质测定方法参考

土壤有机质测定 常用重铬酸钾一硫酸溶液氧化----- 分光光度法 用水浴加热试管时,(设定最高温度为95), —个小时后取出。(标准溶液的制备:与土壤样品溶液制备的同时作一组(7个)空白处理,用石英砂代替样品,其他过程同上。即取7支试 管各加入0.4 mol/L的重铬酸钾硫酸溶液2mL,和土壤样品一起硝化后分别加入0.12 mol/L 硫酸亚铁标准溶液0、1、2、3、4、5、6 mL,再分别加入0.1 mol/L H2SO4溶液10、9、8、 7、6、5、4 mL,摇匀澄清或离心待用。) 一、土壤有机质测定一一分光光度法 光度法测定土壤中的有机质具有设备简单、操作简便、测定结果准确等特点,适合大批样品 的快速测定。 1测定原理 在加热的条件下,用过量的重铬酸钾一硫酸(K2Cr2O7—H2SO4溶液,来氧化土壤有机质中的 碳,Cr2O72-等被还原成Cr+3。以硫酸亚铁为标准溶液,取不同量的硫酸亚铁分别与重铬酸 钾一硫酸(K2Cr2O7 —H2SO4溶液进行反应,由于在585nm波长处对Cr3+有最大吸收而Cr6+ 却无吸收,且对一定浓度的H2S04溶液均无吸收。通过分光光度测定,根据标准样制作的标准曲线,找到样品所对应消耗的硫酸亚铁的量,再通过转换得到有机碳量,再乘以常数 1.724,即为土壤有机质量。其中的反应式为: 重铬酸钾一硫酸溶液与有机质作用: 2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2n8H2O 硫酸亚铁与重铬酸钾一硫酸溶液的反应: K2Cr2O7+6FeSO牛7H2SO4=K2SO4 Cr2(SO4)3+3Fe2(SO4)3+7H2O 2仪器、试剂 分析天平(0.0001g)、硬质试管、长条腊光纸、温度计(0-360 C )、滴定管(25ml)、吸管(10ml)、三角瓶(250ml)、小漏斗、烧杯、量筒(100ml)、角匙、滴定台、吸水纸、滴瓶(50ml)、试管夹、吸耳球、试剂瓶(500ml)、恒温箱 7230型分光光度计、5B-1型加热器、离心沉淀机。 (1/6 K2Cr2O7)=0.4 mol /L 的H2SO4溶液:称取分析纯重铬酸钾40.00 g溶于600 mL水中(必要时可加热溶解),加水稀释至1L,置3 L烧杯中。另取分析纯浓H2SO41L慢慢加入 到重铬酸钾水溶液中,并不断搅拌,每加入200ml时,应放置10-20分钟使溶液冷却后,再 加入第二份浓硫酸(H2SO4)。加酸完毕,待冷后存于棕色试剂瓶中备用(用时需标定)。(FeSO4)=0.12 mol /L 标准溶液:称取分析纯硫酸亚铁(FeSO4?7H2O) 3.6 g 溶于800 mL水中,加入20mL浓H2SO4搅拌均匀,冷至室温,稀释至1L。 0.1 mol/L H2SO4 溶液。 3测定方法 样品的制备:将土壤放在蒸发皿中风干10 d后,在分析天平上准确称取通过60目筛子(v 0.25mm)的土壤样品0.1-0.2g(精确到0.0001g)。用长条腊光纸把称取的样品全部倒入干的 硬质试管中,用移液管缓缓准确加入0.4mol/L的重铬酸钾-硫酸(K2Cr2O7-H2SO4)溶液2mL (摇动试管,以使土壤分散),然后在试管口盖消化玻泡或小漏斗,于100 C水浴消化,60 min 后取出样品。冷却后加入10mL0.1mol/L H2SO4溶液,摇匀后澄清或离心待测。 标准溶液的制备:与土壤样品溶液制备的同时作一组(7个)空白处理,用石英砂代替样品, 其他过程同上。即取7支试管各加入0.4 mol/L的重铬酸钾硫酸溶液2mL,和土壤样品一起消化后分别加入0.12 mol/L硫酸亚铁标准溶液0、1、2、3、4、5、6 mL,再分别加入0.1 mol/L

相关主题