搜档网
当前位置:搜档网 › 正弦定理和余弦定理(解三角形)高三一轮复习专题

正弦定理和余弦定理(解三角形)高三一轮复习专题

正弦定理和余弦定理(解三角形)高三一轮复习专题

正弦定理和余弦定理(解三角形)高三一轮复习专题

正弦定理和余弦定理专题讲义(约3-4 课时)

一、高考要求

1、掌握正、余弦定理的基本形式和变形式;

2、能够完成三角形中边、角和面积的计算。

3、掌握边、角的范围探究问题和正、余弦定理的实际应用。

二、知识回顾(学生课前自学)

设△ABC 的三边为a、b、c,对应的三个角为A、B、C.

1.角与角关系:A+B+C = π,

2.边与边关系:a + b > c,b + c > a,c + a > b,

a-b b.

3.边与角关系:

1)正弦定理(R 为外接圆半径)

变式1:a = 2R sinA,b= 2R sinB,c= 2R sinC 变式2:变式3:,,2)余弦定理c2 = a2+b2-2bccosC,b2 = a2+c2-2accosB,a2 = b2+c2-2bccosA.

变式1:;.;. .

4. 三角形面积公式:

(其中r 为内切圆半径,R 为外接圆半径,s 为半周长)

5、关于三角形内角的常用三角恒等式:三角形内角定理的变形

①由A+B+C=π,知A=π-(B+C)可得出:

sinA=sin(B+C),cosA=-cos(B+C).

②而.有:,.三互动探究探究一正弦定理的应用

高考一轮复习解三角形最新高考真题完整版.doc

解三角形 1.(2016·新课标全国Ⅰ,4)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =2 3 ,则b =( ) A. 2 B. 3 C.2 D.3 2.(2016·山东,8)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π4 B.π3 C.π4 D.π6 3.(2016·湖南四校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+b 2-c 2)tan C =ab ,则角C 为( ) A.π6或5π6 B.π3或2π3 C.π6 D.2π3 4.(2016·河南三市调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若c 2=(a -b )2+6,C =π 3,则△ABC 的面积为( ) A.3 B. 932 C.33 2 D.3 3 5.(2016·济南一中检测)在△ABC 中,内角A ,B ,C 对边的边长分别为a ,b ,c ,A 为锐角, lg b +lg ) (c 1=lg sin A =-lg 2,则△ABC 为( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形 6.(2015·山东省实验中学三诊)在△ABC 中,若(a 2+b 2)·sin(A -B )=(a 2-b 2)sin C ,则△ABC 是( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 7.(2015·湖南十二校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , 若tan A =7tan B ,a 2-b 2 c =3,则c =( ) A.4 B.3 C.7 D.6 8.(2018·陕西宝鸡一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin(A +B)=1 3 ,a =3,c =4,则sinA =( ) A.23 B.14 C.34 D.16 9.(2018·铜川一模)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,已知a =2,c =22,且C =π 4 ,则△ABC 的面积为( ) A.3+1 B.3-1 C .4 D .2 10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b)2-c 2,则tan C 等于( ) A.34 B.43 C .-43 D .-3 4 11.(2016·新课标全国Ⅱ,15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =4 5 ,cos

正余弦定理题型总结(全)

平面向量题型归纳(全) 题型一:共线定理应用 例一:平面向量→ →b a ,共线的充要条件是( )A.→ →b a ,方向相 同 B. → →b a ,两向量中至少有一个为零向量 C.存在 ,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→ →b a λλλλ 变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→ →b a //”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 变式二:设→ →b a ,是两个非零向量( ) A.若→→→→=+b a b a _则→→⊥b a B. 若→→⊥b a ,则→ →→→=+b a b a _ C. 若→ →→→ =+b a b a _,则存在实数λ,使得 →→ =a b λ D 若存在实数λ,使得→ →=a b λ,则 → →→→ =+b a b a _ 例二:设两个非零向量→ → 21e e 与,不共线, (1)如果三点共线;求证:D C A e e e e e e ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。 变式一:设→ → 21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。 变式二:已知向量→ →b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D 题型二:线段定比分点的向量形式在向量线性表示中的应用 例一:设P 是三角形ABC 所在平面内的一点,,2+=则( ) A. += B. += C. += D. ++= 变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且++=2,那么( )A. A =

高中数学教案必修四:正弦定理

课 题 1.1.1 正弦定理 授课人 雷 娜 授课时间 5月 日 年 级 高 一 班 次 1321、1322 教学目标 知识与技能: 通过对任意三角形边长和角度关系的探索,掌握正弦定理的 内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法: 让学生从已有的几何知识出发,共同探究在任意三角形中, 边与其对角的关系,引导学生通过观察,推导,比较,由特殊到 一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感、态度、价值观: 培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形 函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 内容分析 重 点: 正弦定理的探索和证明及其基本应用。 难 点: 已知两边和其中一边的对角解三角形时判断解的个数。 关 键: 掌握正弦定理的内容并能够灵活应用 教学方法 探究式教学 教 学 过 程 一、课题导入: 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。 能否用一个等式把这种关系精确地表示出来? 二、新课探究 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === A B C B A C

高考数学(解三角形)第一轮复习

高考一题通知识积累 第 1 页 共 5 页 1 高考数学(解三角形)第一轮复习资料 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 3、三角形面积公式:111sin sin sin 222C S bc ab C ac ?AB =A ==B . 4、余弦定理:在C ?AB 中,有2222cos a b c bc =+-A ,222 2cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. 6、设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则:①若222 a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >. 第一节 正弦定理与余弦定理 1.(2008·陕西理,3)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6, B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 2.(2008·福建理,10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( ) A.6π B.3π C.6π或65π D.3 π或32π 答案 D 3.下列判断中正确的是 ( ) A .△ABC 中,a =7,b =14,A =30°,有两解 B .△AB C 中,a =30,b =25,A =150°,有一解

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

高三第一轮复习正余弦定理教案

高三新数学第一轮复习教案 ---------正、余弦定理及应用 一.课标要求: (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题; (2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。 二.命题走向 对本讲内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。题型一般为选择题、填空题,也可能是中、难度的解答题。 三.要点精讲 1.直角三角形中各元素间的关系: 如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 如图6-29,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。sin()A B +=sin C ;cos()A B +=cos C - (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?????===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) (R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角 的余弦的积的两倍。 形式一:a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 (解三角形的重要工具) 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ (4)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是 ∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列。

2011高考数学一轮复习精品题集之解三角形

解三角形 必修5 第1章解三角形 §1.1正弦定理、余弦定理 重难点:理解正、余弦定理的证明,并能解决一些简单的三角形度量问题. 考纲要求:①掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 经典例题:半径为R的圆外接于△ABC,且2R(sin2A-sin2C)=(a-b)sin B. (1)求角C; (2)求△ABC面积的最大值. 当堂练习: 1.在△ABC中,已知a=5 2 , c=10, A=30°, 则∠B= ( ) (A) 105° (B) 60° (C) 15° (D) 105°或15° 2在△ABC中,若a=2, b=2 2 , c= 6 + 2 ,则∠A的度数是 ( ) (A) 30° (B) 45° (C) 60° (D) 75° 3.在△ABC中,已知三边a、b、c 满足(a+b+c)·(a+b-c)=3ab, 则∠C=( ) (A) 15° (B) 30° (C) 45° (D) 60° 4.边长为5、7、8的三角形的最大角与最小角之和为 ( ) (A) 90° (B) 120° (C) 135° (D) 150° 5.在△ABC中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( ) (A) 有一个解 (B) 有两个解 (C) 无解 (D)不能确定 6.在平行四边形ABCD中,AC= 3 BD, 那么锐角A的最大值为 ( ) (A) 30° (B) 45° (C) 60° (D) 75° 7. 在△ABC中,若==,则△ABC的形状是 ( ) (A) 等腰三角形 (B) 等边三角形 (C) 直角三角形 (D) 等腰直角三角形 8.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为() (A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 由增加的长度决定 9.在△ABC中,若a=50,b=25 6 , A=45°则B= . 10.若平行四边形两条邻边的长度分别是4 6 cm和4 3 cm,它们的夹角是45°,则这个平行四边形的两条对角线的长度分别为 . 11.在等腰三角形ABC中,已知sinA∶sinB=1∶2,底边BC=10,则△ABC的周长是。 12.在△ABC中,若∠B=30°, AB=2 3 , AC=2, 则△ABC的面积是 . 13.在锐角三角形中,边a、b是方程x2-2 3 x+2=0的两根,角A、B满足2sin(A+B)- 3 =0,求角C的度数,边c的长度及△ABC的面积。

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

正余弦定理的综合应用

正余弦定理的综合应用教学设计 课题名称正余弦定理的综合应用 科目数学(高三)授课人耿向娜 一、教学内容分析 本节课为高三一轮复习中的解三角形部分的习题课。解三角形的知识在历年的高考中与三角函数向量等知识相结合,频繁出现在选择、填空和17题的位置,是学生们的重要得分点之一。本节课对2013年中出现的解三角形问题的分析解答,强化学生对解三角形的理解和巩固,同时消除他们对高考的畏惧感,提升其自信心。 二、教学目标 1、知识目标:熟练掌握正余弦定理、三角形面积公式、边角关系互化,同时熟练结合三角函数知识求相关函数的最值等。 2、能力目标:培养学生分析解决问题的能力,提高学生的化简计算能力 3、情感目标:让学生在直接面对高考真题的过程中,体会解决问题的快乐,提升他们的自信心,提高他们的备战能力! 三、学情分析 我所任课的班级是高三22班是文科普通班,他们的数学基础整体上很薄弱,计算能力有待提高。通过三个多月的一轮复习,越来越多的学生对数学产生了兴趣,同时也品尝到数学成绩提高带来的喜悦,具有了一定的函数知识和解决问题的能力。 四、教学重点难点 重点正余弦定理的应用 难点公式的转化和计算

五、教法分析 本节课我利用多媒体辅助教学,采用的是教师引导下的学生自主探究式学习法。 六、教学过程 教学环节教学内容设计意图 一、基 础 知 识 回 顾回顾正弦定理:k C c B b A a = = = sin sin sin ; C k c B k b A k a sin , sin , sin= = = 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 三角形面积公式:A bc B ac C ab S sin 2 1 sin 2 1 sin 2 1 = = = 通过对公式的 回顾,为本节 课解答问题提 供工具。 二、例 题 讲 解类型一:判定三角形形状 1、设在ABC ?中,若B b A a cos cos=,判定该三角形 的形状。 该题的设置目 的在于训练学 生对边角混合 式的转化。此 题可以边化 角,也可角化 边,让学生体 会正余弦定理 的应用和边角 转化的魅力。 形 直角三角形或等腰三角 或 法二:(角化边) 角形 为等腰三角形或直角三 , 或 ) 解析:法一:(边化角 ? = = + ? = - - + ? - = - ? - + = - + ? - + = - + ? = + = + = ? = ? = b a c b a o b a c b a c b a b a b c a b a c b a ac b c a b bc a c b a B A B A B A B A B A A 2 2 2 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ) )( ( ) ( ) ( ) ( 2 2 . 2 2 2 2 sin 2 1 2 sin 2 1 sinBcos cos sin π π

高三一轮复习解三角形近几年高考题

高三一轮复习解三角形 近几年高考题 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

解 三角形 相关公式 (1)内角和:A B C π++=; (2)正弦定理:R C c B b A a 2sin sin sin ===(边角相对用正弦) 常用推论:?? ???===C R C B R b A R a sin 2sin 2sin 2 (3)余弦定理:?? ???-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222(两边夹角用余弦) (4)三边求角:???? ?????-+-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2 222 222 2(已知三边求角) (5)面积公式:B ac A bc C ab sin 2 1sin 21sin 21S ABC ===? 练习题: 1.在ABC ?中,已知下列条件,解三角形 (1)45,30,10A C c ??===,求a 及ABC S ;(2)6,4,60b c A ?===,求ABC S 及a 2.在△ABC 中,角A 、B 、C 的对边分别为,,,,1,3a b c A a b π= ==则c =(). A ..3—1D.3 3.ABC ?中,3A π∠= ,3BC = ,AB =C ∠= A .6π B .4π C .34π D .4 π或34π 4.在锐角中ABC ?,角,A B 所对的边长分别为,a b . 若2sin ,a B A = 则角等于() 12π6π4π3π在ABC ?,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B A b +=且a b >,则B ∠=() 6π3π23π56π已知:在⊿ABC 中,B C b c cos cos =,则此三角形为() A.直角三角形B.等腰直角三角形C.等腰三角形D.等腰或直角三角形

最全正余弦定理题型归纳.

正弦定理和余弦定理 一、题型归纳 〈一>利用正余弦定理解三角形 【例1】在△ABC中,已知a=3,b=2,B=45°,求A、C和c。【例2】设ABC ?的内角A、B、C的对边长分别为a、b、c,且32b+32c-32a2b c. (Ⅰ)求sinA的值;(Ⅱ)求2sin()sin() 44 1cos2 A B C A ππ +++ - 的值。 【练习1】 (2011·北京)在△ABC中,若b=5,∠B=错误!,tan A=2,则sin A=________;a=________. 【练习2】在△ABC中,a、b、c分别是角A、B、C的对边,且\f(cos B,cosC)=-错误!. (1)求角B的大小;

(2)若b =错误!,a +c =4,求△AB C的面积. 〈二〉利用正余弦定理判断三角形的形状 【例3】1、在△ABC 中,若(a2+b 2)sin (A -B )=(a 2-b2)sin C ,试判断△AB C的形状. 2、在△AB C中,在ABC ?中,a,b,c 分别是角A 、B 、C 所对的边,bcosA=a c os B,则ABC ?三角形的形状为__________________ 3、在△ABC 中,在ABC ?中,a,b,c 分别是角A 、B、C 所对的边,若c os AcosB =\f(b,a ) , 则ABC ?三角形的形状为___________________ 【练习】1、在△ABC 中,2cos 22A b c c +=(,,a b c 分别为角,,A B C 的对边),则△AB C的形状为( ) A 、正三角形 B 、直角三角形 C 、等腰三角形或直角三角形 D、等腰直角三角形 2、已知关于x 的方程22cos cos 2sin 02 C x x A B -?+=的两根之和等于两根之积的一半,则ABC ?一定是() A、直角三角形B、钝角三角形C 、等腰三角形D 、等边三角形 3、在△ABC 中,2222()sin()()sin()a b A B a b A B +-=-+,则△ABC 的

2021届高三高考数学文科一轮复习知识点专题4-6 正弦定理和余弦定理【含答案】

2021届高三高考数学文科一轮复习知识点 专题4.6 正弦定理和余弦定理【考情分析】 1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 【重点知识梳理】 知识点一正弦定理和余弦定理 1.在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则 定理正弦定理余弦定理 公式 a sin A= b sin B= c sin C=2R a2=b2+c2-2bc cos A;b2=c2 +a2-2ca cos B; c2=a2+b2-2ab cos C 常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C; (2)sin A= a 2R,sin B= b 2R,sin C= c 2R; (3)a∶b∶c=sin A∶sin B∶sin C; (4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A= b2+c2-a2 2bc; cos B= c2+a2-b2 2ac; cos C= a2+b2-c2 2ab 2.S△ABC=1 2ab sin C= 1 2bc sin A= 1 2ac sin B= abc 4R= 1 2(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R, r. 3.在△ABC中,已知a,b和A时,解的情况如下: A为锐角A为钝角或直角图形 关系式a=b sin A b sin Ab a≤b 解的个数一解两解一解一解无解知识点二三角函数关系和射影定理 1.三角形中的三角函数关系 (1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;

正余弦定理题型归类

高二数学《正余弦定理》知识与题型总结 1、 正弦定理:_________=_________=_________=2R (R 为____________) 变形:________a =;________b =;________c = sinA :sinB:sinC ______________ = 2、 余弦定理:2 ______________a =;2 ______________b =;2 ______________c = 变形:cos ________________A =;cosB ________________=;cosC ________________= 3、 三角形面积公式: (1)12S a h =g (2)1 sin _________________________2S ab C === (3)1 ()2 S r a b c =++(r 为内切圆半径) 4、常用公式及结论: (1)倍角公式:sin 2__________α=; cos 2_______________________________________α=== tan 2____________α= 降幂公式:2 sin ____________α=;2 cos ____________α= (2)在ABC ?中,sin()sinC A B +=;cos()cosC A B +=-;tan()tanC A B +=-; (3)在ABC ?中,最小角的范围为0, 3π?? ?? ? ;最大角的范围为,3ππ???? ?? ; (4)在ABC ?中,A B C sinA sinB sinC >>?>>; (5)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b c b a c A B C A B C B A C a b c A B C +++===== +++++= ++。 类型一:正余弦定理的综合应用 1.在△ABC 中,4a b =,= 30A ?=,则角B 等于( ). A .30° B .30°或150° C .60° D .60°或120° 2.在△ABC 中,三内角A ,B ,C 成等差数列,b =6,则△ABC 的外接圆半径为( ) 3.在ABC ?中,角,,A B C 的对边分别为,,a b c ,向量,(cos ,sin )n A A =v , 若m n ⊥u v v ,且cos cos sin a B b A c C +=,则角A ,B 的大小为( ). 4.在ABC ?中,角C B A ,,所对应的边分别为c b a ,,,B B A C 2sin 3)sin(sin =-+. ) 5.ABC ?各角的对应边分别为c b a ,,,满足 ,则角A 的范围是( ) A 6.在△ABC 中,内角A,B,C ,C B sin 3sin 2=, =( ) A 7.在△ABC 中,内角A , B , C 的对边分别为a ,b ,c.,且b a >,则∠B =( ) A 8.在△ABC 中,根据下列条件解三角形,则其中有两个解的是 A .0 75,45,10===C A b B .0 80,5,7===A b a C .0 60 ,48,60===C b a D . 45,16,14===A b a 9.已知ABC ?中,a b 、分别是角A B 、所对的边,且()0,2,a x x b A =>==60°,若三角形有两解,则 x 的取值范围是( ) A 、02x << C

(新)高中数学高考一轮复习:正弦定理和余弦定理复习课教学设计

《正弦定理和余弦定理》复习课教学设计

设计意图: 学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。 数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数 学知识的理解和掌握。虽然是复习课,但我们不能一味的讲题,在教学中应体现 以下教学思想: ⑴重视教学各环节的合理安排: 设疑探究拓展实践循环此流程

在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。 ⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。 ⑶重视提出问题、解决问题策略的指导。 ⑷重视加强前后知识的密切联系。对于新知识的探究,必须增加足够的预备知识,做好衔接。要对学生已有的知识进行分析、整理和筛选,把对学生后继学习中有需要的知识选择出来,在新知识介绍之前进行复习。 ⑸注意避免过于繁琐的形式化训练。从数学教学的传统上看解三角形内容有不少高度技巧化、形式化的问题,我们在教学过程中应该注意尽量避免这一类问题的出现。 二、实施教学过程

评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解. 思考讨论:该题若用余弦定理如何解决? 【例2】已知a、b、c分别是△ABC的三个内角A、B、C所对的边, (1)若△ABC的面积为,c=2,A=600,求边a,b的值; (2)若a=ccosB,且b=csinA,试判断△ABC的形状。 (五)变式训练、归纳整理 【例3】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若 b cosC=(2a-c)cosB (1)求角B (2)设,求a+c的值。 剖析:同样知道三角形中边角关系,利用正余弦定理边化角或角化边,从而解决问题,此题所变化的是与向量相结合,利用向量的模与数量积反映三角形的边角关系,把本质看清了,问题与例2类似解决。 此题分析后由学生自己作答,利用实物投影集体评价,再做归纳整理。 (解答略) 课时小结(由学生归纳总结,教师补充) 1.解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系 常用正弦定理 2.根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为 边.并常用正余弦定理实施边角转化。 3.用正余弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用 向量的模求三角形的边长。 4.应用问题可利用图形将题意理解清楚,然后用数学模型解决问题。 5.正余弦定理与三角函数、向量、不等式等知识相结合,综合运用解决实际问 题。 课后作业: 材料三级跳

高三第一轮复习解三角形题型总结

2018高三第一轮复习解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则 =++++C B A c b a sin sin sin

7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______ 8.(2017全国卷2文16)ABC ?的内角C B A ,,的对边分别为c b a ,,,若 A c C a B b cos cos cos 2+=,则=B ________. 9.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 题型二:三角形解的个数的判断 1. 在ABC △中,根据下列条件解三角形,则其中有二个解的是 A 、10,45,70b A C === B 、60,48,60a c B === C 、7,5,80a b A === D 、14,16,45a b A === 2. 在ABC ?中,若30,4A a b ∠===,则满足条件的ABC ? A .不存在 B .有一个 C .有两个 D 不能确定 3.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( ) A 有 一个解 B 有两个解 C 无解 D 不能确定 4.符合下列条件的三角形有且只有一个的是 ( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30°

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

高三第一轮复习正弦定理、余弦定理与三角形面积公式

解斜三角形 正弦定理、余弦定理与三角形面积公式 【提纲挈领】 主干知识归纳 ABC 的6个基本元素: a,b,c,A,B,C .其中三内角 A,B,C 所对边边长分别为 a,b,c . 1.正弦定理 变式: a 2Rsin A,b 2Rsin B,c 2RsinC 2.余弦定理 3. 三角形面积公式 1 2 ac sin B 2R sin A sin B sinC. 2 ( 2 )秦九韶 —海伦公式: S ABC 方法规律总结 1. 基本量观念: ABC 的 6个基本元素: a,b,c,A,B,C .已知三个基本量(至少一个为边)确定一个 三 角形,正余弦定理是“量化”依据,是初中全等三角形判定定理由定性向定量的转换 . 2. 方程观念: 正余弦定理和面积公式是方程的粗坯, 是解三角形的依据, 从三角形 6 个基本元素来说是 “知 三求三” .有两条主线:一是统一为边(消角)的关系,归结为边为元的代数方程;二是统一为角(消边) 的关系,归结为三角方程 . 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理 更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的 正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. 3. 转化思想:利用正余弦定理实现边角间的相互转化 . 4. 利用正弦定理解三角形主要是以下两类: (1)已知两边和一对角; (2)已知两角和一边 . 利用余弦定 理解三角形主要是以下两类: (1)已知三边;( 2)已知两边及其夹角 . 对于复杂问题需综合利用正余弦定理实现边角关系向统一转化 . 【指点迷津】 【类型一】定理的推导与证明 【例 1】(2011 陕西理 18)叙述并证明余弦定理 . 【解析】 : 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦之积 的两 abc sin A sin B sinC 2R (其中 R 是 ABC 的外接圆的半 径) a 2 b 2 c 2 2 2bc cos A , b 2 c 2 a 2 2ca cos B , c 2 a 2 b 2 2abcosC . 变式: cosA 2 2 2 b c a ,cosB 2bc a 2 b 2 ,cosC 2ac b 2 2ab 1 ) S ABC 11 ab sin C bcsin A 22 p(p a)(p b)(p c),其中 p abc 2

相关主题