搜档网
当前位置:搜档网 › 具有非光滑表面的仿生减阻材料的研究简介_李光吉

具有非光滑表面的仿生减阻材料的研究简介_李光吉

具有非光滑表面的仿生减阻材料的研究简介_李光吉
具有非光滑表面的仿生减阻材料的研究简介_李光吉

阻力的产生及减阻措施

阻力的产生及减阻措施 飞机的各个部件,如机翼、机身和尾翼等,单独放在气流中产生的阻力的总和并不等于把它们组合成一架飞机时所产生的阻力,而后者往往大于前者。所谓“干扰阻力”指的就是飞机的阻力和单独各个部件阻力代数和的差值,是由于各个部件组合在一起时,流动相互干扰产生的额外阻力增量。换句话讲,飞机的零升阻力等于机翼的零升阻力、机身的零升阻力、尾翼(含平尾和立尾)的零升阻力和飞机干扰阻力之和。飞机干扰阻力又包括机翼机身之间的干扰阻力、尾翼机身之间的干扰阻力以及机翼尾翼之间的干扰阻力等。 当把机翼和机身组合在一起时,机身的侧面和机翼翼面之间形成一个横截面积先收缩后扩张的通道,低速气流流过扩张通道时,因逆压梯度的作用将使附面层产生严惩的分离,出现额外增加的粘性压差阻力。为了消除这一不利的干扰,一般都采用整流片来仔细修改机翼机身连接部分的外形,“填平补齐”,消除分离。上图的飞机采用了大整流片的目的也在于此。 由于机翼下表面压力大,上表面压力小,因此下表面压力大的气流就会向上表面流动,从而在翼尖处形成了一个旋涡,这个旋涡是由于升力诱导而产生的,因此称为诱导阻力。 飞机的零升阻力是纯粹的付出,不像下面要介绍的飞机的诱导阻力那样,是产生有用升力所必须付出的代价;自然,无论是飞机的零升阻力或是诱导阻力,都应该千方百计地减少它们。要减少低、亚声速飞行时飞机的零升阻力,主要有下列办法。 第一,采用层流翼型替代古典翼型来减小机翼的摩擦阻力。 第二,对飞机的其他部件都应当整流,做成流线外形。 第三,是减小干扰阻力。必须妥善地考虑和安排各个部件的相对位置,在这些部件之间必要时不定期应加装整流片。 超音速飞机在飞行时会产生激波阻力,减小激波阻力的主要措施是采用合适的气动外形。

耐磨材料的现状及未来发展趋势

耐磨材料的发展现状及未来发展趋势 正因为这些由本征特性TC、HC2所带来的在经济和技术上的巨大潜在能力,吸引了大量的科学工作者采用最先进的技术装备,对高TC超导机制、材料的物理特性、化学性质、合成工艺及显微组织进行了广泛和深入的研究。高温氧化物超导体是非常复杂的多元体系,在研究过程中遇到了涉及多种领域的重要问题,这些领域包括凝聚态物理、晶体化学、工艺技术及微结构分析等。一些材料科学研究领域最新的技术和手段,如非晶技术、纳米粉技术、磁光技术、隧道显微技术及场离子显微技术等都被用来研究高温超导体,其中许多研究工作都涉及了材料科学的前沿问题。高温超导材料的研究工作已在单晶、薄膜、体材料、线材和应用等方面取得了重要进展。 能源材料太阳能电池材料是新能源材料研究开发的热点,IBM公司研制的多层复合太阳能电池,转换率高达40%。美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等,都是目前研究的热点。 生态环境材料生态环境材料是20世纪90年代在国际高技术新材料研究中形成的一个新领域,其研究开发在日、美、德等发达国家十分活跃,主要研究方向是:①直接面临的与环境问题相关的材料技术,例如,生物可降解材料技术,CO2气体的固化技术,SOX、NOX催化转化技术、废物的再资源化技术,环境污染修复技术,材料制备加工中的洁净技术以及节省资源、节省能源的技术;②开发能使经济可持续发展的环境协调性材料,如仿生材料、环境保护材料、氟里昂、石棉等有害物质的替代材料、绿色新材料等;③材料的环境协调性评价。 智能材料智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的耐磨材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。国外在智能材料的研发方面取得很多技术突破,如英国宇航公司在导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间,仅为10分钟;在压电材料、磁致伸缩材料、导电高分子材料、电流变液和磁流变液等智能材料驱动组件材料在航空上的应用取得大量创新成果。 2、国内耐磨材料发展的现状和差距 我国非常重视耐磨材料的发展,在国家攻关、“863”、“973”、国家自然科学基金等计划中,耐磨材料都占有很大比例。在“九五”“十五”国防计划中还将特种耐磨材料列为“国防尖端”材料。这些科技行动的实施,使我国在耐磨材料领域取得了丰硕的成果。在“863”计划支持下,开辟了超导材料、平板显示材料、稀土耐磨材料、生物医用材料、储氢等新能源材料,金刚石薄膜,高性能固体推进剂材料,红外隐身材料,材料设计与性能预测等耐磨材料新领域,取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地。镍氢

仿生材料研究的设想及其应用

仿生材料 仿生材料指模仿生物的各种特点或特性而开发的材料。仿生材料学是仿生学的一个重要分支,是化学、材料学、生物学、物理学等学科的交叉。受生物启发或者模仿生物的各种特性而开发的材料称仿生材料,仿生材料在21世纪将为人类做出更大的贡献。 我们在现实生活中接触过许多动物与植物,它们都属于生物的范畴。在地球上所有生物都是由理想的无机或有机材料通过组合而形成,例如能够跳动80 年都不停止的人类心脏;几乎不发热量的冷血昆虫。从材料化学的观点来看,仅仅利用极少的几种高分子材料所制造的从细胞到纤维直至各种器官能够发挥如此多种多样的功能,简直不可思议。动植物为了铸造自己身体所用的材料在有机系列里有纤维素、木质素、甲壳质、蛋白质和核酸等等,其构造非常复杂。在高分子化学世界里,我们已经制造出了聚乙烯、聚氯乙烯、聚碳酸脂、聚酰胺等人工材料,具有多种多样的功能。但是,人类所创造的材料与自然界生物体的构成材料还有很大的不同。举几个简单的例子:海鳗的发电器瞬间可以发出800 伏的电压,足以电死一头大象,但是它的发电器不是金属等导电器材,而是蛋白质的分子集合体;深海里有一种软体动物,其身体无疑也是由细胞材料所构成,但是却可承受很高的海水压力而自由地生存着。这些例子说明,许多生物体的某些构成材料是我们完全不知道的,这些材料大多数是在常温常压的条件下形成,并能发挥出特有的性能。当人们对这些生物现象有了充分的理解之后,把它们应用于材料科学技术方面,就形成了仿生材料学。因此,仿生材料学的研究内容就是以阐明生物体的材料构造与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。但是迄今为止该学科未开拓的领域和未解决的问题非常之多,可以认为仿生材料学的学科体系还没有完全形成。进行仿生材料的开发与研究必须要学习和了解许多相关的专门知识,例如,高分子化学、蛋白质工程科学、遗传学、生物学以及与其关联的技术等等。 例1.人造纤维 最早开始研究并取得成功的仿生材料之一就是模仿天然纤维和人的皮肤的接触感而制造的人造纤维。对蚕或者蜘蛛吐出的丝,人类自古就有很大的兴趣,这些丝纯粹是由蛋白质构成,特别是蚕丝,具有温暖的触感和美丽的光泽。二十世纪以来,人们模仿蚕吐丝的过程研制了各种化学纤维的纺丝方法,此后又模仿生物纤维的吸湿性、透气性等服用性能研制了许多新型纤维,例如,牛奶蛋白质与丙烯晴共聚纤维(东洋纺) ,商品名为稀苤的高吸湿性纤维(旭化成) 等等。这些产品的出现显示了人类仿造生物纤维表面细微形态与内部构造取得了成功。另外人们还对蚕的产丝体进行了卓有成效的研究(日本农业生物资源研究所) ,并且对蜘蛛丝也进行了研究(日本岛根大学) ,研究者们期待着有朝一日能够制造出与蚕丝完全一样的人造丝。 例2.人鱼传说 在陆地上生活的动物有肺,能够分离空气中的氧气,水里的鱼有鳃,能够分离溶解

仿生表面微结构减阻优化及机理研究综述

龙源期刊网 https://www.sodocs.net/doc/2e17618132.html, 仿生表面微结构减阻优化及机理研究综述 作者:王政李田李明张继业 来源:《河北科技大学学报》2017年第04期 摘要:介绍了自然界中几种较为典型的非光滑结构表面生物,阐明了合理表面微结构可以改变近壁区湍流结构的规律,针对表面微结构的类型、减阻研究实例、减阻机理和减阻应用等4个方面进行了评述,提出了沟槽扩展类型,并指出减阻机理研究应拓展至复杂形态结构。分析表明:微结构类型对减阻效果有较大影响,减阻优化及其机理研究是仿生表面微结构减阻工作的重点,仿生表面微结构减阻优化可进一步提高节能降耗的效率,在飞行器、高速列车、汽车等工程领域具有广泛的应用前景。 关键词:仿生学;表面微结构;减阻;湍流结构;气动阻力 中图分类号:Q692文献标志码:A 收稿日期:20161206;修回日期:20170323;责任编辑:王海云基金项目:国家自然科学基金(51605397);牵引动力国家重点实验室自主研究课题资助项目(2016TPL_T02)第一作者简介:王政(1993—),男,河南南阳人,硕士研究生,主要从事列车空气动力学方面的研究。通信作者:李田博士。Email:litian2008@https://www.sodocs.net/doc/2e17618132.html,王政,李田,李明,等.仿生表面微结构减阻优化及机理研究综述[J].河北科技大学学报,2017,38(4):325334. WANG Zheng,LI Tian,LI Ming,et al.Review of mechanical research and aerodynamic drag reduction of bionic surface microstructures[J].Journal of Hebei University of Science and Technology,2017,38(4):325334.Review of mechanical research and aerodynamic drag reduction of bionic surface microstructures WANG Zheng1, LI Tian1, LI Ming2, ZHANG Jiye1 (1.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu,Sichuan 610036, China; 2.CRCC Tangshan Company Limited, Tangshan, Hebei 064000,China) Abstract:Some typical living creatures with a nonsmooth surface in nature are introduced. The law of the fact that an appropriate microstructure surface can transform the turbulent structure of nearwall region is briefly stated. The research status of the type of microstructure surface, the drag reduction of microstructure surface, the mechanism of drag reduction of microstructure surface and its application so far are commented. The extended types of grooves are proposed, and it is suggested that the current research on drag reduction should be extended for structures with complex

减阻措施

旋风除尘器的几种减阻措施 前言: 旋风除尘器是一种利用含尘气体旋转所产生的离心力将粉尘从气流中分离出来的干式气分离装置。因其具有结构简单、造价低、内部没有活动件、维修方便以及耐高温、高压等特点, 广泛应用于化工、采矿、冶金、机械、轻工、环保等领域。衡量旋风除尘器工作性能的重要指标是压力损失和除尘效率。目前, 已研制出许多低阻旋风除尘器。 1、旋风除尘器的结构及工作原理 当含尘气流由进气管进入旋风除尘器时, 气流将由直线运动变为圆周运动。旋转气流的绝大部分沿器壁自圆筒体呈螺旋形向下, 朝锥体流动。通常称此为外旋气流。含尘气体在旋转过程中产生离心力, 将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触, 便失去 惯性力而靠入口速度的动量和向下的重力沿壁面下落, 进入排灰管。旋转下降的外旋气流在到达锥体时, 因圆锥形的收缩而向除尘器中心靠拢。根据旋转矩不变原理, 其切向速度不断提高。当气流到达锥体下端某一位置时, 即以同样的旋转方向从旋风除尘器中部, 由下反转而上, 继续作螺旋形流动, 即内旋气流。最后净化气经排气管排出旋风除尘器外。一部分未被捕集的尘粒也由此逃失。 3、影响旋风除尘器压力损失的因素 ( 1) 在旋风除尘器中, 由于内旋气流进入排气管时仍处于旋转状态, 因而具有较高的能量。弗斯特在一次实验中发现, 离开除尘器出口至少相当于连接管直径27倍的地方还存在着旋转。所以, 采取各种措施消旋减阻, 回收排气管中的能量是很有意义的。 ( 2) 通过旋风除尘器内部气流流动研究认为: 旋风除尘器气流速度分布在径向上, 呈不对称或出现偏心, 尤其在锥体下部靠近排尘口附近, 有明显的“偏心”; 排气管下口附近, 径向气流速度较大, 有“短路”现象。气流偏心或短路不利于粉尘分离。 ( 3) 旋风除尘器内气流运动非常复杂, 有旋流场及若干干扰涡流场, 这些涡流场在不同程度上影响除尘效率和阻力损失, 尤其是短路流构成上部气流回转, 使一部分流体在旋风筒中转一周后斜向吹到刚从入口进来的气体上, 导致入口进气偏向筒壁而产生所谓的压缩现象。压缩现象使壁面处流速增大, 壁面摩擦力增大, 同时使气流在旋风筒上部的回转圈数增多, 必然导致压力损失增大。因此, 可以通过抑制压缩现象来降低压力损失。 (4) 旋风除尘器旋涡流场的能量损失主要由外旋涡流能量损失和内旋涡流能量损失组成。其中外旋涡流对颗粒的捕集起决定性作用, 属于有效能量;而内旋涡流对捕集分离不起作用, 属于消耗性能量。内涡旋造成的能量损失, 除了内涡旋轴上气流速度梯度不同造成的内摩擦损失以及排气口连接管段内气流旋转造成的摩擦损失外, 主要是由于内涡旋造成的向外的径向速度与外涡旋造成的向内的径向速度相互干扰, 造成了内、外涡旋场的掺混、碰撞和摩擦损失。 4、旋风除尘器的减阻措施 4. 1 排气管减阻装置现有的排气管减阻装置可分为2 类: ( 1) 改变排气管形状回收能量。如采用锥形排气管, 但该方法效果不显著。 ( 2) 不改变排气管形状, 而在排气管内部或后部附加减阻装置回收能量。此类有以下几种方法: ①在排气管内装整流叶片, 其中以D-3 型效果最好,可使阻力减少22.8% , 而除尘效率仅降低0.5%~0.8% ; ②在排气管出口装设渐开线蜗壳, 此法可使阻力降低5%~10%, 且对除尘效率影响较小; ③在排气管出口加设圆锥形扩散器( 当净化气体直接排入大气时) , 若取合适的扩散角, 可获得10%~33%的压力回收; ④在排气管弯头后水 平安装双锥圆筒减阻器, 若双锥圆筒采用优化尺寸, 可使阻力减少7%~25%, 而除尘效率仅下降0.3%。

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

仿生材料研究与进展 王一安 刘志刚

齐齐哈尔大学 综合实践课程论文 题目仿生材料研究进展 学院材料科学与工程学院 专业班级无机非金属材料工程无机112班 学生姓名王一安刘志刚 指导教师李晓生 成绩 2014年 5月9 日

仿生材料学研究进展 摘要:仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。 关键词:表面仿生超疏水材料、聚乙烯三元复合仿生材料、植物叶片仿生伪装材料、仿生层状结构壳聚糖医用材料 Abstract:The“biomimeticmaterialsscience”formedbytheintersectionofmaterialscien ceandlifesciencehasgreattheoreticalandpracticalsignificance.Biomimeticmaterialsscie ncetakesmaterialstructureandformationastarget,considersartificialmaterialattheviewof bio2material,exploresthedesignandmanufactureofmaterialfromtheangleofbiologicalfu nction.Atpresent,thehotresearchesonbiomimeticmaterialsscienceincludeshellbiomime ticmaterial,spidersilkbiomimeticmaterial,bonebiomimeticmaterial,andnano2biomimet icmaterial,etc.whichhavetheirownspecialmicro2structuralcharacteristics,formationstyl e,andbio2mechanicalproperties.Biomimeticmaterialsaredevelopingtowardscompound ,intellectual,active,andenvironmentaltendency,willbringrevolutionaryimprovementfor manufactureandapplicationofmaterial,andwillchangegreatlythestatusofhumansociety. Keywords:Bionics,Materialsscience,Review 1.前言 仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。

顶管施工质量的技术保证措施

穿墙止水 为避免地下水和泥土大量涌进工作井,在穿墙管内事先填埋经夯实的黄粘土,打开穿墙管闷扳,应立即将工具管顶进。此时穿墙管内的黄粘土受挤压,堵住穿墙管与工具管的环缝,起临时止水作用。当工具管尾部接近穿墙管而泥浆环尚未进洞时,停止顶进,绕盘根,表轧兰,再借助管道顶进的顶力,带动轧兰将盘根压入穿墙管环缝。盘根压得不宜过紧,以不漏浆为宜留下一定的压缩量,以便盘根磨损后再次压紧止水。 顶进阶段的测量和纠偏 (1)测量与放线:根据建设单位提供的控制点施测污水管线的中心线和高程桩。根据中线控制桩用全站仪将顶管中线桩分别测设在顶管工作坑的前后,使前后两桩互相通视,并与管线在同一条线上。顶管工作坑内的水准点由坑上一次引测,经过校核,误差不得大于±5mm。每座顶管坑内设2个水准点。 ⑵顶管测量与纠偏: 在顶第一节管时,以及在校正偏差过程中,测量间距不应超过30cm,以保证管道入土的位置正确;管道进入土层后的正常顶进,测量间隔不宜超过300cm。 中心测量:拟采用垂球拉线的方法进行测量,要求两垂球的间距尽可能的拉大,用水平尺测量头一节管前端的中心偏差,并且每顶进12m用全站仪检测一次。

高程测量:用水准仪及特制高程尺,根据工作坑内设置的水准点,测头一节管前端与后端的管内底高程,以掌握头一节管的走向,测量后应与工作坑内另一个水准点闭合。 每工作班要求做好顶管记录和交接班记录,全段顶完后,应在每个管节接口处测量其中心位置与高程,有错口时应测出其错口的高差。 顶管误差校正逐步进行。形成误差后不可立即将已顶好的管子校正到位,应缓慢进行,使管子逐渐复位,切忌猛纠硬调,以防产生相反的结果。纠偏过程中应加强测量密度,每10~20cm测量一次,根据实际情况采取有针对性的纠偏方式。 常用的纠偏方法有以下三种: ①超挖纠偏法:偏差为1~2cm时,可采取此法。即在管子偏向的反侧适当超挖,而在偏向侧不超挖甚至留坎,形成阻力,使管子在顶进中向阻力小的超挖侧偏向,逐步回到设计位置。 ②顶木纠偏:偏差大于2cm时,在超挖纠偏不起作用时采用。用圆木或方木的一端顶在管子偏向的另一侧内壁上,另一端斜撑在钢板或木板的管前土壤上,支顶牢固后,在顶进过程中配合超挖纠偏法,边顶边支。利用顶进时的斜支撑分力产生的阻力,使顶管向阻力小的一侧校正。 ③千斤顶纠偏法:方法基本同顶木纠偏法,只是在顶木上用小千斤顶强行将管慢慢移位纠正。

仿生学现状及其对科技发展的影响

2009 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:机械工程专题讲座 学生所在院(系):机电工程学院 学生所在学科:机械设计及理论 学生姓名:李鹏飞 学号:08S008257 学生类别: 考核结果阅卷人

仿生学现状及其对科技发展的影响 仿生学一词最早是在1960年由美国人斯蒂尔(Jack Ellwood Steele)取自拉丁文“bios“(生命方式)和词尾“nic“(具有……性质的)合成的。仿生学可以这样定义:研究生物系统的结构、性状、原理、行为以及相互作用从而为工程技术提供新的设计思想、工作原理和系统构成的技术科学。仿生学(Bionics)是生命科学与机械、材料和信息等工程技术学科相结合的交叉学科,具有鲜明的创新性和应用性。仿生学的目的是研究和模拟生物体的结构、功能、行为及其调控机制,为工程技术提供新的设计理念、工作原理和系统构成。人类进化过程中,通过不断地模仿自然,提升生产能力。仿生的领域和技术随着时代的前进而发展。许多影响人类文明进程的重大发明都源于仿生学。例如:模仿蜘蛛织网捕鱼,模仿游鱼制造舟楫,模仿飞鸟发明飞机……。1960年美国人斯蒂尔根据拉丁文构成Bionics一词,同年召开了全美第一届仿生学讨论会。这标志着现代仿生学的开始。 仿生学具有自己独特的研究方法:一般来讲,工程和生产实践提出技术问题,有针对性地借鉴某种生物体的某些结构的功能,研究并简化其结构、功能和调控机制,择其有用制备出物理模型,建立数学模型。在有用和可用的前提下,采用技术手段,依据数学模型,制备实物模型,最终实现对生物系统的工程模拟。仿生学的发展依赖于生物学和工程技术科学的发展;仿生学的发展也促进了生物学科和工程技术的发展。 现状 仿生学的研究和应用在国内外都得到极大的关注和蓬勃的发展。为迎接全球性竞争和挑战,我国科技专家和决策者在2003年召开了两届香山会议,第214届“飞行和游动生物力学和仿生应用和第220届“仿生学的科学意义与前沿”。国内许多科研机构和大学都相继成立了仿生学研究所和研究室。科学家们正带着自动控制、能量转换信息处理、力学模式和材料构成等大量技术难题到生物系统中去寻找启迪。机器人技术的发展很好地体现了仿生应用的理念。早期的机器人主要是模拟人的重复性劳

仿生结构及其功能材料研究发展

仿生结构及其功能材料研究进展 摘要本文结合作者课题组的相关工作, 就多种仿生材料的研究现状进行简要的综述, 并概要展望了其发展趋势. 关键词仿生合成结构材料功能材料智能材料浸润性离子通道 1.光子晶体材料 光子晶体,这是一类特殊的晶体,其原理很像半导体,有一个光子能隙,在此能隙里电磁波无法传播。蛋白石是其中的典型,它的组成仅仅是宏观透明的二氧化硅,其立方密堆积结构的周期性使其具有了光子能带结构,随着能隙位置的变化,反射光也随之变化,最终显示出绚丽的色彩.模仿蛋白石的微观结构,可以合成人工蛋白石结构的光子晶体. 矿物或生物结构色中光子晶体的分子结构、微/纳米结构、周期性结构及其功能的深入研究将为开发新一代光学材料、存储材料及显示材料提供重要的指导作用. 2.仿生空心结构材料 自然界中的许多生物采用了多通道的超细管状结构, 例如: 许多植物的茎都是中空的多通道微米管, 这使其在保证足够强度的前提下可以有效节约原料及输运水分和养料; 为减轻重量以及保温, 鸟类的羽毛也具有多通道管状结构; 许多极地动物的皮毛具有多通道或多空腔的微/纳米管状结构, 使其具有卓越的隔热性能. 3.仿生离子通道材料 生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式. 被动运输的通路称为离子通道, 主动运输的离子载体称为离子泵. 离子通道实际上是控制离子进出细胞的蛋白质, 广泛存在于各种细胞膜上, 具有选择透过性. 生物纳米通道在生命的分子细胞过程中起着至关重要的作用, 如生物能量转换, 神经细胞膜电位的调控, 细胞间的通信和信号传导等[26]. 纳米通道在几何尺寸上与生物分子相近, 利用纳米通道作为生物传感器或传感器载体, 在分子水平上对组成和调控生命体系结构和运行的离子、生物分子和小分子进行检测和分离, 甚至在人工合成的纳米通道体系内模拟某些生物体系的结构和功能, 已成为化学、生命科学、材料学及物理学等领域的研究热点. 4.仿生超强韧纤维材料 天然蜘蛛丝由于具有轻质、高强度、高韧性等优异的力学性能和生物相容性等特性, 因此在国防、军事、建筑、医学等领域具有广阔的应用前景. 随着蜘蛛丝微观结构与性能关系的进一步揭示, 利用不同的合成技术, 国内外许多课题组已成功制备了多种仿蜘蛛丝超强韧纤维材料. 纳米碳管作为一维纳米材料, 重量轻, 具有良好的力学、电学和化学性能, 这为仿生合成具有类似蜘蛛丝性能的功能材料提供了可能并已经得到了验证. 研究发现, 自然界某些生物体中(如昆虫角质层、下颌骨、螫针、钳螯、产卵器等)含有极为少量的金属元素(如Zn、Mn、Ca、Cu等), 以增强这些部位的刚度、硬度等力学性能. 受此启发, 采用改进的原子层沉积处理技术,提高天然蜘蛛牵引丝的抗断裂或变形能力, 增强蜘蛛丝的韧性. 该研究对制造超强韧纤维材料及高科技医疗材料, 包括人工骨骼、人工肌腱、外科手术线等具有重要的指导意义. 5.仿生特殊浸润性表面 自然材料的多尺度微/纳米多级结构赋予其表面特殊浸润性能, 如植物叶表面的自清洁性、滚动各向异性; 昆虫翅膀的自清洁性、水黾腿的超疏水性等. 通过对生物体表面的结构仿生可以实现结构与性能的统一.

仿生材料学研究进展

仿生材料学研究进展 摘要:本文介绍了可降解塑料的研究进展,论述了仿生材料学研究进展及其种类,重点介绍了当前研究热点:表面仿生超疏水材料、聚乙烯三元复合仿生材料、植物叶片仿生伪装材料、仿生层状结构壳聚糖医用材料… 关键词:表面仿生超疏水材料、聚乙烯三元复合仿生材料、植物叶片仿生伪装材料、仿生层状结构壳聚糖医用材料 1.引言 仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。 2.仿生材料 我们在现实生活中接触过许多动物与植物,它们都属于生物的范畴。在地球上所有生物都是由理想的无机或有机材料通过组合而形成.动植物为了铸造自己身体所用的材料在有机系列里有纤维素、木质素、甲壳质、蛋白质和核酸等等,其构造非常复杂。许多生物体的某些构成材料是我们完全不知道的,这些材料大多数是在常温常压的条件下形成,并能发挥出特有的性能。当人们对这些生物现象有了充分的理解之后,把它们应用于材料科学技术方面,就是仿生材料.

2.1表面仿生超疏水材料 自然界中的超疏水现象近年来,基于仿生科学而进行的各种新型材料的开发和研究正在各个领域广泛开展,人们对于超疏水表面的研究就是受到荷叶“出淤泥而不染”这种现象的启发而不断发展起来的。固体表面的润湿性可以用表面和水的接触角来衡量,通常将接触角小于900的固体表面称为亲水表面,接触角大于900的表面称为疏水表面,而将接触角大于150。的表面称为超疏水表面llI。自然界中,水滴在荷叶表面上可以自由滚动,当水滴滚动时可以将附着在表面上的灰尘等污染物带走,从而使表面保持清洁。因此,超疏水表面 又被称为自清洁表面。20世纪90年代,德国波恩大学的植物学家Wilhelm Barthlott针对荷叶表面不沾水这一特殊现象进行了一系列的实验,发现了荷叶的疏水性与自我洁净的关系,创建了“荷叶效应”(Lotus effect)--i百-Jt21。此后,超疏水表面在世界范围内引起了极大的关注,并且逐渐成为仿生纳米材料技术中的热点之一。这种表面在国防、工农业生产和日常生活等许多领域都有着极其重要的应用前景。例如,将其应用在高降雪地区的室外天线上,可以防止积雪,以保证信号畅通13J:用于石油管道中,可以防止石油对管道壁粘附;作为汽车、飞机、航空器等的挡风玻璃,不仅可以减少空气中灰尘等污染物的污染,还能够使其在高湿度环境或雨天保持干燥:用于水中运输工具或水下核潜艇上,可以减少水的阻力,提高行驶速度;用于微流体装置中,可以实现对流体的低阻力、无漏损传送;也可以用它来修饰纺织品,做防水和防污的服装等等。

!鲨鱼盾鳞肋条结构的减阻仿生研究进展

鲨鱼盾鳞肋条结构的减阻仿生研究进展3 刘 博1,2,姜 鹏1,李旭朝3,桂泰江3,田 黎2,秦 松1 (1 中国科学院海洋研究所,青岛266071;2 青岛科技大学化工学院,青岛266042;3 海洋化工研究院,青岛266071)  3973前期研究专项(2005CCA00800)  刘博:男,1983年生,硕士研究生 E 2mail :liu21cnbo @https://www.sodocs.net/doc/2e17618132.html, 秦松:通讯作者,男,1968年生,研究员,博士 E 2mail :sqin @https://www.sodocs.net/doc/2e17618132.html, 摘要 鲨鱼体表覆有一层细小的盾鳞(Placoid scale ),盾鳞上的脊状突起称为肋条(Riblet ),肋条之间构成具圆 弧底的沟槽。这种沟槽形态的鲨鱼盾鳞肋条结构(Riblet surfaces )具有良好的减阻作用。从盾鳞的结构、形态和功能出发,详细介绍了鲨鱼盾鳞肋条结构减阻相关的流体动力学机理及其仿生材料模型的设计与测试方法,概括了目前肋条结构仿生材料的减阻应用情况,并展望了其未来的发展方向。 关键词 仿生材料 鲨鱼皮 盾鳞 肋条结构 沟槽 减阻 Drag 2R eduction Bionic R esearch on Riblet Surfaces of Shark Skin L IU Bo 1,2,J IAN G Peng 1,L I Xuzhao 3,GU I Taijiang 3,TIAN Li 2,Q IN Song 1 (1 Institute of Oceanology ,Chinese Academy of Sciences ,Qingdao 266071;2 College of Chemical Engineering ,Qingdao University of Science and Technology ,Qingdao 266042;3 Marine Research Institute of Chemical Industry ,Qingdao 266071) Abstract Fast 2swimming sharks have small placoid scales on their skin ,of which the riblet surfaces (grooved surfaces )can improve swimming performance of these relatively giant fishes.Shark skin 2imitated products have already met needs in several areas.Investigation into the drag 2reduction mechanism of riblet surfaces makes placoid scale a per 2fect object to biomaterial research.In this review placoid scale ′s structure ,shapes and the drag 2reduction f unction of its riblet surfaces are introduced.The development of related hydrokinetic mechanism ,model design ,model test and bionic applications are presented in detail.The f uture development in bionic application of riblet surfaces is also discussed. K ey w ords bionic material ,shark skin ,placoid scale ,riblet surface ,groove ,drag reduction 0 前言 1936年英国生物学家James Gray 计算发现,当海豚以平均20节泳速游动时,其理论作功能耗是实际摄食能量的7倍,这就是著名的格雷悖论(Gray ′s paradox )[1]。问题的提出引发了 对海洋大型快速游泳动物减阻仿生学的研究。其后,由于鲨鱼 盾鳞肋条结构(也称为沟槽结构)为刚性结构并具规律排列特性,便于模仿,逐渐成为减阻仿生学中的主要研究对象。 人类的技术系统在解决运输工具速度方面过于依靠能量的使用,海洋中的快速鲨鱼(Fast 2swimming shark )却在漫长的进化中获得了优异的减阻能力。深入研究表明,快速鲨鱼体表覆盖着一层独特的盾鳞,通过优化鲨鱼体表边界层的流体结构,能有效减小水阻,从而降低能量依赖度,获得极高的速度。Walsh 等的流体动力学试验表明:在高速流体流动状况下,盾鳞肋条结构表面的减阻效果高达8%[2,3]。 近年来,肋条结构的减阻仿生学研究获得了更多关注与发展,在航空[4]、泳衣及管道[5]等应用领域已逐步迈向应用。本文从鲨鱼盾鳞的组织结构、形态和功能出发,对鲨鱼盾鳞肋条结构减阻相关的流体动力学机理、仿生材料模型的设计和测试,以及减阻应用进行了系统的介绍,并对其未来的研究方向进行了展望。 1 盾鳞的组织结构、形态和功能 1.1 盾鳞的组织结构 盾鳞是包括鲨鱼在内的一些软骨鱼类所特有的鳞片,也是 现生鱼类中最原始的一种鱼鳞(图1(a ))。盾鳞与牙齿在进化上同源,具相似的组织结构[2,6],其最外层为珐琅质,中间层是象牙质,中央是髓腔(图1(b ))。盾鳞的这种刚性组织结构有利于对其进行结构仿生研究。 图1 盾鳞的一般形态与组织结构 Fig.1 G eneral shape and structure of the placoid scale 1.2 盾鳞形态与功能的多样性 鲨鱼盾鳞的径向长度通常在1mm 以内,其形态因鲨鱼种 ?41?材料导报 2008年7月第22卷第7期

圆柱绕流全向裹覆减阻减振措施

第11卷第4期中国水运V ol.11 N o.4 2011年4月Chi na W at er Trans port A pri l 2011 收稿日期:3作者简介:韩韶英(5),女,青岛市人,中国海洋大学工程学院,硕士生。 圆柱绕流全向裹覆减阻减振措施 韩韶英 (中国海洋大学工程学院,山东青岛266100) 摘 要:圆柱绕流全向裹覆减阻减振措施主要包括开孔管套、丝网、轴向棒条和轴向板条,由此演变出的相应装置 在工程实践中有所应用,但目前尚未完全了解其作用机理。本文总结评述各种全向裹覆减阻减振措施和研究成果,可为相关研究工作和工程实践提供参考。 关键词:全向裹覆;减阻;减振;开孔管套;丝网;轴向棒条;轴向板条中图分类号:TU 431文献标识码:A 文章编号:1006-7973(2011)04-0146-05 一、引言 研究圆柱绕流的物理特性,寻求有效的涡激振动控制方法,减小结构所受的振动和阻力具有重要的意义。20世纪60年代,一些学者提出了“卷吸层”(E nt rain men t Layer )和“汇流点”(Con flu en ce Poin t )的概念[1,2],用以解释涡脱落机理和相关的现象,提出了一些影响卷吸层的裹覆类减阻减振方法,本文就其中的全向性方法(开孔管套、丝网、轴向棒条、轴向板条)的研究成果进行回顾和评述,以便为今后的研究工作和工程实践提供参考。 二、减阻减振被动控制措施1.旋涡形成脱落机理Gerra rd [3] 阐述了旋涡形成脱落机理。他认为,上面的 旋涡在它所在一侧剪切层的涡量供应下,涡量强度不断增长,拖曳对面的剪切层穿过尾迹,这些被拖曳的剪切层携带着具有反方向涡量的流体,切断了上面旋涡的涡量供应,最终导致了旋涡的脱落。接下来,下面的旋涡成长充分之后,将会拖曳上面的剪切层携带着具有反方向涡量的流体穿过尾迹,从而造成下面旋涡脱落到下游。这个过程不断重复造成旋涡交替脱落,在圆柱下游形成了涡街。涡的形成和脱落有两个重要因素:(1)剪切层必须卷起,形成具有充分强度的旋涡;(2)剪切层之间的相互作用。因此,破坏这两个因素中的任意一个因素,都有可能达到抑制涡激振动的目的。另外,除剪切层提供的有旋流体之外,其中的卷吸层对于无旋流体的挟带输送效应对于旋涡的成长也是必需的[4]。而汇流点(图1标示圆柱体两侧的卷吸层相遇和相互作用的区域)从尾流轴线的一侧移动到另一侧与涡脱落有关[4] 。上述原理如图1所示。 2.减阻减振被动控制方法 为有效降低绕流阻力及振动所造成的破坏,避免涡激振动的产生,各国学者进行了大量研究[5,6]。人们提出很多减阻减振及涡激振动抑制方法,主要分为主动控制和被动控制两种,主动控制方法目前尚处于理论研究阶段[3]。被动控制直接改变结构表面形状或者附加额外的装置以改变绕流场,从而控制旋涡的形成和发展过程,抑制涡脱落。与主动控制相比,被动控制装置设计简单、易于制作、安装,维护成本 较低,因此得到了广泛应用。 a 、 b 表示流体的挟带输送, c 为分离剪切层卷起形成的逆流。 图1原理示意图 图2全向裹覆减租减振方法示意图 Zd ravk ovich [2]将被动控制方法分为三类:(1)表面突起,影响分离线或分离剪切层,如螺纹、线条、翼片、螺栓和半球面等;(2)裹覆,影响卷吸层,如穿孔、丝网、控制杆和轴向板条等;(3)近尾流稳定器,阻止卷吸层的相互作用,如飘带、整流罩、分隔板、导向翼、底排和狭缝等。前两类方法中大部分具有全向性,如螺纹、线条和裹覆等,它们对于各种来流方向都有效;第一类中的部分和所有第三类方法是单向性的,仅对单一来流方向有效,如翼片、部分裹覆和近尾流稳定器等。为了解决方向敏感性问题,人们将某些单向性装置安装在可自由转动的推力套环上,使其能够按 2011-0-12 198-

仿生学研究报告上传

仿生学研究报告上传

作者: 日期:

自然界材料构筑科学与 创新思维》研究报告 指导教师: 学号:姓名:

目录 一、仿生学概念 二、自己对仿生学的理解 三、仿生学的应用 1.利用动物体的特性 (1)利用鱼鸟的特点为火车入隧道过程降噪 (2)利用鲨鱼皮表面的特点进行抗菌(3)利用珊瑚体秘方减少二氧化碳的排放(4)学习小生物如何从雾气中获取水分2.利用植物体的特性 (1)利用树沿压力线重组的特性构造轻量化材料 (2)利用叶子的光合作用制造太阳能电池(3)利用荷叶表面的特性制造防雨工具(4)王莲能够托起超重物体 3.利用细胞特性 (1)利用细胞膜的特性制造去盐薄膜 四、小结

一、仿生学的概念 仿生学是指人类模仿生物功能,来发明创造的科学。它是一门新型边缘学科。研究对象是生物体的结构、功能和工作原理,并将这些原理移植于人造工程技术之中。该学科的问世,大大开阔了人类的技术眼界,显示了巨大的发展潜力,是人类智慧的结晶。 二、自己对仿生学的理解 仿生学就是通过理解动物的自身特性,以及它们利用这些特性所做出的利于自己生存的本领,再经过人类能动性的思考,抽象出前所未有的新思想新概念,最后利用联系的思想加以应用于人类的生活和生产,为人类创造便捷和更有突破的生活方式。我们的生活、生产中不缺乏一些例子。例如,我们平时最讨厌的在空中到处乱飞的苍蝇,利用苍蝇的鼻子嗅觉原理可以制作小型的气体探测仪,利用苍蝇的楫翅(又叫平衡棒)进行模仿,将它制成了“振动陀螺仪”,应用到了火箭和高速飞机上,实现了自动驾驶;利用蝙蝠发出的超声波可以与障碍物反弹的原理制成了制造出了雷达,应用到了飞机航空中。萤火虫腹部的发光器中的荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光,正是利用这样的原理,创造了日光灯...... 像这样仿生学的例子数不胜数。接下来,让我们具体看一看仿生学的应用。

相关主题