搜档网
当前位置:搜档网 › 2018年高考数学压轴题小题

2018年高考数学压轴题小题

2018年高考数学压轴题小题
2018年高考数学压轴题小题

2018年高考数学压轴题小题

一.选择题(共6小题)

1.(2018?新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()

A.﹣50 B.0 C.2 D.50

2.(2018?新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()

A.B.C.D.

3.(2018?上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()

A. B.C.D.0

4.(2018?浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4?+3=0,则|﹣|的最小值是()

A.﹣1 B.+1 C.2 D.2﹣

5.(2018?浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()

A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1

6.(2018?浙江)函数y=2|x|sin2x的图象可能是()

A.B.C.

D.

7.(2018?江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.

8.(2018?江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.

9.(2018?天津)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是.

10.(2018?北京)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两

条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.

11.(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.

12.(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.

13.(2018?浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.

14.(2018?浙江)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=时,点B横坐标的绝对值最大.

15.(2018?浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)

三.解答题(共2小题)

16.(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.

(1)若f(x)为偶函数,求a的值;

(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.

17.(2018?浙江)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P (﹣,﹣).

(Ⅰ)求sin(α+π)的值;

(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.

2018年高考数学压轴题小题

参考答案与试题解析

一.选择题(共6小题)

1.(2018?新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()

A.﹣50 B.0 C.2 D.50

【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),

∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,

则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),

即函数f(x)是周期为4的周期函数,

∵f(1)=2,

∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,

f(4)=f(0)=0,

则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,

则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)

=f(1)+f(2)=2+0=2,

故选:C.

2.(2018?新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()

A.B.C.D.

【解答】解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),

直线AP的方程为:y=(x+a),

由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),

代入直线AP:c=(2c+a),整理得:a=4c,

∴题意的离心率e==.

故选:D.

3.(2018?上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()

A. B.C.D.0

【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.

我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.

故选:B.

4.(2018?浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4?+3=0,则|﹣|的最小值是()

A.﹣1 B.+1 C.2 D.2﹣

【解答】解:由﹣4?+3=0,得,

∴()⊥(),

如图,不妨设,

则的终点在以(2,0)为圆心,以1为半径的圆周上,

又非零向量与的夹角为,则的终点在不含端点O的两条射线y=(x>0)上.

不妨以y=为例,则|﹣|的最小值是(2,0)到直线的距离减1.

即.

故选:A.

5.(2018?浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()

A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1

【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.

过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,

连接SN,

取AB中点M,连接SM,OM,OE,则EN=OM,

则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.

显然,θ1,θ2,θ3均为锐角.

∵tanθ1==,tanθ3=,SN≥SO,

∴θ1≥θ3,

又sinθ3=,sinθ2=,SE≥SM,

∴θ3≥θ2.

故选:D.

6.(2018?浙江)函数y=2|x|sin2x的图象可能是()

A.B.C.

D.

【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,

故排除A和B.

当x=时,函数的值也为0,

故排除C.

故选:D.

二.填空题(共9小题)

7.(2018?江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,

0)到一条渐近线的距离为c,则其离心率的值为2.

【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,

可得:=b=,

可得,即c=2a,

所以双曲线的离心率为:e=.

故答案为:2.

8.(2018?江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.

【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,

∴f′(x)=2x(3x﹣a),x∈(0,+∞),

①当a≤0时,f′(x)=2x(3x﹣a)>0,

函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;

②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,

∴f(x)在(0,)上递减,在(,+∞)递增,

又f(x)只有一个零点,

∴f()=﹣+1=0,解得a=3,

f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],

f′(x)>0的解集为(﹣1,0),

f(x)在(﹣1,0)上递增,在(0,1)上递减,

f(﹣1)=﹣4,f(0)=1,f(1)=0,

∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,

∴f(x)在[﹣1,1]上的最大值与最小值的和为:

f(x)max+f(x)min=﹣4+1=﹣3.

9.(2018?天津)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2

个互异的实数解,则a的取值范围是(4,8).

【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,

得x2+ax+a=0,

得a(x+1)=﹣x2,

得a=﹣,

设g(x)=﹣,则g′(x)=﹣=﹣,

由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,

由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,

当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,

得x2﹣ax+2a=0,

得a(x﹣2)=x2,当x=2时,方程不成立,

当x≠2时,a=

设h(x)=,则h′(x)==,

由h′(x)>0得x>4,此时递增,

由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,

要使f(x)=ax恰有2个互异的实数解,

则由图象知4<a<8,

故答案为:(4,8)

10.(2018?北京)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为2.

【解答】解:椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,

可得椭圆的焦点坐标(c,0),正六边形的一个顶点(,),可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),

解得e=.

同时,双曲线的渐近线的斜率为,即,

可得:,即,

可得双曲线的离心率为e==2.

故答案为:;2.

11.(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则

+的最大值为+.

【解答】解:设A(x1,y1),B(x2,y2),

=(x1,y1),=(x2,y2),

由x12+y12=1,x22+y22=1,x1x2+y1y2=,

可得A,B两点在圆x2+y2=1上,

且?=1×1×cos∠AOB=,

即有∠AOB=60°,

即三角形OAB为等边三角形,

AB=1,

+的几何意义为点A,B两点

到直线x+y﹣1=0的距离d1与d2之和,

显然A,B在第三象限,AB所在直线与直线x+y=1平行,

可设AB:x+y+t=0,(t>0),

由圆心O到直线AB的距离d=,

可得2=1,解得t=,

即有两平行线的距离为=,

即+的最大值为+,

故答案为:+.

12.(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.

【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).

则:,

整理得:=1,

解得:2p+q=a2pq,

由于:2p+q=36pq,

所以:a2=36,

由于a>0,

故:a=6.

故答案为:6

13.(2018?浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解

集是{x|1<x<4} .若函数f(x)恰有2个零点,则λ的取值范围是(1,3]∪(4,+∞).

【解答】解:当λ=2时函数f(x)=,显然x≥2时,不等式x﹣4<0的解集:{x|2

≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.

函数f(x)恰有2个零点,

函数f(x)=的草图如图:

函数f(x)恰有2个零点,则1<λ≤3或λ>4.

故答案为:{x|1<x<4};(1,3]∪(4,+∞).

14.(2018?浙江)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m= 5时,点B横坐标的绝对值最大.

【解答】解:设A(x1,y1),B(x2,y2),

由P(0,1),=2,

可得﹣x1=2x2,1﹣y1=2(y2﹣1),

即有x1=﹣2x2,y1+2y2=3,

又x12+4y12=4m,

即为x22+y12=m,①

x22+4y22=4m,②

①﹣②得(y1﹣2y2)(y1+2y2)=﹣3m,

可得y1﹣2y2=﹣m,

解得y1=,y2=,

则m=x22+()2,

即有x22=m﹣()2==,

即有m=5时,x22有最大值4,

即点B横坐标的绝对值最大.

故答案为:5.

15.(2018?浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260个没有重复数字的四位数.(用数字作答)

【解答】解:从1,3,5,7,9中任取2个数字有种方法,

从2,4,6,0中任取2个数字不含0时,有种方法,

可以组成=720个没有重复数字的四位数;

含有0时,0不能在千位位置,其它任意排列,共有=540,

故一共可以组成1260个没有重复数字的四位数.

故答案为:1260.

三.解答题(共2小题)

16.(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.

(1)若f(x)为偶函数,求a的值;

(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.

【解答】解:(1)∵f(x)=asin2x+2cos2x,

∴f(﹣x)=﹣asin2x+2cos2x,

∵f(x)为偶函数,

∴f(﹣x)=f(x),

∴﹣asin2x+2cos2x=asin2x+2cos2x,

∴2asin2x=0,

∴a=0;

(2)∵f()=+1,

∴asin+2cos2()=a+1=+1,

∴a=,

∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,

∵f(x)=1﹣,

∴2sin(2x+)+1=1﹣,

∴sin(2x+)=﹣,

∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,

∴x=﹣π+kπ,或x=π+kπ,k∈Z,

∵x∈[﹣π,π],

∴x=或x=或x=﹣或x=﹣

17.(2018?浙江)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P (﹣,﹣).

(Ⅰ)求sin(α+π)的值;

(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.

【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).

∴x=﹣,y=,r=|OP|=,

∴sin(α+π)=﹣sinα=;

(Ⅱ)由x=﹣,y=,r=|OP|=1,

得,,

又由sin(α+β)=,

得=,

则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,

或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.

∴cosβ的值为或.

相关主题