搜档网
当前位置:搜档网 › 实验四液体粘滞系数的测定南京农业大学物理

实验四液体粘滞系数的测定南京农业大学物理

实验四液体粘滞系数的测定南京农业大学物理
实验四液体粘滞系数的测定南京农业大学物理

实验四液体粘滞系数的测定

一、实验目的:

1.用落球法测量不同温度下蓖麻油的粘滞系数;

2.了解PID温度控制的原理;

3.练习用秒表测量时间,用螺旋测微器测量直径。

二、实验器材:

变温粘度测量仪,ZKY-PID温控实验仪,秒表,螺旋测微器,游标卡尺、钢球若干。

三、实验原理:

当固体在液体内部运动或液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍固体与液体或液体之间的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘滞系数(或粘度)。

对液体粘滞性的研究在流体力学、化学化工、医疗、水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量、压力差、输送距离及液体粘滞系数,设计输送管道的口径。

测量液体粘滞系数可用落球法、毛细管法、转筒法等方法,其中落球法适用于测量粘滞系数较高的液体,本实验采用落球法测量液体的粘滞系数。

粘滞系数的大小取决于液体的性质与温度,温度升高,粘滞系数将迅速减小。例如对于蓖麻油,在室温附近温度每改变1?C,粘滞系数值改变约10%。因此,测定液体在不同温度的粘滞系数有很大的实际意义,欲准确测量液体的粘滞系数,必须精确控制液体温度。

1.落球法测定液体的粘滞系数

一个在静止液体中下落的小球受到重力、浮力和粘滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示粘滞阻力的斯托克斯公式:

(1)

(1)式中d为小球直径。由于粘滞阻力与小球速度v成正比,小球在下落很短一段距离后(参见附录的推导),所受3力达到平衡,小球将以v0匀速下落,此时有:

(2)

(2)式中ρ为小球密度,ρ0为液体密度。由(2)式可解出粘滞系数η的表达式:

(3)

本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时粘滞阻力的表达式可加修正系数(1+2.4d/D),而(3)式可修正为:

(4)

已知或测量得到ρ、ρ0、D、d、v等参数后,由(4)式计算粘滞系数η。

在国际单位制中,η的单位是Pa?s(帕斯卡·秒),在厘米·克·秒制中,η的单位是P(泊)或cP(厘泊),它们之间的换算关系是:

1Pa?s = 10P =

1000cP

(9)

2.PID调节原理

PID调节是自动控制系统中应用最为广泛的一种调节规律,自动控制系统的原理可用图4-1说明。

假如被控量与设定值之间有偏差e(t)=设定值-被控量,调节器依据e(t)及一定的调节规律输出调节信号

u(t),执行单元按u(t)输出操作量至被控对象,使被控量逼近直至最后等于设定值。调节器是自动控制系统的指挥机构。

在我们的温控系统中,调节器采用PID调节,执行单元是由可控硅控制加热电流的加热器,操作量是

加热功率,被控对象是水箱中的水,被控量是水的温度。

PID调节器是按偏差的比例(proportional),积分(integral),微分(differential),进行调节,其调节规律可表示为:

(10)

式中第一项为比例调节,K P为比例系数。第二项为积分调节,T I为积分时间常数。第三项为微分调节,T D为微分时间常数。

PID温度控制系统在调节过程中温度随时间的一般变化关系可用图4-2表示,控制效果可用稳定性,准确性和快速性评价。

系统重新设定(或受到扰动)后经过一定的过渡过程能够达到新的平衡状态,则为稳定的调节过程;若被控量反复振荡,甚至振幅越来越大,则为不稳定调节过程,不稳定调节过程是有害而不能采用的。准确性可用被调量的动态偏差和静态偏差来衡量,二者越小,准确性越高。快速性可用过渡时间表示,过渡时间越短越好。实际控制系统中,上述三方面指标常常是互相制约,互相矛盾的,应结合具体要求综合考虑。

由图4-2可见,系统在达到设定值后一般并不能立即稳定在设定值,而是超过设定值后经一定的过渡过程才重新稳定,产生超调的原因可从系统惯性,传感器滞后和调节器特性等方面予以说明。系统在升温过程中,加热器温度总是高于被控对象温度,在达到设定值后,即使减小或切断加热功率,加热器存储的热量在一定时间内仍然会使系统升温,降温有类似的反向过程,这称之为系统的热惯性。传感器滞后是指由于传感器本身热传导特性或是由于传感器安装位置的原因,使传感器测量到的温度比系统实际的温度在时间上滞后,系统达到设定值后调节器无法立即作出反应,产生超调。对于实际的控制系统,必须依据系统特性合理整定PID参数,才能取得好的控制效果。

由(10)式可见,比例调节项输出与偏差成正比,它能迅速对偏差作出反应,并减小偏差,但它不能消除静态偏差。这是因为任何高于室温的稳态都需要一定的输入功率维持,而比例调节项只有偏差存在时才输出调节量。增加比例调节系数K P可减小静态偏差,但在系统有热惯性和传感器滞后时,会使超调加大。

积分调节项输出与偏差对时间的积分成正比,只要系统存在偏差,积分调节作用就不断积累,输出调节量以消除偏差。积分调节作用缓慢,在时间上总是滞后于偏差信号的变化。增加积分作用(减小T I)可加快消除静态偏差,但会使系统超调加大,增加动态偏差,积分作用太强甚至会使系统出现不稳定状态。

微分调节项输出与偏差对时间的变化率成正比,它阻碍温度的变化,能减小超调量,克服振荡。在系统受到扰动时,它能迅速作出反应,减小调整时间,提高系统的稳定性。

PID调节器的应用已有一百多年的历史,理论分析和实践都表明,应用这种调节规律对许多具体过程进行控制时,都能取得满意的结果。

四、仪器介绍

1. 落球法变温粘度测量仪

变温粘度仪的外型如图4-3所示。待测液体装在细长的样品管中,能使液体温度较快的与加热水温达到平衡,样品管壁上有刻度线,便于测量小球下落的距离。样品管外的加热水套连接到温控仪,通过热循环水加热样品。底座下有调节螺钉,用于调节样品管的铅直。

2.开放式PID温控实验仪

温控实验仪包含水箱,水泵,加热器,控制及显示电路等部分。

本温控试验仪内置微处理器,带有液晶显示屏,具有操作菜单化,能根据实验对象选择PID参数以达到最佳控制,能显示温控过程的温度变化曲线和功率变化曲线及温度和功率的实时值,能存储温度及功率变化曲线,控制精度高等特点,仪器面板如图4-4所示。

开机后,水泵开始运转,显示屏显示操作菜单,可选择工作方式,输入序号及室温,设定温度及

PID参数。使用键选择项目,键设置参数,按确认键进入下一屏,按返回键返回上一屏。

进入测量界面后,屏幕上方的数据栏从左至右依次显示序号,设定温度,初始温度,当前温度,当前功率,

调节时间等参数。图形区以横坐标代表时间,纵坐标代表温度(以及功率),并可用键改变温度坐标值。仪器每隔15秒采集1次温度及加热功率值,并将采得的数据标示在图上。温度达到设定值并保持两分钟温度波动小于0.1度,仪器自动判定达到平衡,并在图形区右边显示过渡时间ts,动态偏差σ,静态偏差e。一次实验完成退出时,仪器自动将屏幕按设定的序号存储(共可存储10幅),以供必要时查看,分析,比较。

3.秒表

PC396电子秒表具有多种功能。按功能转换键,待显示屏上方出现符号且第1和第6、7短横线闪烁时,即进入秒表功能。此时按开始/停止键可开始或停止记时,多次按开始/停止键可以累计记时。一次测量完成后,按暂停/回零键使数字回零,准备进行下一次测量。

五、实验内容与步骤

1.检查仪器后面的水位管,将水箱水加到适当值

平常加水从仪器顶部的注水孔注入。若水箱排空后第1次加水,应该用软管从出水孔将水经水泵加入水箱,以便排出水泵内的空气,避免水泵空转(无循环水流出)或发出嗡鸣声。

2.设定PID参数

若对PID调节原理及方法感兴趣,可在不同的升温区段有意改变PID参数组合,观察参数改变对调节过程的影响,探索最佳控制参数。

若只是把温控仪作为实验工具使用,则保持仪器设定的初始值,也能达到较好的控制效果。

3.测定小球直径

用螺旋测微器测定小球的直径d,将数据记入表1中。

表1 小球的直径

4. 测定样品管的内径D

用游标卡尺测量样品管的内径D,将数据记入表2中,测三次取平均值。

表2 样品管的内径D

5.测定小球在液体中下落速度并计算粘滞系数

温控仪温度达到设定值后再等约10分钟,使样品管中的待测液体温度与加热水温完全一致,才能测液体粘滞系数。

用镊子夹住小球沿样品管中心轻轻放入液体,观察小球是否一直沿中心下落,若样品管倾斜,应调节其铅直。测量过程中,尽量避免对液体的扰动。

用秒表测量小球落经一段距离的时间t,并计算小球速度v0,用(4)式计算粘滞系数η,记入表3中。表3中,列出了部分温度下粘滞系数的标准值,可将这些温度下粘滞系数的测量值与标准值比较,并计算相对误差。

将表3 中η的测量值在坐标纸上作图,表明粘滞系数随温度的变化关系。

实验全部完成后,用磁铁将小球吸引至样品管口,用镊子夹入蓖麻油中保存,以备下次实验使用。

表3 粘滞系数的测定ρ = 7.8×103kg/m3ρ0= 0.95×103kg/m3

附录小球在达到平衡速度之前所经路程L的推导

由牛顿运动定律及粘滞阻力的表达式,可列出小球在达到平衡速度之前的运动方程:

(1)

经整理后得:

(2)

这是1个一阶线性微分方程,其通解为:

(3)

设小球以零初速放入液体中,代入初始条件(t=0, v=0),定出常数C并整理后得:

(4)

随着时间增大,(4)式中的负指数项迅速趋近于0,由此得平衡速度:

(5)

(5)式与正文中的(3)式是等价的,平衡速度与粘滞系数成反比。设从速度为0到速度达到平衡速度的99.9%这段时间为平衡时间t0,即令:

(6)

由(6)式可计算平衡时间。

若钢球直径为10-3m,代入钢球的密度ρ,蓖麻油的密度ρ0及40 oC时蓖麻油的粘滞系数η= 0.231 Pa?s,可得此时的平衡速度约为v0 = 0.016 m/s,平衡时间约为t0 = 0.013 s。

平衡距离L小于平衡速度与平衡时间的乘积,在我们的实验条件下,小于1mm,基本可认为小球进入液体后就达到了平衡速度。

落球法测量液体粘滞系数

液体粘滞系数的测量(落球法) 在工业生产和科学研究中(如流体的传输、液压传动、机器润滑、船舶制造、化学原料及医学等方面)常常需要知道液体的粘滞系数。测定液体粘滞系数的方法有多种,落球法(也称斯托克斯Stokes 法)是最基本的一种。它是利用液体对固体的摩擦阻力来确定粘滞系数的,可用来测量粘滞系数较大的液体。 【实验目的】 1. 观察液体的内摩擦现象,根据斯托克斯公式用落球法测量液体的粘滞系数; 2. 掌握激光光电计时仪的使用方法; 3. 了解雷诺数与斯托克斯公式的修正数; 4.掌握用落球法测粘滞系数的原理和方法; 5.测定当时温度下变压器油的粘滞系数。 【实验前准备】 1.自学斯托克斯公式及雷诺数; 2.粗略阅读讲义,了解大致的实验过程; 3.认真阅读讲义,明确实验原理,写出自己设计的实验方案; 4.再次阅读讲义,提出自己的疑问或可能的其他实验方案,如下落时间还有其他方法测量吗等; 5.进一步熟悉并掌握某些测量器具的用法(如游标卡尺、螺旋测微计、秒表等)。 6.设计实验数据记录表格; 7.复习不确定度计算方法并推导出本实验要用的不确定计算公式。 【自学资料】 1. 如何定义粘滞力(内摩擦力)?粘滞系数取决于什么? 当液体稳定流动时,流速不同的各流层之间所产生的层面切线方向的作用力即为粘滞力(或称内摩擦力)。其大小与流层的面积成正比,与速度的梯度成正比,即: dx dv S F ? ?=η (1) 式中比例系数η即为该液体的粘滞系数。 粘滞系数决定于液体的性质和温度。 2. 实验依据的主要定律是什么?它需要什么条件? 主要依据斯托克斯定律,即半径为r 的圆球,以速度v 在粘滞系数为η的液体中运动时,圆球所受液体的粘滞阻力大小为: rv F πη6= (2) 它要求液体是无限广延的且无旋涡产生。 3. 实验的简要原理是什么? 圆球在液体中下落时,受到重力、浮力和粘滞阻力的作用,由斯托克斯定律知粘滞阻力与圆球的下落速度成正比,当粘滞阻力与液体的浮力之和等于重力时,圆球所受合外力为零,圆球此后将以收尾速度匀速下落。由此得到:

落球法测量液体粘滞系数

落球法测量液体粘滞系数 Revised by BLUE on the afternoon of December 12,2020.

落球法测量液体粘滞系数 各种实际液体具有不同程度的粘滞性,当液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力,它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它是表征液体粘滞性强弱的重要参数。 液体的粘滞性的测量是非常重要的,例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足的状态,这可能引起多种心脑血管疾病和其他许多身体不适症状。因此,测量血粘度的大小是检查人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度有多种方法,本实验所采用的落球法是一种绝对法测量液体的粘度。如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与小球下落的速度有关。当小球作匀速运动时,测出小球下落的速度,就可以计算出液体的粘度。 【实验目的】 1.学习用激光光电传感器测量时间和物体运动速度的实验方法 2.用斯托克斯公式采用落球法测量油的粘滞系数(粘度) 3.观测落球法测量液体粘滞系数的实验条件是否满足,必要时进行修正。【实验原理】 1.当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力 ρ(V是小球体积,ρ是液体mg(m为小球质量)、液体作用于小球的浮力gV 密度)和粘滞阻力F(其方向与小球运动方向相反)。如果液体无限深广,在小球下落速度v较小情况下,有 = 6 rv Fπη (1)

导热系数的测量实验报告

导热系数的测量 导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。 一.实验目的 1.用稳态平板法测量材料的导热系数。 2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。 二.实验原理 热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。单位时间通过截面的热流量为: 当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。这样,只要测量低温侧

铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。 由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳态温度 T2(大约高出 10℃左右),再让其在环境中自然冷却,直到温度低于 T2,测出 温度在大于T2到小于T2区间中随时间的变化关系,描绘出 T —t 曲线(见图 2),曲线在T2处的斜率就是铜板在稳态温度时T2下的冷却速率。 应该注意的是,这样得出的 t T ??是铜板全部表面暴露于空气中的冷却速率, 其散热面积为 2πRp2+2πRphp (其中 Rp 和 hp 分别是下铜板的半径和厚度),然而, 设样品截面半径为R ,在实验中稳态传热时,铜板的上表面(面积为 πRp2)是被 样品全部(R=Rp )或部分(R

液体黏度的测定实验报告

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于就是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity)。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上与科学技术上,凡就是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的就是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force)。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位就是“帕斯卡·秒”(Pa ·s)或kg ·m -1·s -1。

物理实验报告-稳态法导热系数测定实验

稳态法导热系数测定实验 一、实验目的 1、通过实验使学生加深对傅立叶导热定律的认识。 2、通过实验,掌握在稳定热流情况下利用稳态平板法测定材料导热系数的方法。 3、确定材料的导热系数与温度之间的依变关系。 4、学习用温差热电偶测量温度的方法。 5、学习热工仪表的使用方法 二、实验原理 平板式稳态导热仪的测量原理是基于一维无限大平板稳态传热模型,这种方法是把被测材料做成比较薄的圆板形或方板形,薄板的一个表面进行加热,另一个表面则进行冷却,建立起沿厚度方向的温差。 三、实验设备 实验设备如图2所示。 图2 平板式稳态法导热仪的总体结构图 1.调压器 2.铜板 3.主加热板 4.上均热片 5.中均热片 6.下均热片 7.热电偶 8.副加热板 9.数据采控系统10.温度仪表 11.试样装置12.循环水箱电位器13.保温材料14.电位器 键盘共有6个按键组成,包括为“5”、“1”、“0.1”3个数据键,“±”正负号转换键,“RST”复位键,“ON/OFF”开关键。 数据键:根据不同的功能对相应的数据进行加减,与后面的“±”正负号转换键和“shift”功能键配合使用。“±”正负号转换键:当“±”正负号转换键为“+”时,在原数据基础上加相应的数值;为“-”时,减相应的数值。“RST”复位键:复位数据,重新选择。 控制板上的四个发光二极管分别对应四路热电偶,发光二极管发光表示对应的热电偶接通。由一台调压器输出端采用并联方式提供两路输出电压,电位器对每路输出电压进行调整,作为两个加热板的输入电压。 四、实验内容 1、根据提供的实验设备仪器材料,搭建实验台,合理设计实验步骤。调整好电加热器的电压(调节调压器),并测定相关的温度及电热器的电压等试验数据。 2、对测定的实验数据按照一定的方法测量进行数据处理,确定材料的导热系数与温度之间的依变关系公式。 3、对实验结果进行分析与讨论。 4、分析影响制导热仪测量精度的主要因素。 5、在以上分析结论的基础之上尽可能的提出实验台的改进方法。 五、实验步骤 1、利用游标卡尺测量试样的长、宽、厚度,测试样3个点的厚度,取其算术平均值,作为试样厚度和面积。 2、测量加热板的内部电阻。 3、校准热工温度仪表。 4、向水箱内注入冷却水。 5、通过调整电位器改变提供给主加热板和副加热板的加热功率,通过4位“LED”显示主加热板和副加热板的温度,根据主加热板的温度,调整电位器改变施加在副加热板的电压,使副加热板的温度与主加热板的温度一致。利用数字电压表测量并记录主加热板电压。 6、在加热功率不变条件下, 试样下表面和循环水箱下表面的温度波动每5min不超过±1℃时,认为达到稳态。此时,记录主加热板温度、试样两面温差。

实验五液体粘滞系数的测定

43 实验五 液体粘滞系数的测定 【实验目的】 学习用比较法测定液体的粘滞系数 【实验原理】 由实际液体在均匀细管中作层流的理论,可求得在时间t 内,当管长为L 、它的横截面的半径为r 、管两端的压强差为ΔP 时,流出液体的体积V 的公式: t L P r t Q V η8Δπ4= = (1) 上式中η 是液体的粘滞系数.由此公式可得液体的粘滞系数为 t VL P r 8Δπ4= η (2) 用上述公式虽可直接测定η ,但因所测物理量多,测量又困难,误差较大。为此奥斯华尔德设计出奥氏粘度计,采用比较法进行测量。 本实验所用毛细管粘度计(奥氏粘度计)如图1所示。它是一个U 形玻璃管,玻璃管的一侧有一段毛细管C ,其上为一小玻璃泡B ,在小玻璃泡B 的上下有指示痕I 1,及I 2。 实验时以一定体积的液体从大管口D 注入A 泡内,再由小管口E 将液体吸入B 泡中,使液面升高到B 泡的指示痕I 1以上。因两边液面的高度不同,B 泡内液体将经毛细管C 流回A 泡。当液面由指示痕I 1下降到指示痕I 2时,测得其流动时间t ,即为I 1,与I 2刻痕间液体流经毛细管所需的时间。 如果以同样体积的水和被测液体先后注入粘度计,按上述步骤测 出两种液体面从I 1降至I 2所需时间分别为t 1与t 2 。则: 1 418Δπt VL P r =η 2 4 2 8Δπt VL P r = η 两式中r ,V ,L 相同,所以 1 12212ΔΔt P t P =ηη (3) 液体是受到重力的作用而流动.由于注入粘度计的两种液体的体积相等,因而在流动 过程中相对应的液面高度差Δh 是相等的,因此有

液体粘滞系数的测定

实验19 液体粘滞系数的测定 【实验目的】 掌握奥氏粘度计和沉降法测定液体粘滞系数的原理和方法。 【实验仪器】 奥氏粘度计、量筒、烧杯、停表、移液管、洗耳球、小钢球、游标卡尺、温度计(公用)、甘油、稀释甘油、水。 实验之一 用奥氏粘度计测稀释甘油的粘滞系数 【实验原理】 由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,秒内流出圆管的液体体积为 (1) 式中为管道的的截面半径,为管道的长度,为流动液体的粘滞系数, 为管道两端液体的压强差。如果先测出、、、各量,则可求得 液体的粘滞系数 (2) 1),采用比较法进行测量。取一种已知粘滞系数的液体和一种待测粘滞系数的液体,设它们的粘滞系数分别为 和,令同体积的两种液体在同样条件下,由于 重力的作用通过奥氏粘度计的毛细管DB ,分别测出他们所需的时间和,两种液体的密度分别为、。则 (3) (4) 式中为粘度计两管液面的高度差,它随时间连续变 化,由于两种液体流过毛细管有同样的过程,所以由(3)式和(4)式可得 (5) 如测出等量液体流经DB 的时间和,根据已知数、、,即可求出待测液体的粘滞系数。式中水的粘滞系数见附表一,实验温度下水的密度 见附表二。 【实验内容】 t t L P R V ηπ84?=R L ηP ?V R P ?L t VL P R 84?=πη0ηx ηV 1t 2t 1ρ2ρh g VL t R ?= 11 408ρπηh g VL t R x ?= 22 48ρπηh ?221 10ρρ ηηt t x =0 1 122ηρρη?=t t x 1t 2t 1ρ2ρ0η0η1ρ

(1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在试管架上。 (2) 用移液管经粘度计粗管端注入6毫升水。用洗耳球将水压入细管刻度C 以上,用手指压住细管口,以免液面下降。 (3) 松开手指,液面下降,当夜面下降至刻度C 时,启动秒表,在液面经过刻度D 时停止秒表,记下时间。 (4) 重复步骤(2)、(3)测量3次,取平均值。 (5) 用稀释甘油清洗粘度计两次。 (6) 取6毫升的稀释甘油作同样实验,求出时间的平均值。 【数据记录与处理】 根据公式(5)求出稀释甘油溶液的粘滞系数。 【注意事项】 (1)(1)使用粘度计时要小心,不要同时控住两管,以免折断。 (2) 当粘度计注入水(或稀释甘油)时,不要让气泡进入管内,放置粘度计要求正、直。 (3) 在实验进行过程中,用洗耳球将待测液压入细管时,防止液体被压出粘度计或被吸入洗耳球内。 实验之二 用沉降法测定甘油粘滞系数 【实验原理】 当小球在无限大的粘滞液体中以不大的速度直线下降时,作用于小球粘滞阻力大小可由斯托克斯定律给出 式中为液体的粘滞系数,为圆球的半径,为圆球下降的速度。 当小圆球在粘滞液体中垂直下降时,除受粘滞阻力以外,还要受到重力和浮力的作用,如果以和分别表示圆球的质量和密度,表示液体密度,那么这三个力的大小可用下述各式计算 由此可列出小球运动的动力学方程 1t 1t 2t T rV F πη6=ηr V mg f m ρρ'g r mg ρπ334 =g r f ρπ'=334 rV F πη6=ma f F mg =--

大学物理实验报告-导热系数的测量

得分教师签名批改日期深圳大学实验报告 课程名称:大学物理实验(一) 实验名称:实验十四导热系数的测量 学院:物理科学与技术学院 专业:课程编号: 组号:16 指导教师: 报告人:学号: 2 实验地点科技楼 实验时间:2011 年04 月25 日星期一 实验报告提交时间:2011 年05 月09 日

1、实验目的 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2、实验原理 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 3、实验仪器 仪器名称组号型号量程△ 仪

建筑物理实验一 材料导热系数测试

实验一材料导热系数测试【实验目的】

[实验步骤] 1、用自定量具测量样品、下铜板的几何尺寸和质量等必要的物理量,多次测量、然后 取平均值。其中铜板的比热容C=0.385KJ/(K.Kg) 2、先放置好待测样品及下铜板(散热盘),调节下圆盘托架上的三个微调螺丝,使待 测样品与上下铜板接触良好。热电偶插入铜盘上的小孔时,要抹上些硅脂,并插到洞孔底部,使热电偶测温端与铜盘接触良好。 3、温度表控制升温步骤:(一)设置程序:按“←”键一下即放开,仪表就进入设置 程序状态。仪表首先显示的是当前运行段起始给定值,可按“←”、“↓”和“↑” 键修改数据。按“)”键则显示下一要设置的程序值,每段程序按“时间-给定值-时问-给定值”的顺序依次排列。按“←”键并保持不放2秒以上,返回设置上一数据,先按“←”键再接着按“)”键可退出设置程序状态。在程序运行时也可修改程序。在运行中,在恒温段如果改变给定值,则要同时修改当前段给定值和下一段给定值,如果要增加或缩短保温时间,则可增加或减少当前段的段时间。在升降温段如果有改变升降温斜率,可根据需要改变段时间,当前段给定温度和下一段的给定温度。例如:C01=开始实测温度,T01=(实验温度-开始实测温度)/升温速率,C02=实验温度,T02=恒温时间(可设8000),C03=实验温度,T03=-121。(二)运行:如果程序处于停止状态(下显示器交替显示“stop”),按“↓”键并保持2秒钟,仪表下显示器将显示“run”的符号,则仪表开始运行程序。(三)停止程序运行:如果程序处于运行状态,按“↑”键并保持2秒钟,仪表下显示器将显示“stop” 的符号,此时仪表进入停止状态。 (参照智能温度控制器使用说明书)。(四)合上“加热开关”,对上不锈钢板进行加热。 4、上不锈钢板加热到设定温度时,(1)观察上不锈钢板的温度。当上不锈钢板的温度 保持不变时(可通过加热板温度显示来观测),记录下此时上不锈钢板的温度(T1),在不断地给高温侧不锈钢板(上不锈钢板)加热,热量通过样品不断地传到低温侧铜块(下铜块),经过一定的时间后,当下铜板的温度基本不变时,记录下此时下铜板的散热板温度值(T2)。此时则可认为已达到了稳态。(大约在五分钟内下铜板的温度保持不变) 5、移去样品,继续对下铜板加热,当下铜盘温度比T2高出10℃左右时(高温时要多些), 移试样架,让下铜盘所有表面均暴露于空气中,使下铜板自然冷却。每隔30秒读一次下铜盘的温度示值并记录,直至温度下降到T2以下一定值。作铜板的T-t冷却速率曲线。(选取邻近的T2测量数据来求出冷却速率)。 6、根据(S1-4)计算样品的导热系数λ,或数据输入计算机计算。

南昌大学液体粘滞系数的测定实验报告

22110ρρηηt t x =实验三 液体粘滞系数的测定 【实验目的】 1、加深对泊肃叶公式的理解; 2、掌握用间接比较法测定液体粘滞系数的初步技能。 【实验仪器】 1.奥氏粘度计 2、铁架及试管夹 3、 秒表 4、温度计 5、量筒 6、小烧杯1个 7、洗耳球 【实验材料】 蒸馏水50ml 酒精25ml 【实验原理】 由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,t 秒内流出圆管的液体体积为 t L P R V ηπ84?=(1) 式中R 为管道的的截面半径,L 为管道的长度,η为流动液体的粘滞系数,P ?为管道两端液体的压强差。如果先测出V 、R 、P ?、L 各量,则可求得液体的粘滞系数 t VL P R 84?=πη(2) 为了避免测量量过多而产生的误差,奥斯瓦尔德设计出一种粘度计(见图1),采用比较法进行测量。取一种已知粘滞系数的液体与一种待测粘滞系数的液体,设它们的粘滞系数分别为0η与x η,令同体积V 的两种液体在同样条件下,由于重力的作用通过奥氏粘度计的毛细管DB,分别测出她们所需的时间1t 与2t ,两种液体的密度分别为1ρ、2ρ。则 h g VL t R ?=11 408ρπη(3) h g VL t R x ?= 22 48ρπη(4) 式中h ?为粘度计两管液面的高度差,它随时间连续变化,由于两种液体流过毛细管有同 样的过程,所以由(3)式与(4)式可得: 0 1 122ηρρ η?=t t x (5) 如测出等量液体流经DB 的时间1t 与2t ,根据已知数1ρ、2ρ、0η,即可求出待测液体的粘滞系数。 【实验内容与步骤】 (1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在

落球法测定液体的粘滞系数

目录 实验目的 (2) 实验仪器 (2) 实验原理 (2) 实验装置 (4) 实验内容 (5) 实验数据及处理 (5) 观察与思考 (12) 实验总结 (13)

落球法测定液体的粘滞系数 实验目的 1、 用落球法测定液体的粘滞系数。 2、 进一步熟悉基本测量工具的使用。 实验仪器 FD —VM —II 型落球法液体粘滞系数测定仪(激光光电传感器计时)、甘油、游标卡尺、温度计、小刚球、小磁钢、螺旋测微器、液体密度计。 实验原理 各种实际流体在流动时,平行于流动方向的内部各层速度是不同的,于是作相对运动的各层流体间存在着粘滞性摩擦阻力,简称内摩擦力。牛顿给出了表征内摩擦力 f 的定律:dx d A f υη-=,即f 的大小正比于流层移动的速度梯度和流层间的接触面积,比例系数η叫做粘滞系数,它是表征流体相邻流层内摩擦力大小的一个物理量。它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它是表征液体粘滞性强弱的重要参数,液体的粘滞性的测量是非常重要的,例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足的状态,这可能引起多种心脑血管疾病和其他许多身体不适症状。因此,测量血粘度的大小是检查人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度有多种方法,本实验所采用的落球法是一种绝对法测量液体的粘度。如果一小球在粘滞液体中铅直下落,由于附着于球面的液层

落球法测量液体的粘滞系数

落球法测量液体的粘滞系数 一、实验内容: 熟悉斯托克斯定律,掌握用落球法测量液体的粘滞系数的原理与方法。 二、实验仪器: 落球法粘滞系数测定仪、小钢球、蓖麻油、千分尺、激光光电计时仪 三、实验原理: 如图1,当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力mg 、液体作用于小球的浮力gV ρ(V 为小球体积,ρ为液体密度)与粘滞阻力F(其方向于小球运动方向相反)。如果液体无限深广,在小球下落速度v 较小的情况下,有: rv F πη6= (1) 图1 液体的粘滞系数测量装置 上式称为斯托克斯公式,式中η为液体的粘滞系数,单位就是s Pa ?,r 为小球的半径。 斯托克斯定律成立的条件有以下5个方面: 1)媒质的不均一性与球体的大小相比就是很小的; 2)球体仿佛就是在一望无涯的媒质中下降; 3)球体就是光滑且刚性的; 4)媒质不会在球面上滑过; F f P L H D

5) 球体运动很慢,故运动时所遇的阻力系由媒质的粘滞性所致,而不就是因球体运动所推向前行的媒质的惯性所产生。 小球开始下落时,由于速度尚小,所以阻力不大,但就是随着下落速度的增大,阻力也随之增大。最后,三个力达到平衡,即: rv gV mg πηρ6+= 于就是小球开始作匀速直线运动,由上式可得: vr g V m πρη6)(-= 令小球的直径为d ,并用ρπ 36d m = ,t l v =,2 d r =代入上式得 : 其中ρ'为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间。 实验时,待测液体盛于容器中,故不能满足无限深广的条件,实验证明上式应该进行修正。测量表达式为: 其中D 为容器的内径,H 为液柱高度。 四、实验步骤: 1. 调整粘滞系数测量装置及实验仪器 1) 调整底盘水平,在仪器横梁中间部位放重锤部件,调节底盘旋钮,使重锤对准底盘的中心圆点。 2) 将实验架上的两激光器接通电源,并进行调节,使其红色激光束平行对准锤线。 3) 收回重锤部件,将盛有待测液体的量筒放置到实验架底盘中央,并在实验中保持位置不变。 4) 在实验架上放上钢球导管。小球用酒精清洗干净,并用滤纸吸干。 5) 将小球放入钢球导管,瞧其能否阻挡光线,如不能,则适当调整激光器位置。 2. 用温度计测量油温,在全部小球下落完后再测一次油温,取其平均值。

用落球法测定液体的粘滞系数

用落球法测定液体的粘滞系数液体的粘滞系数又称为内摩擦系数或粘度。是描述液体内摩擦力性质的一个重要物理量。它表征液体反抗形变的能力,只有在液体内存在相对运动时才表现出来。粘滞系数除了因材料而异之外还比较敏感的依赖温度,液体的粘滞系数随着温度升高而减少,气体则反之,大体上按正比例的规律增长。研究和测定液体的粘滞系数,不仅在材料科学研究方面,而且在工程技术以及其他领域有很重要的作用。 ◆【实验目的】 1.学习用落球法测定液体的粘滞系数的原理和方法 2.熟悉流动液体中的粘滞现象,掌握粘滞现象的一般规律 3.测定蓖麻油的粘滞系数 ◆【仪器及用具】 玻璃量筒、待测液体、游标卡尺、秒表、温度计、米尺、小钢球、读数显微镜 ◆【实验原理】 当流体流动时,各层的流速不同,相邻两层中由于流体分子的热运动,流速慢的流层中的分子进入流速快的流层;同时,流速快的流层中的分子进入流速慢的流层,结果流速快的将变慢,流速慢的将变快。在宏观上就相当于在两流层间产生了相互作用力,我们称这一对相互作用力为内摩擦力或者粘滞力。流体中的这一现象称为粘滞现象。 一个半径为r的金属小球在无限广延的粘滞液体中自由下落时,它受到3个力的作用:(1)小球W=ρVg(V为小球体积;ρ为小球密度;g为重力加速度),方向向下; (2)液体作用于小球的浮力F=ρ0Vg(ρ0为液体的密度),方向向上; (3)由于附着于球面的液体与周围其他液层之间的摩擦力,即小球受到的粘滞阻力f,方向向上。 由于液体是无限广延的,而且小球的半径r很小,小球下落的速度v也很小,这由斯托克斯公式可知: f=6πrηv=3πdηv 式中,d为小球直径;η为该液体在T℃时的粘滞系数,它只与液体性质和温度有关。一般的,液体温度越高,η越小。 在CGS制中η的单位是泊(P),1P=1g/(cm?s);在SI制中,η的单位是帕斯卡?秒

液体粘滞系数测定实验

液体粘滞系数的测量与研究 一 实验目的 1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件。 2.学习用落球法测定液体的粘滞系数。 3.熟练运用基本仪器测量时间、长度与温度。 4.掌握用外推法处理实验数据。 二 实验仪器 液体粘滞系数仪、螺旋测微器、游标卡尺、钢板尺、钢球、磁铁、秒表、温度计。 三 实验原理 当物体球在液体中运动时,物体将会受到液体施加的与其运动方向相反的摩擦阻力的作用,这种阻力称为粘滞阻力,简称粘滞力。粘滞阻力并不就是物体与液体间的摩擦力,而就是由附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。粘滞力的大小与液体的性质、物体的形状与运动速度等因素有关。 根据斯托克斯定律,光滑的小球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f 为 vd f πη3= (1) 式中d 就是小球的直径,v 就是小球的速度,η为液体粘滞系数。η就就是液体粘滞性的度量,与温度有密切的关系,对液体来说,η随温度的升高而减少(见附表)。 本实验应用落球法来测量液体的粘滞系数。小球在液体中做自由下落时,受到三个力的作用,三个力都在竖直方向,它们就是重力r gV 、浮力r 0gV 、粘滞阻力f 。开始下落时小球运动的速度较小,相应的阻力也小,重力大于粘滞阻力与浮力,所以小球作加速运动。由于粘滞阻力随小球的运动速度增加而逐渐增加,加速度也越来越小,当小球所受合外力为零时,趋于匀速运动,此时的速度称为收尾速度,记为v 0 。经计算可得液体的粘滞系数为 2 018)(v gd ρρη-= (2) 式中0ρ就是液体的密度,ρ就是小球的密度,g 就是当地的重力加速度。 可见,只要测得v 0,即可由(2)式得到液体的粘滞系数。但就是注意,上述推导包括(1)、(2)式都在特定条件下方才适用(见原理的第一段黑体字部分),通过对实验仪器与实验方法的设计,

固体导热系数的测定实验报告

学生物理实验报告 实验名称固体导热系数的测定 学院专业班级报告人学号 同组人学号 理论课任课教师 实验课指导教师 实验日期 报告日期 实验成绩 批改日期

1.数字毫伏表 一般量程为20mV。3位半的LED显示,分辨率为10uV左右,具有极性自动转换功能。 2.导热系数测量仪 一种测量导热系数的仪器,可用稳态发测量不良导体,金属气体的导热系数, 散热盘参数

傅里叶在研究了固体的热传定律后,建立了导热定律。她指出,当物体的内部有温度梯度存在时,热量将从高温处传向低温处。如果在物体内部取两个垂直于热传导方向,彼此相距为h 的两个平面,其面积元为D,温度分别为21T T 和,则有 dt dQ =–dS dx dT λ 式中dt dQ 为导热速率,dx dT 为与面积元dS 相垂直方向的温度梯度,“—”表示热量由高温区域传向低温区域,λ即为导热系数,就是一种物性参数,表征的就是材料导热性能的优劣,其单位为W/(m ·K ),对于各项异性材料,各个方向的导热系数就是不同的,常要用张量来表示。 如图所示,A 、C 就是传热盘与散热盘,B 为样品盘,设样品盘的厚度为B h ,上下表面的面积 各为B S =2 B R π,维持上下表面有稳定的温度21T T 和,这时通过样品的导热速率为 dt dQ =–B B S h T T 21 -λ 在稳定导热条件下(21T T 和值恒定不变) 可以认为:通过待测样品B 的导热速率与散热盘的周围环境散热的速率相等,则可 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置图

液体黏度的测定实验报告记录

液体黏度的测定实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity )。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上和科学技术上,凡是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force )。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位是“帕斯卡·秒”(Pa ·s )或k g ·m -1·s -1。

(完整版)粘滞系数测定实验

实验 液体粘滞系数的测定 当液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍液体的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘度(或粘滞系数)。 对液体粘滞性的研究在流体力学,化学化工,医疗,水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量、压力差、输送距离及液体粘度,设计输送管道的口径。测量液体粘度可采用落球法,毛细管法(奥氏粘滞计),转筒法等方法。本实验根据所用方法的不同,分成两个部分,第一部分采用落球法测定变温情况下的液体(蓖麻油)粘滞系数,第二部分则是采用毛细管法测定室温下的液体粘滞系数(该方法比较适合用于生物医学应用,比如测量血液的粘度)。 实验一 落球法测变温液体的粘滞系数 落球法(又称斯托克斯法)适用于测量粘度较高的液体。一般而言,粘度的大小取决于液体的性质与温度,温度升高,粘度将迅速减小。例如对于蓖麻油,在室温附近温度改变C 1?,粘度值改变约10%。因此,测定液体在不同温度的粘度有很大的实际意义,欲准确测量液体的粘度,必须精确控制液体温度。实验中,小球在液体中下落的时间可用秒表来测量。 一、实验目的 1.用落球法测量不同温度下蓖麻油的粘度。 2.了解PID 温度控制的原理。 3.练习用秒表计时,用螺旋测微计测量小球直径。 二、实验原理 在稳定流动的液体中,由于各层的液体流速不同,互相接触的两层液体之间存在相互作用,流动较慢的液层阻滞着流动较快的液层运动,所以产生流动阻力。实验证明:若以液层垂直的方向作为x 轴方向,则相邻两个流层之间的内磨擦力f 与所取流层的面积S 及流层间速度的空间变化率x v d d 的乘积成正比: S d d f x v ?? η= (1) 其中η称为液体的粘滞系数,它决定液体的性质和温度。粘滞性随着温度升高而减小。如果液体是无限广延的,液体的粘滞性较大,小球的半径很小,且在运动时不产生旋涡,

大学物理实验不良导体的热导系数的测量讲义

dQ dt 不良导体的热导系数的测量 实验简介材料的导热系数是反映材料热性能的物理量,导热机理在很大程度上取决与它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。导热系数不仅与构成材料的物质种类密切相关,而且与它的微观结构、温度、压力及杂质含量相联系。测量导热系数的方法比较多,但可以归并为两类基本方法:一类是稳态法,另一类是动态法。用稳态法时,先用热源对测试样品进行加热,并在样品内部形成稳定的温度分析,然后进行测量。而在动态法中,待测样品中的温度分布是随时间变化的,例如按周期性变化等。本实验采用稳态法进行测量。 实验目的了解热传导现象的物理过程,学习用稳态平板法测量不良导体的导热系数并用作图法求冷 却速率。 实验仪器待测橡皮垫、黄铜板、加热铜质圆盘(带隔热层)、红外灯、热电偶、杜瓦瓶、冰水混合物、 0~250V 变压器、秒表、游标卡尺等实验原理 1,导热系数 当物体内存在温度梯度时,热量从高温流向低温,谓之热传导或传热,传热速率正比于温度梯度以及垂直于温度梯度的面积,比例系数为热导系数或导热率: dQ dT dS (1) dt dx 2,不良导体导热系数的测量 厚度为h 、截面面积为S的平板形样品(橡胶板)夹在加热圆盘和黄铜盘之间。热量由加热盘传入。加热盘和黄铜盘上各有一小孔,热电偶可插入孔内测量温度,两面高低温度恒定为T1 和T2 时,传热速率为 2)

由于传热速率很难测量,但当T1 和T2 稳定时,传入橡胶板的热量应等于它向周围的散热 量。这时移去橡胶板,使加热盘与铜盘直接接触,将铜盘加热到高于T2约10 度,然后再移去加热盘,让黄铜盘全表面自由放热。每隔30 秒记录铜盘的温度,一直到其温度低于T2,据此求出铜盘在T2 附近的冷却速率dT。 dt 铜盘在稳态传热时,通过其下表面和侧面对外放热;而移去加热盘和橡胶板后是通过上下表面以及侧面放热。物体的散热速率应与它们的散热面积成正比, dQ R R 2h dQ (3) dt R 2R 2h dt () 式中dQ为盘自由散热速率。而对于温度均匀的物体,有 dt

相关主题