搜档网
当前位置:搜档网 › 化工热力学复习总结材料

化工热力学复习总结材料

化工热力学复习总结材料
化工热力学复习总结材料

第一章、绪论

一、化工热力学的目的和任务

通过一定的理论方法,从容易测量的性质推测难测量的性质、从有限的实验数据获得更系统的物性的信息具有重要的理论和实际意义。

化工热力学就是运用经典热力学的原理,结合反映系统特征的模型,解决工业过程(特别是化工过程)中热力学性质的计算和预测、相平衡和化学平衡计算、能量的有效利用等实际问题。

二、1-2化工热力学与物理化学的关系

化工热力学与物理化学关系密切,物理化学的热力学部分已经介绍了经典热力学的基本原理和理想系统(如理想气体和理想溶液等)的模型,化工热力学将在此基础上,将重点转移到更接近实际的系统。

三、热力学性质计算的一般方法

(1)基于相律分析系统的独立变量和从属变量;

(2)由经典热力学原理得到普遍化关系式。特别是将热力学性质与能容易测量的p、V、T及组成性质和理想气体等压热容联系起来;

(3)引入表达系统特性的模型,如状态方程或活度系数;

(4)数学求解。

第2章流体的P-V-T关系

1.掌握状态方程式和用三参数对应态原理计算PVT性质的方法。

2.了解偏心因子的概念,掌握有关图表及计算方法。

1.状态方程:在题意要求时使用该法。

①范德华方程:常用于公式证明和推导中。

②R—K 方程:

③维里方程:

2.普遍化法:使用条件:在不清楚用何种状态方程的情况下使用。

三参数法:

①普遍化压缩因子法

②普遍化第二维里系数法

3、Redlich-Kwong(RK)方程

3、Soave(SRK)方程

4、Peng-Robinson (PR )方程

()

22

a 0.45724c r c

R T T P α=

0.0778

c c

RT b P =

§2-5高次型状态方程

5、virial 方程 virial 方程分为密度

型:

和压力型:

第3章 纯物质的热力学性质

1、热力学性质间的关系

dU TdS pdV =-

H=U+PV dH TdS Vdp =+

A=U-TS dA SdT pdV =-- G=H-TS dG SdT Vdp =-+ Maxwell 关系式

S V

T P V S ??????

=- ? ??????? S P

T V P S ??????

= ? ??????? V T P S T V ??????= ? ??????? P T

V S T P ??????

=- ? ??????? 转换公式: 1Z X Y

X Y Z Y Z X ???????

??=- ? ?

??????????

3.2计算H ?和S ?的方法

1.状态方程法: P P V dH C dT V T dP T ??

???=+- ????????

P P

C V dS dT dP T T ???=- ???? 2.剩余性质法:

①普遍化压缩因子图

()()0

1

R R R T

C

C

C

H H H RT RT RT ω

=+

()()0

1

R R R T

S S S

R

R

R

ω

=

+

②普遍化的第二维里系数方法

0101R T r r r C r r H dB dB P B T B T RT dT dT ω????=-+-?? ????

? 01R T r r r S dB dB P R dT dT ω??=-+ ???

0 1.60.4220.083r B T =-

1

4.2

0.1720.139r B T =-导出:

0 2.60.675r r dB dT T = 1 5.20.772r r

dB dT T = 第6章 化工过程能量分析

热力学第一定律

一、功 W

p dV

δ=-外

不可逆过程: 2112W P dV =-?外体

可逆过程: 2

1

V rev V W p dV =-

?

体体

规定:体系吸热为正,放热为负;对外做功为负,接受功为正。

二、封闭系统的能量平衡式:

U Q W ?=+ dU q w δδ=+

适用于可逆与不可逆过程。 三、稳定流动过程的能量平衡式:

22S C C

u g Z

H Q W g g ???++=+ (1J Kg -?)

(一)稳流过程能量平衡式的简化形式及其应用: 气体通过如孔板、阀门、多孔塞等节流装置时:

0m h ?=(即等焓过程)

(a)压缩机和膨胀机(透平)鼓风机、泵等

0Q =, W H m h s

=?=? 适用于可逆,不可逆过程。

(b )气体通过如孔板、阀门、多孔塞等节流装置时:

0m h ?=(即等焓过程)

(c)无轴功,但有热交换的设备:锅炉、热交换器、塔等。

0w s

= H Q ?= (二)轴功的计算方法: (1)可逆轴功()

S R W

: 2()1

P S R P

w

vdP =? 实际轴功与可逆轴功之比称为机械效率m η。

对于产功设备而言:()

S S R W W p ,()

S m

S R W W η

=

对于耗功设备而言:()S

S R W W f ,()

S R m S

W W η=

四、 气体的基本热力过程 封闭体系: U q w ?=+ 微小过程: dU q w δδ=+

(一)等容过程:

0w P dV δ=-=外外 ∴ V dU q δ= 即 V V U q ?=

(二)等压过程: 可逆过程:R

w pdv p v =-=-??

不可逆过程(恒外压): W P V =-?外来计算功。

(三)等温过程: T

dU

q P dV δ=+外体

(四)绝热过程:

Q 0Q = ∴ dU W P dV δ==-外体

热力学第二定律 一、熵与熵增原理

熵的定义式:R

Q S T

δ?=?

适用于任何体系和环境。 封闭体系熵增原理公式为:0dS dS sys surr

+≥

上式中各种熵变的计算方法:

(一)为封闭体系的熵变: ①可逆过程:

结论:无论是由已知条件得知,还是由热力学第一定律得出的Q 就为R Q ,可以直接代入计算。

②不可逆过程:设计一个初终态与不可逆过程的初终态相同的可逆过程,通

过对这个可逆过程进行sys S ?的计算,就可得出结果。 (二)dS

surr

为外界环境的熵变:

环境可分为热源和功源 即:surr

dS dS dS =+源热功源

功源;0dS =功源 热源: sys surr

surr

surr

surr

Q Q dS dS T T δδ-==

=

热源(等温可逆过程)

6.2.2熵产生与熵平衡 一、封闭系统的熵平衡

S g ? >0 不可逆过程

S g ? =0 可逆过程

可判断过程进行的方向

S g ?<0 不可能过程

Q

sys

g sys f sys surr

Q S S S S T δ?=?-?=?-?

sys dS ——封闭体系的状态引起的熵变。

g dS ——因过程不同产生的。

f dS ——封闭体系与外界因有热交流引起的。

求g S ?的一般步骤: ①确定体系所用的熵平衡式。

②确定初终态,然后按照可逆过程来计算sys S ?。

a )2

1R sys sys

Q S T δ??

?= ???? b )P P

C V dS dT dP T T ???=- ???? c )

22

2111

ln ln ig R R sys pms

T P S C

R S S T P ?=-+-

③根据不同的条件确定sys Q δ,从而得出 surr S ? 即 f S -?。 ④根据 0

Q

sys

g sys surr sys f sys surr

Q S S S S S S T δ?=?+?=?-?=?-?

求g S ?。

二、 稳定流动系统的熵平衡

()

()

S m s m s S j j i i g f j i in out

?=--?∑∑

⑴绝热过程:0Q

sys δ=Q 0S f

∴?=

()

()

S m s m s

j j i i g j i

in out ∴?=-∑∑ (2)可逆绝热过程(0S

g

?= ): ()

()

m s m s

j j i i j

i

in out =∑∑ 三、理想功、损失功与热力学效率

1理想功

对稳定流动过程:2

12

id W T S H u g z -=?+?-?-? 若忽略动能和势能变化,则 0id W H T S =?-? 2 损失功

对稳定流动过程,损失功W L 表示为

L ac id W W W =- 0L W T S Q =?- 0L g W T S =? 3热力学效率 做功过程:ad t id W W η=

;耗功过程:id

t ad

W W η=

四、.有效能

1、稳流过程有效能计算

0000()()xph id E W T S H H H T S S =-=?-?=---

2、有效能效率

()1()()out

x l

Ex in in

x x E E E E η==-∑∑∑

1122m m m

p V p V pV ==1122k k k

p V p V pV ==()

1

211121,ln ln

p p

V p p p RT w R s ==等温

()

1

2,1111

k k s R p k

w RT k p -??????=- ???-??????绝热

()

1

2,1111

m m s R p m

w RT m p -??????

=- ???-??????

多变

p p

H

J C V

T V T p T -??? ????=???? ????=μp

p

S S C

T V T p T ??? ????=???? ????=μ,1L S C H L H H T W Q Q Q T ??

=-=- ??

?

,1S C L

C H H

W T Q T η==-S

w q h +=?412

100h h h h q w Q W S S --=-=-=η第七章 压缩、膨涨、动力循环与制冷循环

一、气体的压缩

1、等温过程方程式

绝热过程方程式

实际(多变)过程方程

2、若为可逆过程,按照“得功为正(或耗功为正)”的规定,其轴功可按式(7-1)计算()22

1

1

1

,d d J s p p s R

t p p W V p n V p

-==???

二、气体的膨胀

1、特点:过程等焓 由热力学第一定律:ΔH = 0

由于压力变化而引起的温度变化称为节流效应效应

理想气体 :

真实气体: μJ ﹥0 节流后温度降低,制冷。μJ = 0 温度不变。μJ ﹤0 节流后温度升高,制热

等熵膨胀时,压力的微小变化所引起的

温度变化,称为微分等熵膨胀效应系数,以 μs 表示

三、蒸汽动力循环

蒸汽动力装置主要由四种设备组成:(1)称为锅炉的蒸汽发生器;(2)蒸汽轮机;(3)冷凝器;(4)水泵。

1、Carnot 循环对外作(最大)功W s,c

效率

2、Rankine 循环及其热效率

对于单位质量的流体 热效率 热效率越高,汽耗率越低,表明循环越完善

1m k <<1122p V p V pV

==0=???? ????=H J p T μ

2

12

12121R S,)('

;

h

h h h H H H H W W S S

--=--=--=不可逆η4121414321'

'

)()(h h h h H H H H H H --=

--+-=ηS S Q w q W L L

=

==净功低温下吸收的热ε1

21

S C T T T W Q L -==

ε41h h q L -=L L q Q m =

)

(1221h h m mw H W S S -==?=→S

T mw P =1) 等熵效率ηS :膨胀作功过程,不可逆绝热过程的做功量与可逆绝热过程的做 功量之比

2) 实际Rankine 循环的热效率:

四、制冷系统

1、Carnot 制冷循环:逆向卡诺循环:工质吸热温度小于工质放热温度;此即 Carnot 制冷循环。由两个等温过程与两个等熵过程组成。

制冷效能系数

逆向Carnot 循环的制冷效能系数 2、蒸汽压缩制冷循环的基本计算 1)单位制冷量 2) 制冷剂每小时的循环量

3) 冷凝器的放热量:冷凝器的放热量包括显热和潜热量部分

24H Q H →=?()()3243H H H H =-+-4242()

H H m h h =-=-

4) 压缩机消耗的功

压缩机消耗的功率

5) 制冷效能系数ε 制冷装置提供的单位制冷量与压缩单位质量制冷剂所消耗的功量之比1414

2121

L S Q H H h h W H H h h ε--===-- 3、热泵

3600S

W =

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

化工热力学复习题(附答案)

化工热力学复习题 一、选择题 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( C ) A. 饱和蒸汽 超临界流体 过热蒸汽 2. 纯物质的第二virial 系数B ( A ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 3. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( B ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 4. 关于偏离函数M R ,理想性质M *,下列公式正确的是( C ) " A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 5. 下面的说法中不正确的是 ( B ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。 (D )强度性质无偏摩尔量 。 6. 关于逸度的下列说法中不正确的是 ( D ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 7. 二元溶液,T, P 一定时,Gibbs —Duhem 方程的正确形式是 ( C ). a. X 1dlnγ1/dX 1+ X 2dlnγ2/dX 2 = 0 b. X 1dlnγ1/dX 2+ X 2 dlnγ2/dX 1 = 0 ` c. X 1dlnγ1/dX 1+ X 2dlnγ2/dX 1 = 0 d. X 1dlnγ1/dX 1– X 2 dlnγ2/dX 1 = 0 8. 关于化学势的下列说法中不正确的是( A ) A. 系统的偏摩尔量就是化学势 B. 化学势是系统的强度性质 C. 系统中的任一物质都有化学势 D. 化学势大小决定物质迁移的方向 9.关于活度和活度系数的下列说法中不正确的是 ( E ) (A )活度是相对逸度,校正浓度,有效浓度;(B) 理想溶液活度等于其浓度。 (C )活度系数表示实际溶液与理想溶液的偏差。(D )任何纯物质的活度均为1。 (E )r i 是G E /RT 的偏摩尔量。 10.等温等压下,在A 和B 组成的均相体系中,若A 的偏摩尔体积随浓度的改变而增加,则B 的偏摩尔体积将(B ) A. 增加 B. 减小 C. 不变 D. 不一定 " 11.下列各式中,化学位的定义式是 ( A ) 12.混合物中组分i 的逸度的完整定义式是( A )。 A. d G ___i =RTdln f ^i , 0lim →p [f ^i /(Y i P)]=1 B. d G ___i =RTdln f ^i , 0lim →p [f ^ i /P]=1 C. dG i =RTdln f ^i , 0lim →p f i =1 ; D. d G ___i =RTdln f ^i , 0lim →p f ^ i =1 j j j j n nS T i i n T P i i n nS nV i i n nS P i i n nU d n nA c n nG b n nH a ,,,,,,,,])([.])([.])([.])([.??≡??≡??≡??≡μμμμ

化工热力学要点纲要

第一章绪论 (1)明确化工热力学的主要任务是应用经典热力学原理,推算物质的平衡性质,从而解决实际问题,所以物性计算是化工热力学的主要任务。 (2)掌握热力学性质计算的一般方法 (3)热力学性质计算与系统有关。大家必须明确不同系统的热力学性质计算与其热力学原理的对应关系,这一点对于理解本课程的框架结构十分重要。 第二章流体的P-V-T关系 (1)应该理解状态方程不仅可以计算流体的p-V-T性质,而且在推算热力学性质中状态方程是系统特征的重要模型。 (2)熟悉纯物质的P-V-T相图及其相图上的重要概念,如三相点、临界点、汽化线、熔化线、升华线、等温线、等压线等容线、单相区、两相共存区、超临界流 体区等。能在p-v图和p-T图中定性表达出有关热力学过程和热力学循环。 (3)掌握由纯物质的临界点的数学特征约束状态方程常数的方法。 (4)理解以p为显函数和以V为显函数的状态方程的形式,以及它们在性质计算中的区别。 (5)能借助于软件用PR和SRK方程进行p-V-T性质计算,清楚计算时所需要输入的物性常数及其来源。对于均相混合物性质的计算,需要应用混合法则,了解 相互作用参数的含义和取值。 (6)理解对应态原理的概念,掌握用图表和三参数对应态原理计算物性的方法,了解偏心因子对应态原理。 (7)能够通过查寻有关手册,估算蒸汽压、饱和气液相摩尔体积、汽化焓等物性,清楚它们之间的关系。 第三章流体热力学性质间的关系 (1)均相封闭系统的热力学原理给出了热力学性质之间的普遍化依赖关系,结合表达系统特征的模型就能获得不同热力学性质之间的具体表达式。在物性推算中 应该明确需要给定的独立变量,需要计算的从属变量,以及从属变量与独立变 量之间的关系式。另外,还必须输入有关模型参数,结合一定的数学方法,才 能完成物性推算。 (2)清楚剩余性质的含义,能用剩余性质和理性气体热容表达状态函数的变化。能够用给定的状态方程推导出剩余性质表达式。 (3)掌握状态方程计算纯物质饱和热力学性质饿原理,这是属于非均相系统性质计算,在计算时需要将状态方程与相平衡准则结合起来。 (4)掌握纯物质的压焓图和温熵图的特征以及相图上的重要的点、线、面。运用压焓图和温熵图定性表达热力学状态、过程和定量计算热力学性质。了解压焓图、 温熵图以及p-V-T相图之间的相互对应关系。 (5)熟练掌握并能运用水的性质表。 (6)了解用热力学性质解析计算方法来制作热力学性质图、表的基本原理。 第四章化工过程的能量分析 (1)稳定流动系统的热力学第一定律与封闭系统是不一样的,常用焓值进行热量衡算,若使用热力学性质图,常使用温熵图和压焓图。 (2)能量的可利用程度或品质高低由有效能来衡量。通过有效能来计算过程的能量

第一章 化学热力学基础 公式总结

第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V 2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程 .定温可逆时: Wmax=-Wmin= 4.焓定义式 H = U + PV 在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U 在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H 5.摩尔热容 Cm ( J·K-1·mol-1 ): 定容热容 CV (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程 适用对象 : 任意的气体、液体、固体物质 ) 定压热容 Cp ?=?2 1 ,T T m p dT nC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程 适用对象 : 任意的气体、液体、固体物质 ) 单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4R 1 221ln ln P P nRT V V nRT =n C C m = ?=?2 1 ,T T m V dT nC U

Cp,m = Cv,m + R 6.理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结 7.定义:△fHm θ(kJ·mol-1)-- 标准摩尔生成焓 △H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变; △fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。 8.热效应的计算 由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程 △rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1) 10.热机的效率为 对于卡诺热机 12 11Q Q Q Q W R +=- =η dT C p T T ? ?2 1 1 2 1211Q Q Q Q Q Q W +=+=-=η121T T T -=

化工热力学习题集(附标准答案)

化工热力学习题集(附标准答案)

————————————————————————————————作者:————————————————————————————————日期:

模拟题一 一.单项选择题(每题1分,共20分) 本大题解答(用A 或B 或C 或D )请填入下表: 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( A ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( B ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( A ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( A ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( B ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( A ) A. 0.7lg()1 s r Tr P ω==-- B. 0.8lg()1 s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( B ) A. 1x y z Z Z x x y y ???? ?????=- ? ? ?????????? B. 1y x Z Z x y x y Z ????????? =- ? ? ?????????? C. 1y x Z Z x y x y Z ????????? = ? ? ?????????? D. 1y Z x Z y y x x Z ????????? =- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( C ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( B ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。(D )强度性质无偏摩尔量 。 12. 关于逸度的下列说法中不正确的是 ( D ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体 的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 14 15 16 17 18 19 20 答案

化工热力学教学大纲

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 化工热力学是化学工程的重要分支和基础学科,是热力学基本定律应用于化学工程领域中而形成的一门学科。本课程主要研究化工过程中各种形式的能量之间相互转化的规律及过程趋近平衡的极限条件,主要涉及能量及组成的计算。能量计算包括功能互换,也包括物理热和化学热的计算,前者包括温度、压力对焓的影响及各种相变热,后者主要是反应热。组成计算包括化学平衡和相平衡。化学平衡包括平衡常数及平衡组成的计算,并确定反应方向;相平衡包括在不同温度、压力条件下各相组成的确定。化工热力学是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程,是化学工程与工艺专业的专业基础课程。 2.设计思路: 化工热力学应用热力学基本定律研究化工过程中能量的有效利用、各种热力学过程、相平衡和化学平衡,还研究与上述内容有关的基础数据,如物质的p-V-T关系和热化学数据。 本课程主要包括四部分的内容,各部分的内容和基本要求如下: 第一部分,流体的p-V-T关系,要求掌握各种p-V-T关系使用范围,会应用各种p-V-T关系进行基本的p-V-T 计算。 第二部分,纯物质(流体)的热力学性质,要求掌握应用p-V-T关系求解纯物质的热力学性质的方法。 第三部分,热力学基本定律及其应用,要求掌握化工过程能量分析的方法,了解和掌握化工热力学原理的应用(压缩、膨胀、动力循环与制冷循环等)。 第四部分,均相混合物热力学性质,掌握利用混合规则求解均相混合物热力学性质的方法。 第五部分,相平衡,掌握气液相平衡的计算方法。 3. 课程与其他课程的关系: 本课程适宜安排在修完高等数学、大学物理、物理化学(上)等有关基础课课程之后开设,内容上注意与物理化学的衔接。 二、课程目标 通过本课程的学习,学生将系统地掌握运用化工热力学的基本概念、理论和计算方法,分析和解决化工生产中有关能量转换和有效利用、相平衡和化学变化的实际问题的能力,能利用化工热力学的方法对化工中涉及的物

化工热力学公式总结

化工热力学(第三版)公式知识总结 vdW 方程 p =RT V?b ?a V 2 RK 方程 p = RT V?b ? a √T ?V(V+b) P R方程 P = RT V?b ? a V (V+b )+b(V?b) 对应态原理 P r = 3 8T r V r ?13??3 V r 2 偏心因子 ω=?1?lgP r s ︱ T r =0.7 普遍化vir ial 方程BP c RT c = B (0)+ωB (1) d U=Td S-p dV dH =Td S+Vdp dA=-Sd T-pdV dG=-Sd T+V dp dZ=MdX+Nd Y (?N ?X )Y =?(?M ?Y )X (?T ?V ) S =?(?P ?S ) V (?S ?P ) T =?(?V ?T ) p 偏离函数定义 M ?M 0ig =M (T,p )?M 0ig (T,p 0) 随状态变化 M (T 2,p 2)?M (T 1,p 1)=[M (T 2,p 2)?M ig (T 2,p 0)]?[M (T 1,p 1)?M ig (T 1,p 0)]+ [M ig (T 2,p 0) ? M ig (T 1,p 0)] G?G 0ig RT ?ln P P 0 = 1RT ∫(V ?RT P )P 0dp 逸度定义 G (T,P )?G 0ig (T,P 0)=RTln f P 0 φ=f P lnφ=ln f p =1RT ∫(V ? RT P )P 0 dp (?lnf ?p )=V RT 饱和蒸汽和液体性质关系M =M sl (1?x )+M sv x 偏摩尔性质 M i ???=(?M t ?n i ) T,p,{n } ≠i 偏摩尔性质表示摩尔性质 M =∑n i n M i ???N i =∑x i M i ???N i 摩尔性质与摩尔性质关系M i ???=M +(1?x)dM dx i M 2????=M ?x 1dM dx i Gi bbs -Duhem 方程在T,p 恒定(∑x i dM i ???N i=1) T,p =0 Leiwis-randa ll 规则 f ?i is =f i X i f ?i is ? =H i,Solvent X i 活度系数 γi =f i ?f i X i lnγi ?=lnγi ?lnγi ∞ 超额性质 G E RT =∑X i lnγi N i ?H =H E =?RT 2∑X i ( ?lnγi ?T ) p,{x }N i

化工热力学复习题及答案

第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状 态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0, 0=U ?,0=T ?,0=H ?,故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等, 初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态压力相 等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 6. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 3. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。 4. 1kJ=1000J=238.10cal=9869.2atm cm 3=10000bar cm 3=1000Pa m 3。 5. 普适气体常数R =8.314MPa cm 3 mol -1 K -1=83.14bar cm 3 mol -1 K -1=8.314 J mol -1 K -1 =1.980cal mol -1 K -1。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临 界流体。) 3. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。(对。则纯物质的P -V 相图上的饱和汽体系和饱和液体系曲线可知。) 4. 纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自 由度是零,体系的状态已经确定。)

化工热力学复习总结教学提纲

化工热力学复习总结

第一章、绪论 一、化工热力学的目的和任务 通过一定的理论方法,从容易测量的性质推测难测量的性质、从有限的实验数据获得更系统的物性的信息具有重要的理论和实际意义。 化工热力学就是运用经典热力学的原理,结合反映系统特征的模型,解决工业过程(特别是化工过程)中热力学性质的计算和预测、相平衡和化学平衡计算、能量的有效利用等实际问题。 二、1-2化工热力学与物理化学的关系 化工热力学与物理化学关系密切,物理化学的热力学部分已经介绍了经典热力学的基本原理和理想系统(如理想气体和理想溶液等)的模型,化工热力学将在此基础上,将重点转移到更接近实际的系统。 三、热力学性质计算的一般方法 (1)基于相律分析系统的独立变量和从属变量; (2)由经典热力学原理得到普遍化关系式。特别是将热力学性质与能容易测量的p、V、T及组成性质和理想气体等压热容联系起来; (3)引入表达系统特性的模型,如状态方程或活度系数; (4)数学求解。 第2章流体的P-V-T关系 1.掌握状态方程式和用三参数对应态原理计算PVT性质的方法。 2.了解偏心因子的概念,掌握有关图表及计算方法。 1.状态方程:在题意要求时使用该法。 ①范德华方程:常用于公式证明和推导中。

②R—K 方程: ③维里方程: 2.普遍化法:使用条件:在不清楚用何种状态方程的情况下使用。 三参数法: ①普遍化压缩因子法 ②普遍化第二维里系数法 3、Redlich-Kwong(RK)方程 3、Soave(SRK)方程 4、Peng-Robinson(PR)方程 () 22 a0.45724c r c R T T P α =0.0778c c RT b P = §2-5高次型状态方程 5、virial方程 virial方程分为密度型: 和压力型: 第3章纯物质的热力学性质 1、热力学性质间的关系

化工热力学公式

第一章绪论 热力学是以热力学第一、第二定律及其他一些基本概 念理论为基础,研究能量、能量转换以及与转换有关的物 质性质相互之间关系的科学。有工程热力学、化学热力学、 化工热力学等重要分支。 化工热力学是将热力学原理应用于化学工程技术领 域。化工热力学主要任务是以热力学第一、第二定律为基 础,研究化工过程中各种能量的相互转化及其有效利用, 研究各种物理和化学变化过程达到平衡的理论极限、条件 和状态。 热力学的研究方法,原则上可采用宏观研究方法和微 观研究方法。以宏观方法研究平衡态体系的热力学称为经 典热力学。 体系与环境:隔离体系,封闭体系,敞开体系 第二章流体的P-V-T关系 在临界点C : 临界点是汽液两相共存的最高温度和最高压力,即临 界温度Tc,临界压力Pc。 纯流体的状态方程(EOS) 是描述流体P-V-T性质的 关系式。由相律可知,对纯流体有: f( P, T, V ) = 0 混合物的状态方程中还包括混合物的组成(通常是摩 尔分数)。 状态方程的应用 (1)用一个状态方程即可精确地代表相当广泛范围内的 P、V、T实验数据,借此可精确地计算所需的P、V、T数 据。 (2)用状态方程可计算不能直接从实验测定的其它热力 学性质。 (3)用状态方程可进行相平衡和化学反应平衡计算。 压缩因子(Z)即:在一定P,T下真实气体的比容与相 同P,T下理想气体的比容的比值. 理想气体方程的应用(1 )在较低压力和较高温度下可用 理想气体方程进行计算。(2 )为真实气体状态方程计算 提供初始值。(3 )判断真实气体状态方程的极限情况的 正确程度,当或者时,任何的状态方程都还原为理想气体 方程。 维里方程式 Virial系数的获取 ( 1 ) 由统计力学进行理论计算目前应用很少 ( 2 ) 由实验测定或者由文献查得精度较高 ( 3 ) 用普遍化关联式计算方便,但精度不如实验测定的 数据 两项维里方程维里方程式Z=PV/RT=1+ B/P (1)用于气相PVT性质计算,对液相不能使用; (2)T2用普遍化B法,直接计算 Vr<2用普遍化Z法,迭代计算 第三章纯流体的热力学性质 四大微分方程: dU=TdS-pdV(3-1) dH=TdS+Vdp(3-2) dA=-SdT-pdV(3-3) dG=-SdT+Vdp(3-4) 斜率 曲率

化工热力学 例题 与解答(12)

第4章 非均相封闭体系热力学 一、是否题 1. 偏摩尔体积的定义可表示为{}{}i i x P T i n P T i i x V n nV V ≠≠? ??? ????=???? ???=,,,,?。 2. 在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。 3. 理想气体混合物就是一种理想溶液。 4. 对于理想溶液,所有的混合过程性质变化均为零。 5. 对于理想溶液所有的超额性质均为零。 6. 理想溶液中所有组分的活度系数为零。 7. 体系混合过程的性质变化与该体系相应的超额性质是相同的。 8. 对于理想溶液的某一容量性质M ,则__ i i M M =。 9. 理想气体有f=P ,而理想溶液有i i ?? =?。 10. 温度和压力相同的两种理想气体混合后,则温度和压力不变,总体积为原来两气体体积 之和,总热力学能为原两气体热力学能之和,总熵为原来两气体熵之和。 11. 温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、热力学 能、吉氏函数的值不变。 12. 因为G E (或活度系数)模型是温度和组成的函数,故理论上i γ与压力无关。 13. 在常温、常压下,将10cm 3的液体水与20 cm 3的液体甲醇混合后,其总体积为 30 cm 3。 14. 纯流体的汽液平衡准则为f v =f l 。

15. 混合物体系达到汽液平衡时,总是有l i v i l v l i v i f f f f f f ===,,??。 16. 均相混合物的总性质与纯组分性质之间的关系总是有 ∑= i i t M n M 。 17. 对于二元混合物体系,当在某浓度范围内组分2符合Henry 规则,则在相同的浓度范围内 组分1符合Lewis-Randall 规则。 18. 二元混合物,当01→x 时,1*1→γ,∞→11γγ,12→γ,∞=2*2/1γγ。 19. 理想溶液一定符合Lewis-Randall 规则和Henry 规则。 20. 符合Lewis-Randall 规则或Henry 规则的溶液一定是理想溶液。 21. 等温、等压下的N 元混合物的Gibbs-Duhem 方程的形式之一是 0ln 0 =??? ? ??∑ =i i N i i dx d x γ。(错。0ln 0 =??? ? ??∑ =j i N i i dx d x γ,N j ~1∈) 等温、等压下的二元混合物的Gibbs-Duhem 方程也可表示成0ln ln * 2 211=+γγd x d x 。 22. 二元溶液的Gibbs-Duhem 方程可以表示成 () () ?? ???????=-==? ? ? ======)1() 0()1()0(210 121111111ln x P x P E x T x T E x x T dP RT V P dT RT H dx 常数常数γγ 23. 下列方程式是成立的:(a )111 1ln ?ln f f RT G G -=-;(b) 1111ln ln γ+=-x RT G G l l ;(c)v l v l f f RT G G 1111?ln ?ln -=-;(d)???? ??=→1111?lim 1x f f x ;(e)??? ? ??=→110,1?lim 1x f H x Solvent 。 24. 因为E H H =?,所以E G G =?。 25. 二元溶液的Henry 常数只与T 、P 有关,而与组成无关,而多元溶液的Henry 常数则与T 、 P 、组成都有关。

化工热力学B(答案)

2015 至 2016 学年第 1 学期 化工热力学 考试试卷B (答案与评分标准) 考试方式: 闭卷笔试 本试卷考试分数占学生总评成绩的 70 % 一、选择题(本题20分,每题2分) 二、判断题(本题10分,每题1分) 三、填空题(本题10分,每空1分) 1. 8.314,83.14,8.314,1.980 2. 0.243 3. Henry 定律, Lewis-Randall 规则 4. 0.587,0.717 5. 0.334 评分标准:每空1分,除了数字必须完全和以上参考答案相同以外,只要和以上参考答案相近的叙述都可以视为正确答案。 四、计算题(本题50分,每题10分) 1. 一钢瓶的安全工作压力10MPa ,容积为7810cm 3,若装入1000g 的丙烷,且在253.2℃(526.35K )下工作,若钢瓶问是否有危险? (注:以PR 方程计算,PR 方程为:) ()(b V b b V V a b V RT p -++--= ,方程的参数a = 793906.842 6 mol cm MPa ??-;b = 56.293 1 cm mol -?。) 解:1000g 丙烷的物质的量为:100044/g n g mol = (2分) 22.73mol = (1分) 3 781022.73cm V mol -= (2分) 31343.60cm mol --=? (1分)

根据PR 方程,253.2℃(526.35K )下,7810cm 3的钢瓶中装入1000g 的丙烷,其压力应该为: ()()8.314526.35793906.84 343.6056.29343.60(343.6056.29)56.29(343.6056.29)4376.07793906.84793906.8415.23287.31343.60399.8956.29287.31137402.2016172.68RT a p V b V V b b V b = - -++-?=- -?++?-=-=-?+?+ (2分) 10.0610=> (1分) 所以不能安全工作。 (1分) 评分标准:公式和计算方法对但数值略有差错的不扣分;直接代入数据,不写公式且计算正确也得分;仅仅写出公式并罗列数据,但没有计算结果或结果不准确的酌情给分。 2. 三元混合物的各组分摩尔分数分别为0.25,0.3和0.45,在6.585MPa 和348K 下的各组分的逸度系数分别是0.72,0.65和0.91,求混合物的逸度。 解: ?ln ln i i y φφ= ∑ (2分) 0.25ln 0.720.3ln 0.650.45ln 0.910.254=++=- (2分) ()ln ln f P φ= (2分) ln 6.585(0.254) 1.631=+-= (2分) )MPa (109.5=f (2分) 评分标准:公式和计算方法对但数值略有差错的不扣分;直接代入数据,不写公式且计算正确也得分;仅仅写出公式并罗列数据,但没有计算结果或结果不准确的酌情给分。 3. 设已知乙醇(1)-甲苯(2)二元系统在某一气液平衡状态下的实测数据为t = 45℃,p =24.4 kPa ,x 1=0.300,y 1=0.634,并已知组分1和组分2在45℃下的饱和蒸气压为kPa p s 06.231=, kPa p s 05.102=。试采用低压下气液平衡所常用的假设,求: (1) 液相活度系数1γ和2γ; (2) 液相的G E /RT ; 与理想溶液想比,该溶液具有正偏差还是负偏差? 解:(1)由1111γx p py s =,得 (2分)

化工热力学习题集(附答案)

模拟题一 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( c ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( a ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( b ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( a ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( a ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( a ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( ) A. 0.7lg()1s r Tr P ω==-- B. 0.8lg()1s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。

化工热力学教学大纲

《化工热力学》教学大纲 一、课程基本信息 课程中文名称:化工热力学 课程英文名称:Chemical Engineering Thermodynamics 课程编号:06131050 课程类型:学科基础课 总学时:54 学分:3 适用专业:化学工程与工艺 先修课程:物理化学、化工原理 开课院系:化工与制药学院 二、课程的性质与任务 化工热力学是化学工程学的一个重要分支,是化工类专业必修的专业基础课程。它是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程。该门课系统地介绍了将热力学原理应用于化学工程技术领域的研究方法。它以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,深刻阐述了各种物理和化学变化过程达到平衡的理论极限、条件和状态。 设置本课程,为了使考生能够掌握化工热力学的基本概念、理论和专业知识;能利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;能利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;并学会利用化工热力学的基本理论对化工中能量进行分析等。 三、课程教学基本要求 通过本课程学习,要求 1.正确理解化工热力学的有关基本概念和理论; 2.理解各个概念之间的联系和应用; 3.掌握化工热力学的基本计算方法; 4.能理论联系实际,灵活分析和解决实际化工生产和设计中的有关问题。 四、理论教学内容和基本要求

教学内容 第一章绪论 1.1 热力学发展简史 1.2 化工热力学的主要研究内容 1.3 化工热力学的研究方法及其发展1.4 化工热力学在化工中的重要性第二章流体的p-V-T关系 2.1 纯物质的p –V –T关系 2.2 气体的状态方程 2.2.1理想气体状态 2.2.2 维里方程 2.2.3 立方型状态方程 2.2.4 多参数状态方程 2.3 对应态原理及其应用 2.3.1 对比态原理 2.3.2 三参数对应态原理 2.3.3 普遍化状态方程 2.4 真实气体混合物的p-V-T关系2.4.1 混合规则 2.4.2气体混合物的虚拟临界性质2.4.2 气体混合的第二维里系数 2.4.3 混合物的状态方程 2.5液体的p –V -T关系 2.5.1 饱和液体体积 2.5.2 压缩液体(过冷液体)体积2.5.3 液体混合物的p –V -T关系 第三章纯流体的热力学性质 3.1 热力学性质间的关系 3.1.1 热力学基本方程 3.1.2 Maxwell关系式 3.2焓变与熵变的计算

化学热力学知识点梳理.

第一章化学反应的方向和限度 第二节化学反应的程度和化学平衡 一可逆反应和化学平衡 1、可逆反应 在同一条件下,既能向一个方向进行,又能向相反方向进行的反应,称为可逆反应。插入视频文件:可逆反应与化学平衡 .swf 严格地说, 可以认为所有的化学反应都具有一定的可逆性, 从微观的角度来看, 反应物分子可以发生有效碰撞, 结合成产物分子;同时, 产物分子也可以发生碰撞,再结合成反应物分子:反应物?产物。 当反应进行到某一程度,恰好逆正υυ=,反应物和产物的浓度都不再随时间而改变。那么,可逆反应的这种状态,就称为化学平衡。 2、化学平衡 正逆反应速率相等时,反应体系所处的状态,称为化学平衡状态。 特点:(1 逆正υυ= (2动态平衡; (3有条件的、相对的平衡(——条件改变,平衡改变。 大量的实验表明:在一定条件下, 处于化学平衡状态的体系, 各物质浓度之间遵守一定的定量关系。这就是平衡常数关系式。 二平衡常数 1、平衡常数

可逆反应在一定温度下达到平衡时,产物浓度的系数次方的乘积与反应物浓度的系数次方的乘积之比是一个常数,这个常数就叫做平衡常数。 :平衡浓度 浓度平衡常数— c K c c c c K b a d g c ( (B(A(D(GdD gG bB aA c ??=+=+ 如果是气体反应,可以用平衡时各组分气体的分压来代替浓度,这时,平衡常数叫做压力平衡常数: (B (A(D(Gp b a d g p p p p K ??= (p :平衡分压★注意:K c 、 K p 一般都有单位,但习惯上不写; K c 一般不等于 K p 。 为了统一和计算方便,规定在平衡常数的表达式中,凡是溶液中的浓度都除以标准态浓度:3θdm mol 1-?=c , θc ——相对浓度 ;若是气体分压,都除以标准态压力:Pa 101325θ=p , θp p ——相对分压 ,这样用相对浓度或相对分压表示的平衡常数,叫 标准平衡常数。 2、标准平衡常数一般如果不作说明,我们提到的平衡常数都是指标准平衡常数。 ★注意 :(1平衡浓度、平衡分压 (2 对有纯固体或纯液体参加的反应, 纯固体或纯液体的浓度视为常数 1, 不 出现在平衡常数的表达式中 (3 溶液中的组分一定用相对浓度θc 表示; 气相一定要用相对分压θp p 表

化工热力学复习题及答案

第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状 态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0,0=U ?,0=T ?,0=H ?,故体系将在T ,2V ,状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等, 初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态压力相 等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 6. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. : 3. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 4. 1MPa=106Pa=10bar==。 5. 1kJ=1000J== cm 3=10000bar cm 3=1000Pa m 3。 6. 普适气体常数R = cm 3 mol -1 K -1= cm 3 mol -1 K -1= J mol -1 K -1 = mol -1 K -1。 第2章P-V-T关系和状态方程 一、是否题 1. & 2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 3. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临界流体。) 4. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高 而减小。(对。则纯物质的P -V 相图上的饱和汽体系和饱和液体系曲线可知。)

相关主题