搜档网
当前位置:搜档网 › 智能压力变送器设计

智能压力变送器设计

智能压力变送器设计
智能压力变送器设计

摘要

传感器在工业生产中起着重要的作用,随着工业的发展,人们对于传感器的精度和用户体验等方面有着越来越高的要求,相应的仪器仪表在工业生产中也有着越来越重要的地位。压力,作为工业生产过程中重要参数之一,实现对其精确的检测和控制是保证生产过程运行和设备安全必不可少的条件。

这个课程设计是以AT89C51单片机为核心的智能压力变送器。通过压力传感器对工业现场的压力信号进行采集,通过全桥测量电路,三运算放大电路,进过AD0809转换器转换成数字信号送往单片机AT89C51进行处理,再经过DA0832装换成模拟信号,输出4~20mA的标准电压信号,由LED液晶显示屏显示所测得压力值。人机交互采用独立式键盘,键盘设置“+”,“-”和“、”三个按键分别用来设置上限值、下限值和锁存上限值和下限值,并设置报警电路,当输出超过上限值或下限值后自动报警提醒工作人员。

关键词压力变送器智能化

目录

1 绪论

压力变送器背景和应用简介

压力传感器作为工业活动中最为常见的传感器之一,其广泛运用于交通运输、石油化工、军事工业等各种工业自动控制的领域中。压力变送器的工作原理是将压力信号转变成某种可测量的电信号,如日常生活中常见的应变式压力传感器,其工作原理是通过施加压力使弹性元件变形从而产生电阻的变化,通过测量电阻的变化量,利用一定的标度变换,从而得出压力的大小。

在日常生活和工业生产中,人们可利用监测压力的变化和实现对压力的控制进行多种生产活动。例如,在地理环境中海拔高度可以通过测量大气压力的变化来获得;在化工厂中,利用压力参数来判断化学反应的过程;在气象预测中,测量大气压力可以判断阴雨天气状况。因此,压力变送器的设计拥有广阔的市场前景。自上世纪80年代,基于微处理器的智能压力传感器能比较精确和快速的测量,特别是对动态压力的测量,实现多点信号转换、长距变送、与计算机实时信息交换处理等,因而在农业、工业、国防、科技等领域获得了迅速发展和广泛运用。世界上多个国家一直把传感器技术的发展视为现代科技提升的关键。因为只有好的传感器技术,才能实现对工业过程更完美和智能的控制,从而得以大幅度提升科技水平乃至综合国力。美国、日本、欧洲等国的传感器技术一直在引领着世界潮流,我国对智能传感器的研究最近几十年来虽然取得了很大成就,但由于起步较晚,缺乏对该方面的高精尖人才,因此与世界顶尖水平还有不小的差距,因此,要想实现我国科学技术的长足发展,传感器技术必须要有质的突破。

2 系统总体设计

系统设计要求

该系统要求能够满足以下几点设计要求:

(1)可测范围:0~1MPa—(表压),且量程可选;

(2)显示:3位数码显示(),4~20mADC输出;

(3)附加要求:上、下限报警;

(4)测量精度:±1%。

总体设计方案

为了实现更高精度的测量,获得更加智能的人机交互,本次设计为基于单片机的智能压力测量系统。该智能压力变送器基本原理是通过压力传感器把压力信号转换成电压信号,该电压信号经放大后,送至模/数转换电路,将其转换为数字信号以便单片机处理,最后由LED数码管进行显示,并以工业生产中标准的4-20mA的电流信号输出。在测量的过程中可以人为地通过独立键盘进行设置测量的上下限,当输入的压力超出上下限时,蜂鸣器启动报警。

该智能压力变送器,选用的的单片机为常见的AT89C51单片机,将压力经过压力传感器变为电信号,在三运放差分放大电路下,对电压信号进行放大,通过A/D转换器将电压信号转换为单片机可以处理的数字量。在该系统中,用于电压信号采样的A/D转换器为ADC0809。ADC0809是8位分辨率的CMOS型逐次逼近式A/D转换器,它可实现8路多路模拟开关以及与单片机直接相连。转换输出的数字量最高分辨可达256级,可以适应一般单片机应用系统的模拟量转换要求,同时也满足本设计的精度测量需要:±1%。为了提高单片机系统I/O口线的利用效率,设计采用了74LS164进行数据移位至数码管显示。74LS164是CMOS型8 位边沿触发式移位寄存器,可以实现串行输入数据,然后并行输出的功能,它通过限流电阻直接与8位数码显示管相连,然后通过数据移位功能将压力值在数码管上显示出。为了获得4~20mA标准输出电流,设

计采用了DAC0832标准8位D/A转换器进行数模转换输出电流信号,由于经过D/A转换的电流输出量十分微弱,因此可先将电流信号通过运算放大器转换为电压信号,再利用ISO EM直流(电压/电流)信号隔离器,把电压信号转化为4-20mA标准电流输出

本次设计是以单片机为核心的压力测量变送器,首先,外部施加给应变片一个压力信号,然后应变片将信号转换成易测量的电信号作为输出,通过测量桥路,多级放大电路将该电信号进行放大,将通过A/D模数转换的数字信号输入至单片机进行数据处理,最后数据送给LED数码管显示,并实现键盘输入控制、4~20mADC输出、上下限报警等功能。

其原理图如图2-1所示。

图2-1 原理组成图

3 智能压力变送器的硬件设计

压力传感器

压力传感器的选择

压阻式压力传感器是电阻式压力传感器的一种,它的特点是易于微小型化;灵敏度高,它的灵敏系数比金属应变的灵敏系数高50~100倍;它具有很宽的测量范围,通常可达到10Pa-60MPa,并且,测量精度可达到1/1000,具有高度的可靠性,使用寿命很长。因此,压阻式压力传感器已被广泛的应用于石油、化工、核电、交通运输、航空制造等重点领域。

压阻式压力传感器的结构组成

压阻式压力传感器主要是由压阻芯片和保护外壳组成,其内部主要是由

一块N 型的硅膜片组成。在该N 型膜片上对称的集成上了四个完全一样的P 型电阻,称之为扩散电阻。如图3-1所示的为压阻式压力传感器的结构组成图。

图3-1 压阻式压力传感器结构

电阻信号的测量桥路

对于压阻式压力传感器,产生的电阻信号需要进一步转化为电压或者电路信号,以便进行测量信号的远传和处理。最常用的的方法是采用电桥的方法,电桥的准确度高、稳定信高、使用方便,可以准确的将扩散电阻变化量转换成电压信号的变化量,减少了环境因素带来的测量误差。由于交流电桥在信号传输过程中易受电路本身的影响,调节平衡困难,稳定性较差等缺点,本设计采用直流电桥作为电压信号的测量电路

测量电路的工作原理

桥路电源电压U ,4个桥臂阻值分别为1R 、2R 、3R 、4R ,当1R =2R =3R =3R 时,称之为等臂电桥。由于扩散电阻的电桥电路输出信号比较微弱,故目前大部分电阻式压力变送器桥路输出端都会与直流放大器相连接。测量桥路如图3-2所示。

图3-2 压力变送器测量电路

由于差动电桥的补偿作用,使引起非线性误差的因素互相抵消并且具有温度补偿功能,而且半桥的输出信号灵敏度是单臂电桥的2倍,同时全桥电路的灵敏度是半桥的2倍,全桥电路灵敏度很高,因此该设计采用全桥电路。电路如图3-3所示。

图3-3 全桥电路

信号放大电路

放大器的选择

由于被测压力经过应变片和全桥电路转变后得到的电信号十分微弱,所以在对其进行A/D转换之前要对这些模拟电信号进行放大。本设计采用OP07双极性运算放大器组成的三运放差分放大电路,OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。能够保证在具有较大共模电压的条件下,获得对微弱的差分电压信号进行放大的显着效果,并且具有很高的输入阻抗。因此,这些特性使得三运放差分放大电路得到广泛应用

三运放差分放大电路

该设计采用了由OP07运算放大器组成的同向并联三运放结构,由OP07-1和OP07-2组成第一级运放电路提高输入阻抗,OP07-3组成第二级运放电路提高共模抑制比。这种结构可以很好地满足高输入阻抗、高共模抑制比、高增益、低漂移等电路要求。

结构组成如图3-4所示。

图3-4 三运放差分放大电路

A/D转换模块

ADC0809与单片机连接

经过差分放大电路后放大的电压模拟量信号从IN口输入,由于A、B、C

三位地址选通端子接地,根据通道选择表,信号从IN0输入,经过A/D转换之后由数据输出端口D0-D7输入至51单片机的P0口,时钟脉冲输入端CLK 与相连,同时,由于转换器的START和ALE端口工作时序一样,因此把两个端口连接在一起,再与连接,由一个单片机I/O口控制,节省了I/O资源。OE端口和EOC端口分别由单片机和控制。连接图如图3-5所示。

图3-5 ADC0809与AT89C51单片机连接图

单片机

AT89C51单片机简介

图3-6 AT89C51单片机引脚符号图

AT89C51的引脚图如图3-6所示。该设计选用的数据处理核心器件是AT89C51型高性能8位单片机,它内部集成了4K字节的闪存,128字节的内部RAM,以及32 个双向I/O 端口,一个全双工串行通信口,一个两级中断结构,两个16位定时/计数器,片内振荡器及时钟电路等。片内置通用8位中央处理器和Flash存储单元,可灵活应用于各种控制领域。

单片机复位电路与自激振荡电路

在该设计中采取了电平开关与上电复位电路。在上电启动系统时,由上电复位电路提供一个正脉冲触发系统并启动系统运行。当需要人工干预时则按下电平式按键,由VCC直接向RST提供一个+5V电平触发复位电路,产生复位信号,强制系统复位到初始状态。单片机的复位电路与自激振荡电路如图3-7所示;

图3-7 单片机复位电路与自激振荡电路

键盘接口输入

键盘分类简介及选择

在本设计中,由于系统较为简单,所需按键较少,因此采用独立式键盘接口电路。当键盘按下时,连接该按键的单片机会立即检测到一个低电平。其中,S1按键用于设置上限值,实现计数加一的功能;S2按键设置下限值,实现计数减一的功能;S3为确认键,将设置好的上下限进行锁存,以便于被测压力相比较。

图3-8独立式键盘接口

键盘抖动及消除

当前日常生活中常用的键盘都是利用机械触点的开、合作用来实现的,当键盘按下时,会产生一个高低电平的变化会输入到微处理器。但是由于机械触点本身的弹性作用,在按键按下或释放时,在接触点会产生抖动,这些抖动同样会产生高低电平的变化输入至微处理器,这时,CPU就会产生误读,将这些电平变化进行处理,从而对输入结果产生很大的影响,因此必须设法对这些键盘抖动进行消除。图3-9所示的为按键信号产生的实际波形实现对键盘抖动效应的消除软件消抖的原理是,当按键按下或释放时,CPU并不立即判断按键电平的变化,而是首先执行10ms左右的延时程序,跳过按键抖动的

过程,待按键稳定后,再重新判断该按键的电平信号是否发生变化,从而消除了抖动影响。当按键松开时,也是一样,利用延时程序进行消抖。本设计在在节省硬件资源的条件下,采取了软件键盘防抖。

图3-9键闭合与断开时电压抖动波形

LED显示接口电路

LED数码管静态显示接口电路

在本设计中,采用共阴极接法,输入高电平,二极管被点亮。要求三位数码显示,显示位数较少,硬件电路设计较为简单,编程也较为容易,故决定采用静态显示。静态显示接口电路如图3-10所示。

图3-10 静态显示电路

D/A转换模拟输出及信号放大

DAC0832简介

DAC0832是8位分辨率的D/A转换芯片,和微处理器完全兼容,而且价格低廉,接口简单,转换控制简单等优点。DAC0832引脚图如图3-11所示

图3-11 DAC0832引脚图

D/A转换输出与放大电路

在该电路中,51单片机的P1口与DAC0832的数字量输入端相连,用来接收单片机输出的数字量信号。DAC0832的CS、WR1两个引脚端口同时控制数字量的输入选通数据寄存器且均为低电平有效,因此可直接将WR1与CS两个端口相连,然后再与单片机的口连接,由一个单片机IO口来控制DAC0832工作,XFER为转换寄存器控制信号端口,WR2为写信号输入端口,当XFER和WR2两

信号同时低电平有效时将选通DAC转换寄存器,进行数模准换,因此可直接将两引脚接地,VCC与ILE同时接+5V电源。因为DAC0832的输出转换电流十分微弱,仅有几微安,因此须先利用一个运算放大器把电流变换成电压Vout 输出,当DAC0832的VREF引脚接+10V时,转换电压Vout输出为0-10V。后再将电压信号送至ISO EM-U2-P3-O1直流信号隔离器将该电压信号转换成为4-20mA标准电流信号输出。D/A转换输出与放大电路如图3-12所示。

图3-12D/A转换输出与放大电路

报警电路

在工业生产中,检测系统能够实时监控整个生产过程,当某一生产环节出现紧急状态时,会启动报警装置来提醒操作人员。同样,在单片机应用系统中,为了实时反映整个系统的工作状态,报警电路的设计必不可少。通常报警电路的设计存在闪光报警、蜂鸣报警和语音报警。因为蜂鸣报警设计结构简单,程序量小,比闪光报警更能引起人们注意,又比语音报警成本低,更易操作,因而在本设计中,采用了蜂鸣报警。其电路设计如图3-13所示。

图3-13 报警电路

在本设计中,该电路完成的工作是上下限报警,即通过键盘电路设置该压力变送器的上限值与下限值,当被测压力超出上下限时,将会启动报警电路以提醒操作员,其中电阻起限流作用,防止VCC过大损坏芯片。该电路与单片机只有一个接口,结构设计极其简单,当单片机检测到压力超出上下限时,口将会输出一个低电平,从而蜂鸣器启动报警。

4 智能压力变送器软件设计

A/D转换器软件设计

根据电路图设计中,单片机P0口与ADC0809的数据输出端D0-D7相连接,接受其输出的数字信号;ADC0809的启动端START与地址锁存端ALE相连,然

后与单片机的连接;EOC转换结束信号、OE数据输出允许信号、CLK时钟脉冲端分别与单片机的、、相连接。将ADC0809的三个数据输入地址选择端A、B、C均接地,故其地址为000H,因此,模拟量从IN0输入。

如图4-1所示的ADC0809运行程序流程图。

图4-1 ADC0809程序流程图

单片机与键盘接口程序设计

在本设计中采取了独立式键盘的设计。51单片机P0、P1、P2都可以做为准双向I/O口,故将单片机、、分别于按键S1、S2、S3相连接,并配置有上拉电阻。当按键按下时,按键会给单片机输入低电平。其中S1、S2分别实现上、下限的值,S3按下后,将上下限值锁存,以便进行与输入信号的比较。

按键按下或松开时,会存在抖动效应,会对测量结果产生很大的影响,因此必须要设法消除抖动。消除抖动存在硬件消抖和软件消抖两种方法,在本设计中,采取的是软件消抖。当按键按下时,按键抖动的时间一般小于5ms,因此先运行延时自程序10ms左右,在这一过程中,单片机先不读取按键的电平变化,10ms之后,再进行读取,判断按键是否真的按下,若是的话,再进行下面的工作,这样便消除了按键抖动效应的影响。按键松开时,也是如此。设计流程图如图4-2所示。

图4-2键盘接口程序设计流程图

LED数码管静态显示程序设计

本设计利用单片机的串行输入、74LS164的移位寄存方式采用了数码管的静态显示方式。静态显示的特点是当单片机发送该给数码管一次字形显示信息后,数码管会一直显示该字形信息不会发生变化,此时CPU不再控制数码管的工作,直到单片机给数码管发送新的字形信息,此时数码管显示数据得以刷新。这种连接方式的好处是,占用单片机时间少,只需要单片机两个I/O 接口负责数据和时钟脉冲的传送,利用移位寄存器进行移位显示即可。数码管可一直持续稳定的显示,并且便于数据的检测与控制。

程序流程图如图4-3所示。

图4-3 LED数码显示程序流程图

D/A转换器程序设计

完成D/A转换功能的器件是DAC0832,它是美国资料公司研制的8位双缓冲器D/A转换器。DAC0832转换电路连接简单,且编程容易。DAC0832主要特点是内部集成了2个独立的寄存器,因此具有双缓冲器功能。DAC0832具有单极性输出和双极性输出两种形式,可以根据实际需要可快速的修改数据的转换输出,大大提高了数模转换速度。

其程序设计流程图如图4-4所示。

图4-4 D/A装换程序流程图

智能压力变送器程序设计

图4-5 智能压力变送器程序流程图

总结和体会

过一段时间的查阅资料以及对曾经学习知识回顾以后才对整个系统有了一定的认识,也慢慢的掌握了一定的方法。在该设计中,主要糅合了测量仪表、数字电子技术、单片机等知识,都曾经系统的学习过,系统的总体设计就是将这几门学科知识综合起来,就要求我将知识系统化。自己动手期间也是其乐无穷的,能够把以前学的理论知识进行实践,不得不说在本门学科上进步了一个层次。而且这次准备的实践非常充足,能够让我系统的温习以前所学的知识,在这次的课程设计中更好的理解了本门学科的作用,最重要的是掌握了一种学习方法,相信这次课程设计不论在以后的工作和学习中提供了一种方法和态度。

参考文献

[1]杨宁.单片机控制理论:北京航空航天大学出版社

[2]张凯临,宋小金,刘金涛.基于微控制器的二线制智能变送器的设计[J].

计算机测量与控制,2007.

[3]吴勤勤.控制仪表及装置[M].北京:化学工业出版社,2007.

[4]郭轶.两线制智能变送器的研究[D].大连:大连交通大学,2009.

[5]方彦军,孙健.智能仪器技术及其应用:化学工业出版社.

[6]刘东红. 利用89C52单片机的一个并行I/O口实现多个LED显示的一种方

法[J]. 国外电子元器件,2002,8(4)

附录

#include<>

#include<>

#include<>

#include<>

#define uint unsigned int

#define uchar unsigned char

//*********************定义变量区********************************* sbit S1=P3^2;//定义各个控制引脚,S表示键盘

sbit S2=P1^3;

sbit S3=P1^4;

sbit LED0=P2^4;//定义数码管控制引脚

sbit LED1=P2^5;

sbit LED2=P2^6;

sbit speaker=P3^7;//控制蜂鸣器

sbit EOC=P2^3;//为0809控制管脚

sbit ALE=P2^1;

sbit ST=P2^1;

sbit OE=P2^2;

sbit CS=P3^6;//0832片选信号

uchar numS1,numS2,up_level,down_level,AD_bcd0,AD_bcd1,AD_bcd2;//定义变量numS1,S2,上下限,计按键S1和S2自加数

uchar code table[]={

0x3f,0x06,0x5b,0x4f,

0x66,0x6d,0x7d,0x07,

0x7f,0x6f,0x77,0x7c,

0x39,0x5e,0x79,0x71};//数码管段编码

unsigned char channel=0x04;//选择通道IN0

unsigned char getdata;//定义数据获取

//*************************函数声明区****************************

void key();//键盘函数

void delay(uint z);//延时子程序

void control(uchar);//数据个,十,百,取数函数

void updata_LED();//LED显示子程序

void runADC(void); //A/D转换子程序

void runDAC(); //D/A转换子程序

//***************************系统初始化****************************

void main()

{

LED0=0x01;//让第一个数码管的小数点一直亮,定点显示key();

runADC();

control(getdata);

updata_LED();

while(1);

}

//*****************键盘函数*****************

void key(void)

{

if(S1==0)//按键按下

{

delay(5);//延时5毫秒,目的消除抖动

if(S1==0);//按键按下

{

numS1++;// numS1自加1

while(!S1);//等待按键松开

}

}

P1=table[numS1];

control(numS1);//将自加数进行个十百处理updata_LED();//送显示

if(S2==0)//按键按下

{

delay(5);//延时5毫秒,目的消除抖动

if(S2==0);//按键按下

{

numS2++;// num自加

while(!S2);//等待按键松开

}

}

control(numS2);

updata_LED();

if(S3==0)//按键按下

{

delay(5);//延时5毫秒,目的消除抖动

if(S3==0);//按键按下

{

up_level=numS1;//对上限进行赋值

down_level=numS2;//对下限进行赋值

while(!S3);//等待按键松开

}

}

}

//*************************A/D转换子程序*********************** void runADC(void)

{

ST=0;

ST=1;

ST=0;

while(EOC==0);

OE=1;

压力变送器选型参数及说明

SL2088系列压力变送器选型的参数及说明 1.产品型号:产品型号SL2088系列,森菱仪表给您提供及时完善的选型支持。 2.量程:订购的压力变送器需要测量的压力(压强)上限,通常情况下,为了应对意外出现的过载现象而使变器免于损坏,订购的压力变送器量程通常大于现场测量最大压力约1/3。例如:现场测量的量程最大约为2MPa,客户在订购时最好订购量程为3MPa的压力变送器。 3.输出信号:通常的压力变送器输出信号为电压(0-5V,0-10V等)和电流(0-20mA,4-20mA 等)信号,适用于不同的需求,电流输出信号的变送器抗干扰能力较强,有很好的远传能力。电压力输出的传感器适合于短距离的计算机采集和高频响要求。 4.供电电源:压力变送器正常工作需要合适的激励电源。通常情况下,电流输出信号的压力变送器供电为24VDC,电压力输出信号的压力变送器供电15VDC和24VDC及±15VDC都较为常见。客户也可以根据自己现场能够提供的电源与我们沟通说明情况。 5.测量精度:该参数为压力变送器按准(精)确度高低分成的等级。衡量压力变送器测量水平的重要参数。0.1%0.25%0.5%较为常见。在订购时首先要搞清楚自己的测量和控制要达到什么水平,虽然说变送器的测量精度等级越高越好,但价格往往和精度等级成正比,够用即可。 6.压力接口:压力变送器在测量过程中,需要和被测量量进行勾通。通常的勾通的方式为螺纹形式,较为常见的有M20X1.5和M12X1,当测量压力较小时也有直径为8mm的宝塔形皮插管。具体的要求要视测量压力大小和现场情况而定,客户也可提出其它要求和供应单位协商解决。 7.封装出线形式:压力变送器工作的环境较为复杂,如果变送器在较为恶劣的工作环境下又没有作出相应的防护措施,会大大影响变送器的使用寿命。例如长期工作在室外风吹日晒雨淋等,都要相对的在制作时作出防护。 8.导线长度:变送器的工作地点和控制地点往往有或长或短的一定距离,如果距离较短的话,在订购时需提醒供应单位带足够长的导线,尽量避免中间接线,如果需要接线时一定要选有带屏蔽的信号线,以免传输过程中损失信号。 9.环境与介质温度:压力变送器如果工作的环境温度和测量介质温度如果过高的话就要与我们沟通说明,上限通常以60℃为限。下限通常以-10℃为限。 10.特殊介质:当测量介有存在以下问题时请及时与我们沟通说明,以免影响正常使用。1)测量介质具有腐蚀性。 2)测量介质具有较强的渗透能力。3)测量介质有很大的温差变化量。

JJG882-2004压力变送器检定规程

中华人民共和国国家计量检定规程 JJG 882-2004 压力变送器 Pressure Transmitter 2004-06一04发布 2004一12一01实施 国家质量监督检验检疫总局发布 JJG 882-2004 压力变送器检定规程 Verification Regulation of the Pressure Transmitter JJG 882-2004 代替JJG 882-1994 本规程经国家质量监督检验检疫总局于2004年06月04日批准,并自2004年12月01日起施行。 归口单位:全国压力计量技术委员会 主要起草单位:上海市计量测试技术研究院 参加起草单位:杭州天元仪表有限公司 本规程委托全国压力计量技术委员会负责解释JJG 882-2009 本规程主要起草人: 朱家良(上海市计量测试技术研究院) 屠立猛(上海市计量测试技术研究院) 参加起草人: 李元(杭州天元仪表有限公司) JJG 882-2004 目录 1范围.............................。 (1) 2引用文献 (1) 3概述 (1) 4计量性能要求 (2) 4.1测量误差 (2) 4.2回差.................‘.. (2) 4.3静压影响 (2)

5通用技术要求 (3) 5.1外观 (3) 5.2密封性 (3) 5.3绝缘电阻·....................................................... (3 ) 5.4绝缘强度.................。. (3) 6计量器具控制 (4) 6.1定型鉴定(或样机试验) (4) 6.2首次检定、后续检定和使用中检验 (4) 附录A压力变送器检定时的设备连接方式 (9) 附录B定型鉴定(或样机试验)试验项目和方法 (11) 附录C压力变送器检定记录格式 (17) 附录D不确定度分析实例 (18) 附录E检定证书、检定结果通知书(内页)格式 (21) JJG 882-2004 压力变送器检定规程 范围 本规程适用于压力(包括正、负表压力,差压和绝对压力)变送器的定型鉴定(或样机试验)、首次检定、后续检定和使用中检验。2引用文献 本规程引用下列文献: JJF 1015-2002计量器具型式评价和型式批准通用规范 JJF 1016-2002计量器具型式评价大纲编写导则 JJG 875-1994数字压力计检定规程 GB/T 17614.1-1998工业过程控制系统用变送器第1部分:性能评定方法 GB/T 17626.3-1998射频电磁场辐射抗扰度试验 使用本规程时,应注意使用上述引用文献的现行有效版本。 3概述 压力变送器是一种将压力变量转换为可传送的标准化输出信号的仪表,而且其输出 信号与压力变量之间有一给定的连续函数关系(通常为线性函数)。主要用于工业过程 压力参数的测量和控制,差压变送器常用于流量的测量。 压力变送器有电动和气动两大类。电动的标准化输出信号主要

压力和差压变送器详细详解使用说明书复习进程

压力和差压变送器详细使用说明 (一)差压变送器原理与使用 本节根据实际使用中的差压变送器主要介绍电容式差压变送器。 1. 差压变送器原理 压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。 差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。 图1.1 测量转换电路 图1.2 差动电容结构 差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。中心可动极板与两侧固定极板构成两个平面型电容H C和L C。可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。 2. 变送器的使用 (1)表压压力变送器的方向 低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。图1.3为低压侧压力口。 图1.3 低压侧压力口 (2)电气接线 ①拆下标记“FIELD TERMINALS”电子外壳。 ②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。应使用屏蔽的双绞线以获得最佳的测量效果,为了保证正确通讯,应使用24AWG或更高的电缆线。 ③用导管塞将变送器壳体上未使用的导管接口密封。 ④重新拧上表盖。 (3)电子室旋转 电子室可以旋转以便数字显示位于最好的观察位置。旋转时,先松开壳体旋转固定螺钉。 3. 投运和零点校验

智能压力变送器设计

摘要 传感器在工业生产中起着重要的作用,随着工业的发展,人们对于传感器的精度和用户体验等方面有着越来越高的要求,相应的仪器仪表在工业生产中也有着越来越重要的地位。压力,作为工业生产过程中重要参数之一,实现对其精确的检测和控制是保证生产过程运行和设备安全必不可少的条件。 这个课程设计是以AT89C51单片机为核心的智能压力变送器。通过压力传感器对工业现场的压力信号进行采集,通过全桥测量电路,三运算放大电路,进过AD0809转换器转换成数字信号送往单片机AT89C51进行处理,再经过DA0832装换成模拟信号,输出4~20mA的标准电压信号,由LED液晶显示屏显示所测得压力值。人机交互采用独立式键盘,键盘设置“+”,“-”和“、”三个按键分别用来设置上限值、下限值和锁存上限值和下限值,并设置报警电路,当输出超过上限值或下限值后自动报警提醒工作人员。 关键词压力变送器智能化

目录 摘要................................................. I 1 绪论.. (1) 1.1压力变送器背景和应用简介 (1) 2 系统总体设计 (2) 2.1 系统设计要求 (2) 2.2 总体设计方案 (2) 3 智能压力变送器的硬件设计 (4) 3.1 压力传感器 (4) 3.1.1 压力传感器的选择 (4) 3.1.2压阻式压力传感器的结构组成 (4) 3.2 电阻信号的测量桥路 (5) 3.2.1 测量电路的工作原理 (5) 3.3 信号放大电路 (6) 3.3.1 放大器的选择 (6) 3.3.2 三运放差分放大电路 (6) 3.4 A/D转换模块 (7) 3.4.1 ADC0809与单片机连接 (7) 3.5 单片机 (8)

常见压力变送器及传感器的原理和分类

常见压力变送器/传感器的原理和分类 压力变送器是一种把非电量转变成电信号的器件,变送器关键件主要包含:压力敏感部件、集成电路、结构件三部分。压力敏感部件有溅射型、电阻应变型、扩散硅型、微熔型、蓝宝石型、陶瓷型等,在外加激励电压后,通过惠斯登测量原理输出电信号,达到测量介质压力的目的。 ☆电阻应变压力变送器原理 电阻应变型压力变送器关键器件是电阻应变片,它是一种将被测件上的应变变化,转换成为一种电信号的敏感器件。通常是将应变片通过特殊的粘合剂紧密的粘在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D 转换和CPU)、显示或执行机构。 ☆陶瓷压力变送器原理 压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯登电桥,由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,根据压力量程的不同,标准的信号可标定为2.0 / 3.0 / 3.3mV/V 等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,并可以和绝大多数介质直接接触。 ☆扩散硅压力变送器原理 被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器内部芯片的电阻值发生变化,利用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。 ☆溅射薄膜压力变送器原理 在高真空度中,利用磁控技术,将绝缘材料、电阻材料以分子形式淀积在不锈钢弹性膜片上,形成分子键合的绝缘材料薄膜和电阻材料薄膜,并与弹性不锈钢膜片融为一体,再经过光刻、调阻、温度补偿等工序,在弹性不锈钢膜片上形成牢固而稳定的惠斯登电桥,当被测介质压力作用于弹性不锈钢膜片时,惠斯登电桥则产生与压力成正比的电输出信号,将信号经过放大、调节等处理,再配以适当的结构,就成为各个应用领域的压力传感器和变送器。 ☆蓝宝石压力变送器原理 利用应变电阻式工作原理,采用硅-蓝宝石作为半导体敏感元件,具有无与伦比的计量特性。用硅-蓝宝石半导体敏感元件制造的压力传感器和变送器,可在非常恶劣的工作条件下正常工作,并且可靠性高、精度好、温度误差极小、性价比高。 ☆压电式压力变送器原理 压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英、二氧化硅是一种天然晶体,利用材料的压电效应,将动态应力转换为电信号。压电传感器主要应用在加速度、压力和力等的测量中,主要测量动态应力。

压力变送器校验规程

压力变送器校验规程 1.0目的 规范压力变送器的校准操作,确保压力变送器的有效性和准确性。 2.0范围 对新购或年检的压力变送器进行校验。 3.0校验时所需标准仪器及设备 1)活塞压力计; 2)精密压力表; 3)稳压电源; 4)精密电阻箱; 5)标准电流表。 4.0校验接线方法 5.0校验方法 5.1外观检查 1)变送器的名牌应完整、清晰。 2)变送器的零件表面涂覆层应整洁、完好,无腐蚀和锈斑。 5.2基本误差校验(±0.2% ~±0.5%) 校验不少于5个有效点。 增加输入信号,使输入信号依次缓慢地停在各个有效点上(不得超过有效点值

再返回),读取标准表的数值并记录被检表的数值。然后,减小输入信号,用同样的方法对仪表进行反向校验。若误差超过允许值,则调整零点、量程、线性电位器,直到满足精度要求为止。在校验过程中不允许调零点和量程,不允许轻敲或推动变送器。 5.3回程误差校验(0.2% ~0.5%) 回程误差校验与示值基本误差校验同时进行。即正向与反向校验时,同一被校分度线上的示值之差,取其中最大值,如误差超过允许值,应重新进行基本误差校验,直到满足精度要求为止。 5.4校验结果的处理 经校验合格的压力变送器填写仪表校验记录,做合格标识方可投入使用,不合格的压力变送器填写仪表维修记录并详细记录不合格项目,经维修仍达不到标准要求的填写仪表报废申请表。 5.5校验周期为12个月。 6.0参考文件 JJF1071国家计量校准规范编写规则 JJF1001通用计量术语及定义 GBT/T8170数值修约规则与极限数值的表示和判定 7.0记录表格 压力(差压)变送器检定记录表 压力表检定记录表 压力(差压)控制器检定记录表

智能差压变送器性能

智能差压变送器是测量变送器两端压力之差的变送器,输出标准信号(如4~20mA、0~5V);差压变送器与一般的压力变送器不同的是它们均有2个压力接口,差压变送器一般分为正压端和负压端,一般情况下,差压变送器正压端的压力应大于负压段压力才能测量。 3051DP智能差压变送器是引进国外先进技术和设备生产的新型变送器,关键原材料,元器件和零部件均源自进口,整机经过严格组装和测试,具有设计原理先进、品种规格齐全、安装使用简便等特点。由于该机型外观上完全融合了目前国内最为流行以及被广泛使用的两种变送器(罗斯蒙特3051与横河EJA)的结构优点,让使用者有耳目一新的感觉,同时与传统的1151、CECC等系列产品在安装上可直接替换,有很强的通用性和替代能力。为适合国内自动化水平的不断提高和发展,3051DP智能差压变送器设计小巧精致外,更推出具有HART现场总线协议的智能化功能。超级的测量性能,用于压力、差压、液位、流量测量。

智能差压变送器的特点: 量程迁移功能,量程迁移比100:1; 阻尼: 0~32秒可调,步进0.1秒; 零点﹑满度补偿修正功能; 输出电流多点校正; 显示多个监测变量,压力单位可选; 输出电流开方功能; 具有自诊断及故障报警输出功能; 带有EEPROM非易失性存储器,不怕掉电丢失数据并具有原始标定数据恢复功能; 通过HART通讯手操器和就是按钮实现远程﹑就是参数设定与功能组态。 其性能特点: 性能优异:精度可达0.075%,量程比100:1; 差压:调校量程从4inH2O至1000psi; 表压:调校量程从4inH2O至1000psi; 绝压:调校量程从150inH20至1000psi; 过程隔离膜片:316L不锈钢,哈氏合金C,蒙乃尔,钽(仅限CD,CG)及镀金蒙乃尔,镀金不锈钢; 设计小巧/坚固而质轻,易于安装; 复合量程(仅限CD,CG)可测量负压。

压力变送器选用必知参数

压力变送器选用必知参数 压力变送器用于测量液体、气体或蒸汽的液位、密度和压力,然后转变成4~20mA DC信号输出。而智能型压力变送器可与HART手操器相互通讯,通过它进行设定,监控或与上位机组成现场监控系统。购买压力变送器必须知道以下几个参数。 一、接液材质 我们要考虑的是压力变送器所测量的介质,一般的压力变送器的接触介质部分的材质采用的是316不锈钢,如果你的介质对316不锈钢没有腐蚀性,那么基本上所有的压力变送器都适合你对介质压力的测量. 如果你的介质对316不锈钢有腐蚀性,那么我们就要采用化学密封,这样不但起到可以测量介质的压力,也可以有效的阻止介质与压力变送器的接液部分的接触,从而起到保护压力变送器,延长了压力变送器的寿命. 二、精度等级 每一种电子式的测量计都会有精度误差的,但是由于各个国家所标的精度等级是不一样的,比如,中国和美国等国家标的精度是传感器在线性度最好的部分,也就是我们通常所说的测量范围的10%到90%之间的精度;而欧洲标的精

度则是线性度最不好的部分,也就是我们通常所说的测量反的0到10%以及90%到100%之间的精度.如欧洲标的精度为1%,则在中国标的精度就为0.5%。 三、量程范围 一般传感器测量的最大范围为传感器的满量程70%是最好的,也就是现在要测量70bar的压力,我们选压力变送器的量程应该选100bar. 四、输出信号 现阶段由于各种采集的需要,当前市场上压力变送器的输出信号有很多种,主要4~20mA,0~20mA,0~10V,0~5V等等,但是比较常用的是4~20mA和0~10V两种,在我上面举的这些输出信号中,只有4~20mA为两线制(我们所说的输出为几线制不包含接地或屏蔽线),其他的均为三线制. 五、介质温度 由于压力变送器的信号是通过电子线路部分转换的,所以一般情况下,压力变送器的测量介质温度为-30到+100度,如果温度过高,我们一般采用的是冷凝弯来冷却介质,这样相对让厂家特地为你生产一个耐高温的压力变送器的成本会降低很多。 六、测量介质 一般我们测量的是相对比较清洁的流体,我们就直接采用标准的压力变送器就可以了,如果你所测量的介质是易

压力变送器的原理安装和使用

压力变送器的原理安装和 使用 This model paper was revised by the Standardization Office on December 10, 2020

压力变送器的安装及使用 压力是重要的工业参数之一, 正确测量和控制压力对保证生产工艺过程的安全性和经济性有重要意义。压力及差压的测量还广泛地应用在流量和液位的测量中。压力变送器的任务是将检测出来的非电量(物理量)大小转换为相应的电信号,传输到显示仪表中进行监视和控制,将非电量转换为电量的方法有: 1电容式压力变送器 2扩散硅压阻变送器 3电感式变送器 4振弦式变送器 20世纪80年代中末期,国内开始引进国外生产的压力变送器,主要是非智能的,在选购变送器时,要根据生产工艺过程的不同压力检测点的压力,来选择不同压力变送器的量程,由于被测压力点数量多,订货时,所定压力变送器的规格多,同时,在备件上造成很大的资金积压。由于早期的压力变送器没有微处理器进行各种性能的补偿,容易受到环境的影响,造成仪表的漂移和测量不准确。 美国霍尼韦尔(HONEYWELL)公司于1983年独家率先向全世界推出智能化现场仪表ST3000 100系列全智能压力变送器,这是对传统现场仪表的一次深刻变革!它为工业自动化仪表及其系统应用,向更高层次的发展奠定了基础,全智能变送器的问世,开创了现场仪表的新纪元。 美国霍尼韦尔公司在92年4月向中国推出了ST3000/900系列全智能变送器,它具有数字式全智能变送器的全部优越性能,而价格接近传统模拟式常规变送器。97年底,霍尼韦尔公司又推出可测高温的压力变送器,现场环境温度最高可达150℃。通过使用专用的手操器,可以对运行中的变送器进行零点、量程、变送器的工作温度、使用单位等很多参

智能压力变送器安装与调试

智能压力变送器安装与调试(ROSEMENT E+H) 一、智能变送器的概述 1:智能变送器是在80年代中期开始研发,90年代初期推广应用的。所谓智能变送器,是指变送器核心为12位或更高位的微处理器,可以在编程器(手持终端)上进行组态,进行仪表的零点、量程、单位、阻尼、位号等设定,能对其自身工作状态和故障进行诊断,输出叠加在4-20mA上的数字信号并能和相同通信协议的设备进行数字通信。 2:智能压力变送器的特点:其技术先进,性能优良,且具有体积小,重量轻,安装简便等特点。采用微机械电子加工技术、超大规模的专用集成电路(ASIC)和表面安装技术,结构紧凑,可靠性高,体积很小。 ?精度较高,一般都在±0.1%~±0.2%,有的还能达到±0.075; ?智能变送器可在手持通信器(又称手操器)上远方测定仪表的零点和量程,因此仪表可以在不用加压力信号的情况下修改智能变送器各种参数,同时对于维护人员难以到达的场合对智能变送器检查和修改参数比较方便。 ?智能变送器和DCS控制系统之间可实现数字通信,这就是全数字化的现场总路线控制系统提供了条件。 3:通讯协议 ?DE协议:HONEYWELL公司使用 ?BRAIN协议:EJA产品 ?HART:ROSEMENT、ABB公司、E+H HART协议 HART(Highway Addressable Remote Transducer),可寻址远程传感器高速通道的开放通信协议协议。是由Rosemount公司于1986年提出的一个过渡性的临时标准通信协议。它是用于现场智能仪表和控制室设备间通信的一种协议。 ?HART协议采用基于Bell202标准的FSK频移键控信号,在低频的4-20mA模拟信号上叠加幅度为0.5mA的频率(有两个信号频率,一个是1200HZ,代表逻辑“1”,另一个是2200HZ,代表逻辑“0”)数字信号进行双向数字通讯,数据传输率为1.2Mbps。由于FSK信号的平均值为0,不影响传送给控制系统模拟信号的大小,保证了与现有模拟系统的兼容性。在HART协议通信中主要的变量和控制信息由4-20mA传送,在需要的情况下,另外的测量、过程参数、设备组态、校准、诊断信息通过HART协议访问。HART协议属于模拟系统向数字系统转变过程中的过渡产品,因而在当前的过渡时期具有较强市场竞争力,目前,已有70余家公司支持并使用了HART协议,在智能仪表市场上占有很大的份额。?

压力变送器的应用及选型

压力变送器的应用及选型 一、概述 在诸类仪表中,变送器的应用最为广泛、普遍,变送器大体分为压力变送器和差压变送器。变送器常用来测量压力、差压、真空、液位、流量和密度等。变送器有两线制和四线制之分,两线制变送器尤多;有智能和非智能之分,智能变送器渐多;有气动和电动之分,电动变送器居多;另外,按应用场合有本安型(本质安全型)和隔爆型之分;按应用工况,变送器的主要种类如下: 低(微)压/低(微)差压变送器;中压/中差压变送器;高压/高差压变送器;绝压/真空/负压差压变送器;高温/压力、差压变送器;耐腐蚀/压力、差压变送器;易结晶/压力、差压变送器。 变送器的选型通常根据安装条件、环境条件、仪表性能、经济性和使用介质等方面考虑。实际应用中分为直接测量和间接测量两种;其用途有过程测量、过程控制和装置连锁等。常见的变送器有普通压力变送器、差压变送器、单发兰变送器、双发兰变送器、插入式发兰变送器等。 二、压力/差压变送器介绍 压力变送器和差压变送器单从名称上讲测量的是压力和差压(两个压力的差),但它们可以间接测量的量却很多。如压力变送器,除可以测量压力外,还可以测量设备内的液位。在常压容器内测量液位时,需要一台压力变送器即可。当测量受压容器的液位时,可考虑用两台压力/差压变送器,即测量下限一台,测量上限一台,它们的输出信号进行减法运算,即可测出液位,这时一般选用差压变送器。在容器内液位与压力值不变的情况下它还可以用来测量介质的密度。压力变送器的测量范围可以做的很宽,从绝压0开始可以到一百多兆帕(一般情况)。 差压变送器除了测量两个被测量压力的差压值外,它还可以配合各种节流元件来测量介质流体的流量,可以直接测量受压容器的液位和常压容器的液位以及压力和负压。 2.1 制作 从压力/差压变送器制作的结构上来分有普通型和隔离型。普通型压力/差压变送器的测量膜盒为一个,它直接感受被测介质的压力或差压;隔离型的测量膜盒接受到的是一种稳定液(一般为硅油)的压力,而这种稳定液是被密封在两个膜片中间,直接接受被测压力的膜片为外膜片,原普通型膜盒的膜片为内膜片,当外膜片上接受压力信号时通过硅油的传递原封不动的将外膜片的压力传递到了普通膜盒上,从而可以测出外膜片所感受到的压力。

E-H压力变送器选型手册

[标签:标题] 篇一:E+H压力变送器操作说明书 cerabar S 压力变送器 操作手册 目录 1、安全手册 (4) 1.1 设计用途 (4) 1.2 安装、调试和操作 (4) 1.3 操作安全性 (4) 1.4 安全惯例和图标的注释 (4) 2、认证 (5) 2.1 仪表设计 (5) 2.2 供货范围 (6) 2.3 CE标志 (6) 2.4 注册商标 (6) 3、安装 (7) 3.1 接收和存储仪表 (7) 3.2 安装条件 (7) 3.3 安装手册 (7) 3.4 安装后的检查 (10) 4.接线 (10) 4.1 仪表的接线 (10) 4.2 电子腔室的接线 (11) 4.3 等电势 (13) 4.4 接线后检查 (13) 5.操作 (13) 5.1 现场显示模块(可选) (14) 5.2 操作按钮 (15) 5.3 现场操作-不带就地现场显示 (17) 5.4 现场操作-带现场显示 (18) 5.5 HistoROM (可选) (19) 5.6 TOF TOOL操作程序 (21) 5.7 通过手持终端HART手操器操作 (21) 5.8 Commuwin II操作程序 (22) 5.9 锁定/解锁操作 (22) 5.10 工厂设定(重置) (23) 6 调试 (24) 6.1 功能检测 (24) 6.2 语言选择与测量模式选择 (24) 6.3 位置调节 (25) 6.4 压力测量 (26)

6.5 液位测量 (28) 7 维护 (30) 7.1 表面清洁 (30) 8.故障排除 (30) 8.1 错误信息 (30) 8.2 输出响应错误 (36) 8.3 确认错误信息 (37) 8.4 维修 (37) 8.5 带防爆认证的仪表维修 (38) 8.6 备件 (38) 8.7 返修仪表 (38) 8.8 存储 (39) 8.9 软件 (39) 9.技术数据 (40) 10 附件 (40) 10.1现场显示,TOF TOOL和现场手操器的操作菜单 (40) 10.2 HART Commuwin II操作矩阵 (40) 10.3 专利 (41) 索引 1、安全手册 1.1 设计用途 Cerabar S 是一种测量压力和液位的压力变送器。 制造厂不承担因为不当的或在非设计用途场合的使用而造成损坏的责任。 1.2 安装、调试和操作 仪表依据电流技术、安全性和EU标准设计成为一种操作更加安全的仪表。但是,如果安装不正确或使用工况不是其适用工况,有可能会产生危险. 例如:因为不正确的安装或标定使产品溢流.因为类似原因,所以仪表必须根据操作手册来安装,连接,操作和维护。相关维护人员必须有足够的能力,而且必须浏览过操作手册并充分理解其含义。调试和修理仪表只有当他们被特别允许的情况下才被允许。 请特别注意铭牌上的技术数据. 1.3 操作安全性 1.3.1 危险区 如果仪表安装在爆炸危险区,那么仪表规格必须遵守国家和当地的规范。仪表会附带一个防爆认证证书在仪表的文件中。文件中列出的安装规范,过程连接和安全手册都必须遵守规范. *确保所有的相关调试人员都是合适的资格。 1.4 安全惯例和图标的注释 为了突出手册中的安全相关性或可选择的操作程序,使用了下面的惯例和图标,并在每个图标的旁注中加了注解。 2、认证 2.1 仪表设计 2.1.1 铭牌 图1:Cerabar S 的铭牌 1、定货号 2、船级认证的GL符号(可选)

压力变送器检定规程

压力变送器检定规程 1范围 本规程适用于压力(包括正、负压力表,差压和绝对压力)变送器的定型鉴定(或样机试验)、首次检定、后续检定和使用中检验。 2引用文献 本规程引用下列文献: JJF1015---2002 计量器具型式评价和型式批准通用规范 JJF1016---2002 计量器具型式评价大纲编写导则 JJF875---1994 数字压力计检定规程 GB/T 17614.1—1998 工业过程控制系统用变送器第1部分:性能评定方法 GB/T 17626.3---1998 射频电磁场辐射抗扰度试验 使用本规程时,应注意使用上述引用文献的现行有效版本。 3概述 压力变送器是一种将压力变量转换为可传送的标准化输出信号的仪表,而且其输出信号与压力变量之间有一给定的连续函数关系(通常为线性函数)。主要用于工业过程压力参数的测量和控制,差压变送器常用于流量的测量。 压力变送器有电动和气动两大类。电动的标准化输出信号主要为0mA~10mA 和4Ma~20mA (或1v~5v)的直流电信号。气动的标准化输出信号主要为20kPa~200 kPa的气体压力。不排除具有特殊规定的其他标准化输出信号。 压力变送器通常由两部分组成:感压单元、信号处理和转换单元。有些变送器增加了显示单元,有些还具有现场总线功能。压力变送器的结构原理如图1所示。 压力变送器按原理可分为电容式、谐振式、压阻式、力(力矩)平衡式、

电感式和压变式等。 压力(或差压)信号 输出信号(mA、V、或kpa) 图1 压力变送器原理框图 4.计量性能要求 4.1 测量误差 压力变送器的测量误差按准确度等级划分,不应超过表1规定。 表1 准确度等级及最大允许误差、回差

ST3000900智能压力变送器

ST3000/900智能压力变送器 应用领域: 差压测量,压力测量,与节流装置配合进 行流量测量,液位测量,界面测量。 一、概述 ST3000系列压力变送器是以微处理器为基础的智能变送器。最新推出的R300版本,全面提升了变送器的精度、可靠性及长期稳定型指标。他能测量各种液体和气体的压力,并输出对应的4~20mA模拟信号。它独特的温度和静压误差自动修正功能使其能满足苛刻的使用环境。 它具有DE通讯协议,可与霍尼韦尔的Experion PKS?集散控制系统和智能现场通讯器(SFC)实现双向数字通讯,消除了模拟信号传输误差,方便了变送器的调试、校验和故障诊断。 二、产品特点 ?先进的传感技术: 采用离子注入硅技术,在差压传感器上继承了静压和温度传感器,随时修正过程温度和静压引起的误差,提高了测量精度和稳定性。 ?高可靠性:平均无故障时间470年。 ?高稳定性:±0.015%/年。 ?高精度:±0.065%。 ?测量范围宽: ?STG944 0-3.5MPa ?STG974 0-21 MPa ?规格齐全: 接液部分有各种防腐材料备选,能满足各种工况条件下的使用,特殊要求,请与我公司联系。 ?具备各种本安和隔爆认证。 ?可选HART协议。 ?可选现场总线(FF)通讯协议。 ?使用现场通讯器或MCT多协议通讯器实现对ST3000变送器的组态、校验和故障诊断等。 ?可通过便携电脑,用SCT组态工具组态。 ?可与霍尼韦尔Experion PK集散控制系统实现数字一体化。 ?体积小、重量轻:4.1Kg。 三、适用场合 电力,冶金,石油、石化,化工,造船,建材(水泥、玻璃等),水处理,制药,造纸,食品及烟草,气象等工矿场合。 隔离膜片材料316L SS,哈氏合金C-276

罗斯蒙特型智能压力变送器检修规程

罗斯蒙特型智能压力变 送器检修规程 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

3051型智能变送器检修工艺规程批准: 审定: 审核: 初审: 编写:舒惠 2005/03/27

罗斯蒙特3051型智能压力变送器检修规程 1. 适用范围 本规程适用于3051智能型压力变送器的检修与检验,保证检修质量与工艺符合要求。 2. 引用标准 本规程引用以下标准: 罗斯蒙特3051型智能压力变送器使用说明书; 罗斯蒙特压力产品选型说明。 3. 概述 工作原理 3051压力(差压)变送器内有一隔离膜片,压力(差压)信号的变化经变送器内含的一种灌充液(硅油与惰性液)通过隔离膜片转换为电容的变化传送至压力传感膜头,压力传感膜头将输入的电容信号直接转换成可供电子板模块处理的数字信号,再经电子线路处理转化为二线制4-模拟量输出。 3.2传感膜头 3051系列变送器传感膜头与过程介质和外部环境保持机械、电气及热隔离,可释放传感器杯体上的机械应力,提高静压性能。3051型传感器膜头还可进行温度测量,用于进行温度补偿。传感膜头内的线路板能将输入的电容与温度信号转换成可供电子板模块进一步处理的数字化信号。 3.3电子线路板 电子板采用专用集成电路(ASIC),该板接受来自传感膜头的数字输入信号及其修正系数,对信号进行修正与线性化。电子板模块的输出部分将数字信号转为模拟

量输出,并与HART手操器进行通讯。标准的3051型模拟量输出为4-20mA;低功耗变送器为电压输出(1-5V或-)。 可选液晶表头插在电子板上,以压力、流量或液位工程单位或模拟量程百分比显示数字输出。 3.4数据存储 组态数据存储于变送器电子板的永久性EEPROM中,变送器掉电后,数据仍保存,故而上电后变送器能立即工作。 3.5数/模转换与信号传送 过程变量以数字式数据存储,可以进行精确的修正和工程单位的转换。信号经修正后的数据转换为模拟输出信号。HART手操器可以直接以数据信号方式存取传感器读数,不经过数/模转换以得到更高精度。 3.6通讯格式 3051型采用HART协议进行通讯。在模拟量输出上叠加高频信号可以进行远程通讯。罗斯蒙特采用该技术能在不影响回路完整性的情况下,实现同步通讯和输出。3.7软件功能 HART协议使用户可以容易的使用3051型的组态、测试与具体设定的功能。 3.8组态 使用HART手操器可以方便的对3051型进行组态。组态有两部分组成。 设定变送器的工作参数,包括: a) 零点与量程设定点; b) 线性与平方根输出; c) 阻尼;

压力变送器规范和标准,

压力变送器规范和标准, 1)变送器应为智能型,带HART协议,带就地液晶显示器。变送器应具有固态电子线路,并为智能化二线制设计,使其供电和信号传输可在同一对线上完成。 2) 变送器的标定量程应使正常工作压力、差压在标定量程刻度的约2/3处,不得选择正常工作压力、差压在变送器最小量程范围内。最大工作压力的150%的过压、差压而不会影响其性能。测量负压的变送器应能承受全真空而不会导致损坏。卖方在技术协议中应提出所配变送器的耐过压、耐差压能力的参数。 3)变送器应易于调零和调整量程,零点迁移:正迁移能达到全量程的100%,负迁移能达到全量程的100%。应提供整体试验接口,以便于连接电气试验设备。变送器应提供4~20 mADC信号输出的试验端子,并叠加HART协议,单通讯信号在任何时候都不会影响工艺测量参数和控制系统。 4) 变送器应输出一个与被测变量成比例的电气信号,此信号对0~100%的标定量程应为4~20mADC,同时输出信号上应叠加基于HART协议的数字信号, 与手持便携式组态器双向通迅。变送器应能在负载阻抗达到560Ω时正常运行。 5)变送器应能通过手持便携式组态终端进行远程编程,变送器上应带有进行零位和量程的调整装置。便携式终端可不借助于其他手段(如在回路中串入250欧姆电阻),而直接进入变送器进行编辑。 6) 变送器与被测介质接触的浸湿部分的材料应与被测介质相适应,以防止腐蚀或剥落,卖方负责设备选型,如果因卖方选型不当而导致变送器与介质接触部分发生腐蚀等不良情况,卖方应在质保期内免费更换。 7) 变送器接线和端子应按所采用的UL和ANSI标准,所有的端子应有固定标志,以便于识别。 8)变送器外壳应是耐用金属,NEMA4X的结构,并带便于拆卸的密封盖,穿过外壳的电气连接头应不小于φ13mm,不使用的接头应使用不锈钢堵头进行密封的堵塞。标牌应使用不锈钢材料,标牌上使用的计量单位应为国际制单位,标牌上变送器编号应包括设计位号,清晰易见。每只仪表应有铭牌,另配一块带KKS编号的佩挂式标牌。变送器的外涂层不易剥落。 9)变送器的供电电源由卖方负责,电压为:DC24V。变送器能保证供电电压在DC12V-DC36V之间正常工作。 10) 所有变送器与被测介质脉冲管路的连接应采用适合于螺纹管接头连接的形式,并配带螺纹管接头。接口采用1/2 NPT阴螺纹,卖方应配供进口的1/2”NPT阳螺纹转换接头与φ14X2、φ16X3、φ18X4仪表管或仪表管焊接接头相连接,接头材质要求为不锈钢(316L)。接头应多级密封,保证无泄露,由卖方配供,不另外增加费用。卖方应按附表的要求为压力变送器配供焊接式管接头。附表中未注明的管接头材质要求采用316L。螺纹管接头也应有明显的尺寸标识。 11) 压力变送器应能将被测对象的表压、绝对压力或真空转换为一个输出信号。 12)传感元件应是膜盒、薄膜或波纹管,并配有泄压接头。膜盒式元件可以是电容式的、或单晶硅谐振式的,传感元件在其两层薄膜之间应有夹层,并同过程流体相隔离。薄膜式元件应有支撑板以防止超压。设计应

使用ConST273校准智能压力变送器

使用ConST273校准智能压力变送器 随着DCS系统在现代化的企业的广泛应用,智能压力变送器也越来越多的被用户选用。智能变送器通信所用的HART协议具有数字信号和4~20mA控制信号互不干扰能同时传输的优点,使得控制和智能通信能同时进行,给操作使用带来极大方便,具有最大的安全性。这是其他通信协议所不能比拟的,因此世界上近80%的仪表供应商都使用HART协议。公司的ConST273和ConST318都具备了HART通讯功能,可以取代罗斯蒙特275型手持式HART通讯器对智能变送器进行调校。 本文详细介绍HART协议的概念、375 与275手操器比较、ConST273校准智能压力变送器的过程和方法。 一、HART协议的概念 HART(Highway Addressable Remote Transducer),可寻址远程传感器高速通道的开放通信协议,是美国ROSEMOUNT公司于1985年推出的一种用于现场智能仪表和控制室设备之间的通信协议。 HART装置提供具有相对低的带宽,适度响应时间的通信,经过10多年的发展,HART技术在国外已经十分成熟,并已成为全球智能仪表的工业标准。 HART协议采用基于Bell202标准的FSK频移键控信号,在低频的4-20mA模拟信号上叠加幅度为0.5mA的音频数字信号进行双向数字通讯,数据传输率为1.2Mbps。由于FSK信号的平均值为0,不影响传送给控制系统模拟信号的大小,保证了与现有模拟系统的兼容性。在HART协议通信中主要的变量和控制信息由4-20mA传送,在需要的情况下,另外的测量、过程参数、设备组态、校准、诊断信息通过HART协议访问。 二、智能压力变送器代表性产品 1.罗斯蒙特(Rosement)1151 2. 费希尔-罗斯蒙特(Fisher-Rosement)3051, 3. 霍尼威尔(Honeywell)ST3000, 4. 川仪/横河(Centum)EJA系列, 5. 德国哈特曼布劳恩(Hartmann&Braun)公司AS系列 6. ABB 7. Siemens 8. E+H 三、375 与275手操器比较 375 field communicator就是以前的Rosement的275HART手操器,Rosement被EMERSON 收购后就成了Emerson的了,它的用处就是可以在现场直接挂接在支持HART协议的仪表的端子上进行组态(如量程、输出形式等等)和检测仪表问题(如仪表自检、实测压力等)。建议可以查找一些关于HART协议的一些论文来看看了解一下。 375比原来的275更好用,现在的375不仅仅是可以调Emers on自己的表,只要是带HART 通讯协议的表都可以调,象ABB、 Siemens 等知名仪表公司的都可以调。HART375是基于WINDOWS CE开发的新一代手操器,不仅支持HART通讯协议,同时支持FF总线协议。现场一般用的较多的功能就是修改表的量程,零点矫正及迁移。 1、Rosemount275、375型手操器用途 操作人员使用275、375型手操器可与SWB801、802G、1151及符合HART现场总线协议的所有压力变送器及其它HART设备进行通讯。手操器由电池供电。把275、375接到变送器

压力变送器选型手册13P

JCJ800B 系列差压变送器核心器件采用高性能进口压力传感器。JUCSAN?产品经过精密的结构设计、合理的温度补偿,然后以线性放大电路、V/I 转换全密封焊接工艺制造出标准的(4~20)m A 或(0~10)m A 电流信号或标准电压信号。 产品采用铝合金外壳封装,外形精巧、美观、耐用,方便安装,可广泛应用于医疗、洁净室、实验室、电厂、空调 等环境中的微压/差压测量领域。 选型表 选型说明: 注明测量范围,当选用JCJ800BA 型差压变送器时,C 口V 口项 不用选择; 当选用JCJ800BB 型差压变送器时,C 口V 口项需要选择。 如选用宝塔嘴接口类型的差压变送器(0~1000)Pa,准确度0.5,两 线电流输出.型号为:JCJ800BAS2P5 (0~1000)Pa 如选用M20×1.5接口类型的差压变送器(0~2000)Pa,准确度0.25, (0~5)V 输出.型号为:JCJ800BBS1P2C1B0 (0~2000)Pa 量程200Pa 内,精度只能1%,量程500Pa 内精度0.5%。 性能参数 测量介质:无腐蚀性常规气体 测量形式及测量范围: 表压(G )---最大(0~400)KPa,最小(0~100)Pa 相对压力(B )---(0~400)KPa,最小(0~100 )Pa 负相对压力(B )--(-0.1~400)KPa,最小(-50~50 )Pa 精度等级:0.25%、0.5%、1% 过载能力:量程的2~20倍 长期稳定性:小于0.3%FS/年 供电电源:15~36 VDC (标定电压24VDC ) 输出信号:(4~20)mA 、(0~10)mA (0~5)V 工作温度:-20~65℃ 补偿温度:-10~60 ℃ 稳定性:小于±0.2%FS/年,±0.5%FS/年 过程连接:A 型、?8宝塔嘴(内孔?3mm ) B 型、外螺纹M20×1.5(内孔?3mm ) 防护等级:IP65 零点量程可调节 JCJ800BB 差压变送器外形图 J CJ800BA 型 JCJ800BB 型

压力变送器的原理、安装和使用

压力变送器的安装及使用 压力是重要的工业参数之一, 正确测量和控制压力对保证生产工艺过程的安全性和经济性有重要意义。压力及差压的测量还广泛地应用在流量和液位的测量中。压力变送器的任务是将检测出来的非电量(物理量)大小转换为相应的电信号,传输到显示仪表中进行监视和控制,将非电量转换为电量的方法有: 1电容式压力变送器 2扩散硅压阻变送器 3电感式变送器 4振弦式变送器 20世纪80年代中末期,国内开始引进国外生产的压力变送器,主要是非智能的,在选购变送器时,要根据生产工艺过程的不同压力检测点的压力,来选择不同压力变送器的量程,由于被测压力点数量多,订货时,所定压力变送器的规格多,同时,在备件上造成很大的资金积压。由于早期的压力变送器没有微处理器进行各种性能的补偿,容易受到环境的影响,造成仪表的漂移和测量不准确。 美国霍尼韦尔(HONEYWELL)公司于1983年独家率先向全世界推出智能化现场仪表ST3000 100系列全智能压力变送器,这是对传统现场仪表的一次深刻变革!它为工业自动化仪表及其系统应用,向更高层次的发展奠定了基础,全智能变送器的问世,开创了现场仪表的新纪元。 美国霍尼韦尔公司在92年4月向中国推出了ST3000/900系列全智能变送器,它具有数字式全智能变送器的全部优越性能,而价格接近传统模拟式常规变送器。97年底,霍尼韦尔公司又推出可测高温的压力变送器,现场环境温度最高可达150℃。通过使用专用的手操器,可以对运行中的变送器进行零点、量程、变送器的工作温度、使用单位等很多参数的监测和修改,非常的方便。 20世纪90年代中末期,引进的压力变送器的几乎是数字式全智能变送器,在此基础上,国内有不少厂家与国外的公司合作,生产智能仪表。 智能型压力变送器 智能型压力或差压变送器是在普通压力或差压传感器的基础上增加微处理器电路而形成的智能检测仪表,压力或差压变送器的精度为0.1级,量程范围为100:1或50:1,时间常数在0~36s可调,仪表的电压范围为15~36VDC,正常工作电

相关主题