搜档网
当前位置:搜档网 › 高三数学解三角形,平面向量与三角形的综合练习

高三数学解三角形,平面向量与三角形的综合练习

高三数学解三角形,平面向量与三角形的综合练习
高三数学解三角形,平面向量与三角形的综合练习

解三角形,平面向量与三角形的综合练习

一、填空题

1.若角α的终边经过点(12)P -,,则tan 2α的值为______________.

2.已知向量a 与b 的夹角为120o

,且4==a b ,那么g a b 的值为________. 3.已知向量)3,1(=,)0,2(-=,则b a +=_____________________.

4. )6cos()(π

ω-=x x f 最小正周期为5π

,其中0>ω,则=ω 5.b a ρ?,的夹角为ο

120,1,3a b ==r r ,则5a b -=r r

6.若BC AC AB 2,2=

=,则ABC S ?的最大值

7.设02x π??

∈ ???

,,则函数22sin 1sin 2x y x +=的最小值为 .

8.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .

9.若向量a r ,b r 满足1

2a b ==r r ,且a r 与b r 的夹角为3

π,则a b +=r r . 10.若3

sin()25

πθ+=,则cos2θ=_________。

11.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若

(

)

C a A c b cos cos 3=-,

则=A cos

12已知a r 是平面内的单位向量,若向量b r 满足()0b a b -=r r r g

,则||b r

的取值范围是 。

13..在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,30,a b c ===? 则A

= .

14. 关于平面向量,,a b c .有下列三个命题:

①若g g a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60o

. 其中真命题的序号为 .(写出所有真命题的序号)

三、解答题

1.已知函数()cos(2)2sin()sin()344

f x x x x π

ππ

=-

+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程

(Ⅱ)求函数()f x 在区间[,]122

ππ

-上的值域

2.已知函数2

π()sin sin 2f x x x x ωωω??

=+ ??

?

(0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03??????

,上的取值范围.

3.已知向量(sin ,cos ),(1,2)m A A n ==-r r ,且0.m n ?=r r

(Ⅰ)求tan A 的值;

(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域.

4.已知函数f (x )=A sin(x +?)(A >0,0

???

,.

(1) 求f (x )的解析式;

(2) 已知α,β∈02π?? ??

?

,,且f (α)=35,f (β)=1213

,求f (α-β)的值.

5. 如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =o

∠,BD 交AC 于E ,2AB =.

(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .

6.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角βα,,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B

52(1)求)tan(βα+的值; (2)求βα2+的值。

7.某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的

B A C

D

E

总长为ykm 。

(1)按下列要求写出函数关系式:

①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;

(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。

8.(江西17)已知1

tan 3

α=-

,cos 5β=,(0,)αβπ∈ (1)求tan()αβ+的值; (2

)求函数())cos()f x x x αβ=-++的最大值.

解三角形,平面向量与三角形的综合答案

B

一、填空题

4

3

8- 2 7 10

2

725-

3 [01], 6

π

三、解答题

1解:(1)()cos(2)2sin()sin()344

f x x x x π

ππ

=-

+-+Q

1cos 22(sin cos )(sin cos )2x x x x x x =

+-+

221cos 22sin cos 2x x x x =

+-

1cos 22cos 222

x x x =

+- sin(2)6

x π

=-

2T 2

π

π==周期∴ (2)5[,],2[,]122636

x x ππ

πππ

∈-

∴-∈-Q 因为()sin(2)6

f x x π

=-在区间[,]123

ππ-

上单调递增,在区间[,]32ππ

上单调递减,

所以 当3

x π=

时,()f x 取最大值 1

1()()12

222f f π

π-

=-

<=Q ,∴当12

x π

=-时,()f x

取最小值2-所以 函数 ()f x 在区间[,]122

ππ

-

上的值域为[2- 2.

解:(Ⅰ)1cos 2()22x f x x ωω-=

11sin 2cos 2222x x ωω=

-+π1sin 262x ω?

?=-+ ??

?. 因为函数()f x 的最小正周期为π,且0ω>, 所以

π2ω

=,解得1ω=.

(Ⅱ)由(Ⅰ)得π1()sin 262f x x ??=-

+ ??

?.因为2π03

x ≤≤, 所以ππ7π

2666x -

-≤≤,所以1πsin 2126x ??-- ???

≤≤.

因此π130sin 2622x ?

?-

+ ??

?≤≤,即()f x 的取值范围为302??????

,. 3. 解:(Ⅰ)由题意得m ·n =sin A -2cos A =0,因为cos A ≠0,所以tan A =2.

(Ⅱ)由(Ⅰ)知tan A =2得

2213

()cos 22sin 12sin 2sin 2(sin ).22

f x x x x x x =+=-+=--+

因为x ∈R,所以[]sin 1,1x ∈-. 当1sin 2

x =时,f (x )有最大值3

2,

当sin x =-1时,f (x )有最小值-3, 所以所求函数f (x )的值域是33,.2

??-???

?

4.解:(1)依题意知 A =1 1

sin 332

f ππφ????=+=

? ?

????, 又4333πππφ<+< ; ∴

53

πφ+=

即 2

π

φ= 因此 ()sin cos 2f x x x π??

=+= ??

?

; (2)Q ()3cos 5f

αα==

,()12cos 13

f ββ== 且 ,0,

2παβ??

∈ ??

?

∴ 4sin 5α=

,5

sin 13

β=

()()3124556

cos cos cos sin sin 51351365f αβαβαβαβ-=-=+=?+?=

5. 解:(Ⅰ)因为9060150BCD =+=o o o

∠,CB AC CD ==,

所以15CBE =o

∠. 所以cos cos(4530)4

CBE =-=

o

o

∠. (Ⅱ)在ABE △中,2AB =,由正弦定理

2

sin(4515)sin(9015)

AE =-+o o o o

故2sin 30

cos15AE =

o

o

124

?

=

=. 12分

6.【解析】:本小题考查三角函数的基本概念、三角函数 的基本关系式、两角和的正切、二倍角的正切公式, 考查运算求解能力。

由条件得cos ,cos 105

αβ== αβQ 、

为锐角,sin αβ∴==1

tan 7,tan 2

αβ∴==

(1)17tan tan 2tan()31

1tan tan 172

αβαβαβ+

++==

=--?-? (

2

2

21

22tan 42tan 211tan 31()2βββ?

===--47tan tan 23tan(2)14

1tan tan 2173

αβαβαβ+

+∴+===--?-? αβQ 、为锐角,3022παβ∴<+<

324

π

αβ∴+= 7. 【解析】:本小题考查函数的概念、

解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。

(1)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad ),则10

cos cos AQ OA BAO θ

=

=

∠, 故10

cos OB θ

=

又1010OP tan θ=-,所以1010

1010cos cos y OA OB OP tan θθθ

=++=++- 所求函数关系式为2010sin 10

(0)cos 4

y θ

π

θθ

-=

+≤≤

②若OP=x (km ),则OQ=10-x

,所以OA OB ===

所求函数关系式为(010)y x x =+≤≤

(2)选择函数模型①,22

10cos cos (2010sin )(sin )10(2sin 1)

'cos cos y θθθθθθθ

-----== 令'0y =得1sin 2θ= 046

ππ

θθ≤≤∴=Q

当(0,)6πθ∈时'0y <,y 是θ的减函数;当(,)64

ππ

θ∈时'0y >,y 是θ的增函数;

所以当6

π

θ=

时,min 1

201010102

y -?

=

+=

此时点O 位于线段AB 的中垂线上,且距离AB

km 处。 8. 解:(1

)由cos β=

(0,)βπ∈得tan 2β=

,sin β= 于是tan()αβ+=1

2

tan tan 3121tan tan 13

αβ

αβ-++==-+.

(2)因为1tan ,(0,)3ααπ=-∈

所以sin αα=

=

()f x x x x x =

x = ()f x

三角函数与向量综合题练习

平面向量与三角函数综合练习 题型一三角函数平移与向量平移的综合 三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是 一样的,它们都统一于同一坐标系的变化前后的两个图象中?解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位?这两个方面就是体现为在平移过程中对应的向量坐标 例1 把函数y = sin2x的图象按向量a = (- , —3)平移后,得到函数y = Asin( w x+ )(A > 0, w> 0 , 6 || = p的图象,贝U 和B的值依次为 题型二三角函数与平面向量平行(共线)的综合 此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数 的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解?此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查 例2 已知A、B、C为三个锐角,且 A + B + C=n若向量8 = (2 —2sinA , cosA + si nA)与向量6 = (cosA —si nA , 1 + si nA)是共线向量. (I)求角A; 一 C —3B (n)求函数y = 2sin 2B + cos —;—的最大值? 题型三三角函数与平面向量垂直的综合 此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件 将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.

已知向量 "a = (3sin a cos a ), "b = (2sin a, 5sin a — 4cos a , (I )求tan a 的值; a (n )求 cos ( +)的值. 2 3 题型四三角函数与平面向量的模的综合 此类题型主要是利用向量模的性质 |"|2 ="2,如果涉及到向量的坐标解答时可利用两种方法: (1) 先进行向量运算,再代入向量的坐标进行求解; (2)先将向量的坐标代入向量的坐标,再利用向量的坐标 运算进行求解? 5 v 3< 0 v av ,且 sin 3=— ,求 sin a 的值. 2 13 题型五 三角函数与平面向量数量积的综合 此类题型主要表现为两种综合方式: (1)三角函数与向量的积直接联系; (2)利用三角函数与向量的夹 角交汇,达到与数量积的综合 ?解答时也主要是利用向量首先进行转化,再利用三角函数知识求解 ? 例 5 设函数 f(x)=""其中向量"=(m , cosx) , " = (1 + sinx , 1), x € R ,且 f( ) = 2. (I)求 实数m 的值;(n )求函数f (x )的最小值. 六、解斜三角形与向量的综合 在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量 有着密切的联系?解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标, 要求 根据向量的关系解答相关的问题 ? b A A b 例6 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为 a 、 b 、 c ,若m = (— cos ;, sin'), n = 妖(牛,2 n ,且b 已知向量 ""=(cos a ,sin a ), " = (cos B,sin 3, a — 3)的值;(n )若一- l " —= .(I )求 cos(

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

专题二 三角函数与平面向量的综合应用

专题二 三角函数与平面向量的综合应用 (时间:45分钟 满分:100分) 一、选择题(每小题7分,共35分) 1.已知sin(2π-α)=45,α∈????3π2,2π,则sin α+cos αsin α-cos α 等于( ) A.17 B .-17 C .-7 D .7 2.如图,D 、 E 、 F 分别是△ABC 的边AB 、BC 、CA 的中点,则( ) A .+BE →+CF →=0 B. -CF →+DF → =0 C .+CE →-CF →=0 D. -BE →-FC →=0 3.已知向量a =(2,sin x ),b =(cos 2x,2cos x ),则函数f(x)=a ·b 的最小正周期是( ) A.π2 B .π C .2π D .4π 4.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A , sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( ) A.π6,π3 B.2π3,π6 C.π3,π6 D .π3,π3 5.已知向量OB →=(2,0),向量=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向 量OB →的夹角的取值范围是( ) A.????0,π4 B.??? ?π4,512π C.????512π,π2 D.??? ?π12,512π 二、填空题(每小题6分,共24分) 6.在直角坐标系xOy 中,已知点A (-1,2),B (2cos x ,-2cos 2x ),C (cos x,1),其中x ∈[0,π],若⊥,则x 的值为______. 7.如图,在梯形ABCD 中,AD ∥BC ,AD ⊥AB ,AD =1,BC =2,AB =3,P 是BC 上的一个动点,当?PD PA 取得最小值时,tan ∠DP A 的值为 ________.

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

向量和三角函数综合试题(卷)

向量与三角函数综合试题 1.已知向量a 、b 满足b ·(a-b)=0,且|a|=2|b|,则向量a +2b 与a 的夹角为 ( D ) A.3π B.3π2 C. 2π D.6π 2.已知向量),(n m =,)sin ,(cos θθ=,其中R n m ∈θ,,.若||4||=,则当2 λλ或2-<λ B .2>λ或2-<λ C .22< <-λ D .22<<-λ 3.已知O 为原点,点P (x ,y )在单位圆x 2 +y 2 =1上,点Q (2cos θ,2sin θ),且PQ =(3 4, -3 2),则·的值是 ( A ) A .18 25 B .9 25 C .2 D .9 16 4.R t t ∈+===,),20cos ,20(sin ,)25sin ,25(cos 0 0,则||的最小值是B A. 2 B. 22 C. 1 D. 2 1 5.如图,△ABC 中,AB=4,AC=4,∠BAC=60°,延长CB 到D ,使||||BA BD =u u u r u u u r ,当E 点在线段AD 上移动时,若,AE AB AC λμλμ=+-u u u r u u u r u u u r 则的最大值是( C ) A .1 B 3 C .3 D .236.已知向量(2,0)OB =u u u v ,向量(2,2)OC =u u u v ,向量22)CA αα=u u u v ,则向量OA u u u v 与向量OB uuu v 的夹角的取值围是( D ) A .[0, ]4π B .5[,]412ππ C .5[,]122ππ D .5[,]1212 ππ 7.已知向量(1,1),(1,1),(22)a b c θθ==-=r r r ,实数,m n 满足ma nb c +=r r r ,则 22(1)(1)m n -+-的最小值为( D ) A 21 B .1 C 2 D .322- 8.如图,BC 是单位圆A 的一条直径, F 是线段AB 上的点,且2BF FA =u u u r u u u r , 若DE 是圆A 中绕圆心A 运动的一条直径,则FD FE u u u r u u u r g 的值是( B ) B .)

高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例 一、教学目标:1.理解并掌握正弦定理、余弦定理、面积公式; 2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的 计算和证明问题. 二、教学重点:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形 中的三角函数问题. 三、教学过程: (一)主要知识: 掌握三角形有关的定理: 正余弦定理:a 2 =b 2 +c 2 -2bccos θ, bc a c b 2cos 222-+=θ;R C c B b A a 2sin sin sin === 内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2 C =cos 2B A + 面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) 射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A (二)例题分析: 例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c . 解:由正弦定理得:sinA=23 2 45sin 3sin = ?= b B a ,因为B=45°<90°且b

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

三角函数与平面向量综合题的六种类型

第1讲 三角函数与平面向量综合题3.17 题型一:三角函数与平面向量平行(共线)的综合 【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量. (Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 题型二. 三角函数与平面向量垂直的综合 【例2】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π 2 ,2π),且→a ⊥→b . (Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π 3)的值. 题型三. 三角函数与平面向量的模的综合 【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=2 5 5.(Ⅰ)求cos(α-β)的值;(Ⅱ) 若-π2<β<0<α<π 2,且sinβ=-513,求sinα的值. 题型四 三角函数与平面向量数量积的综合 【例4】设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ) 求实数m 的值;(Ⅱ)求函数f(x)的最小值. 题型五:结合三角形中的向量知识考查三角形的边长或角的运算 【例5】(山东卷)在ABC ?中,角,,A B C 的对边分别为,,a b c ,tan C = (1)求cos C ;(2)若5 2 CB CA ?= ,且9a b +=,求c . 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算 【例6】()f x a b =? ,其中向量(,cos 2)a m x = ,(1sin 2,1)b x =+ ,x R ∈,且函数 ()y f x =的图象经过点(,2)4 π . (Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。 题型七:结合向量的坐标运算,考查与三角不等式相关的问题 【例7】设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈ ,函数()()f x a a b =?+ . (Ⅰ)求函数()f x 的最大值与最小正周期;(Ⅱ)求使不等式3 ()2 f x ≥成立的x 的取值集. 【跟踪训练】 三角函数与平面向量训练反馈 1、已知向量=(x x x 3,52-),=(2,x ),且⊥,则由x 的值构成的集合是( ) A 、{0,2,3} B 、{0,2} C 、{2} D 、{0,-1,6} 2、设02x π≤≤, sin cos x x =-,则 ( ) A .0x π≤≤ B . 74 4x π π≤≤ C .544 x ππ ≤≤ D . 32 2 x π π ≤≤ 3、函数1cos 4tan 2sin )(++?=x x x x f 的值域是 。 4、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos cos 2B b C a c =-+. (1)求角B 的大小; (2)若 b a + c =4,求a 的值. 5、已知向量 )1),3 (cos(π + =x ,)21),3(cos(-+ =π x ,)0),3 (sin(π+=x 函数 x f ?=)(, x g ?=)(, x h ?-?=)( (1)要得到)(x f y =的图象,只需把)(x g y =的图象经过怎样的平移或伸缩变换? (2)求)()()(x g x f x h -=的最大值及相应的x .

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

高三数学《解三角形》题型归纳

高三数学《解三角形》题型归纳(含解析) 题型一:求某边的值 (1)ABC △的内角A B C ,,的对边分别为,,a b c .已知2 5,2,cos 3 a c A === ,则b =_______. (2)如图,在四边形ABCD 中,已知AD ⊥CD , AD =10, AB =14, ∠BDA =60?, ∠BCD =135? ,则BC = . (3)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,若a 2 -c 2 =3b ,且sin B =8cos A sin C ,则边b = . (4)钝角△ABC 的面积是1 2 ,AB =1,BC = 2 ,则AC = . (5)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b - c =2,cos A =-1 4,则a 的值为________. (6)在ABC △中,已知3,120AB A ==o ,且ABC △的面积为153 4 ,则BC 边长为______. (7)在ABC △中,已知5,3,2AB BC B A ===,则边AC 的长为________. 答案:(1)3 (2)8 2 (3)4 (4) 5 (5)8 (6)7 (7)26 题型二:三角形的角 (1)在△ABC 中,B =π4,BC 边上的高等于1 3 BC ,则cos A =________. (2)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,已知85,2b c C B ==,则cos C = (3)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A c B b += .则A =________. (4)设△ABC 的三个内角A ,B ,C 所对的边依次为a ,b ,c ,且 cos sin a c A C =,则A =________. (5)在△ABC 中,若tan :tan :tan 1:2:3A B C =,则A =________. (6)设△ABC 的三个内角A ,B ,C 所对边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A B C >>, 320cos b a A =,则sin :sin :sin A B C =________. 答案:(1)-10 10 (2) 725

2021届高考数学解答题核心素养题型3 三角函数与平面向量综合问题(答题指导解析版)

专题03 三角函数与平面向量综合问题 (答题指导) 【题型解读】 ??题型一:三角函数的图象和性质 1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2 +b 2 ? ?? ?? a a 2+ b 2 ·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2 sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2 +b 2 sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范. 【例1】 (2017·山东卷)设函数f (x )=sin ? ????ωx -π6+sin ? ????ωx -π2,其中0<ω<3.已知f ? ????π6=0. (1)求ω; (2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π 4 个 单位,得到函数y =g (x )的图象,求g (x )在??????-π4 ,3π4上的最小值. 【答案】见解析 【解析】(1)因为f (x )=sin ? ????ωx -π6+sin ? ????ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin

向量与三角函数综合试题

A B C D F 向量与三角函数综合试题 1.已知向量a 、b 满足b ·(a-b)=0,且|a|=2|b|,则向量a +2b 与a 的夹角为 ( D ) A.3π B.3π2 C. 2π D.6π 2.已知向量),(n m a =,)sin ,(cos θθ=b ,其中R n m ∈θ,,.若||4||b a =,则当2 λλ或2-<λ B .2>λ或2-<λ C .22< <-λ D .22<<-λ 3.已知O 为原点,点P (x ,y )在单位圆x 2 +y 2 =1上,点Q (2cos θ,2sin θ),且PQ =(3 4, -3 2),则OP ·OQ 的值是 ( A ) A .18 25 B .9 25 C .2 D .9 16 4.R t b t a u b a ∈+===,),20cos ,20(sin ,)25sin ,25(cos 0 0,则|u |的最小值是B A. 2 B. 22 C. 1 D. 2 1 5.如图,△ABC 中,AB=4,AC=4,∠BAC=60°,延长CB 到D ,使||||BA BD =u u u r u u u r ,当E 点在线段AD 上移动时,若,AE AB AC λμλμ=+-u u u r u u u r u u u r 则的最大值是( C ) A .1 B .3 C .3 D .23 6.已知向量(2,0)OB =u u u v ,向量(2,2)OC =u u u v ,向量(2cos ,2sin )CA αα=u u u v ,则向量OA u u u v 与向量OB uuu v 的夹角的取值范围是( D ) A .[0, ]4π B .5[,]412ππ C .5[,]122ππ D .5[,]1212 ππ 7.已知向量(1,1),(1,1),(2cos ,2sin )a b c θθ==-=r r r ,实数,m n 满足ma nb c +=r r r ,则 22(1)(1)m n -+-的最小值为( D ) A .21- B .1 C .2 D .322- 8.如图,BC 是单位圆A 的一条直径, F 是线段AB 上的点,且2BF FA =u u u r u u u r , 若DE 是圆A 中绕圆心A 运动的一条直径,则FD FE u u u r u u u r g 的值是( B ) B .) ( )

平面向量与三角函数、解三角形的综合习题.doc

三角函数与平面向量、解三角形综合题 题型一: 三角函数与平面向量平行 ( 共线 ) 的综合 【例 1】 已知 A 、 B 、C 为三个锐角,且 A +B + C =π . 若向量 → = (2 - 2sinA ,cosA + sinA) 与向 p → = (cosA - sinA ,1+ sinA) 是共线向量 . 量 q (Ⅰ)求角 A ;(Ⅱ)求函数 y = 2sin 2 C - 3B B + cos 2 的最大值 . 题型二 . 三角函数与平面向量垂直的综合 → → 3 【例 2】 已知向量 a =(3sin α,cos α) , b =(2sin α, 5sin α- 4cos α) ,α∈ ( 2 ,2π) , → → 且 a ⊥ b . α (Ⅰ)求 tan α 的值;(Ⅱ)求 cos( 2+ 3)的值. 题型三 . 三角函数与平面向量的模的综合 → → → → 2 【例 3】 已知向量 a =(cos α,sin α) , b =(cos β,sin β) , | a - b | = 5 5.( Ⅰ ) 求 cos( α -β ) 的值; ( Ⅱ ) 若- 2 <β< 0<α< 2 5 ,且 sin β=- 13,求 sin α 的值 . 题型四 三角函数与平面向量数量积的综合 → → → → ,x ∈R ,且 f( 2 ) 【例 3】 设函数 f(x) = a · b . 其中向量 a = (m ,cosx) , b = (1 + sinx ,1) = 2. (Ⅰ)求实数 m 的值;(Ⅱ)求函数 f(x) 的最小值 . 题型五:结合三角形中的向量知识考查三角形的边长或角的运算 【例 5】(山东卷)在 ABC 中,角 A, B,C 的对边分别为 a, b, c , tan C 3 7 . uuur uuur 5 ,且 a b 9 ,求 c . (1)求 cosC ;( 2)若 CB CA 2 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算 【例 6】f ( x) r r r r (1 sin 2x,1) , R ,且函数 y f ( x) a b ,其中向量 a (m,cos 2x) ,b x 的图象经过点 ( ,2) . 4 (Ⅰ)求实数 m 的值; (Ⅱ)求函数 y f ( x) 的最小值及此时 x 值的集合。

2014届高三数学(理)二轮复习练习:(九)解三角形

2014届高三数学(理)二轮复习练习:(九)解三角形

小题精练(九)解三角形 (限时:60分钟) 1.在△ABC中,角A,B,C所对的边分别为a,b,c.若a cos A=b sin B,则sin A cos A+ cos2B=( ) A.-1 2 B. 1 2 C.-1 D.1 2.在△ABC中,a,b,c分别是角A,B,C的对 边,若A=π 3 ,b=1,△ABC的面积为 3 2 , 则a的值为( ) A.1 B.2 C. 3 2 D. 3 3.在△ABC中,cos2A 2 = b+c 2c (a,b,c分别为角 A,B,C的对边),则△ABC的形状为( )

A.正三角形 B.直角三角形 C.等腰三角形或直角三角形D.等腰直角三角形 4.(2013·高考天津卷)在△ABC中,∠ABC=π4 , AB=2,BC=3,则sin∠BAC=( ) A. 10 10 B. 10 5 C.310 10 D. 5 5 5.在△ABC中,角A、B、C所对的边的长分别为a,b,c.若a2+b2=2c2,则cos C的最小值为( ) A. 3 2 B. 2 2 C.1 2 D.- 1 2 6.(2014·长春市调研测试)直线l1与l2相交于

a,b.若2a sin B=3b,则角A等于( ) A.π 12 B. π 6 C.π 4 D. π 3 10.(2014·湖南省五市十校联考)在斜三角形ABC中,sin A=-2cos B·cos C,且tan B·tan C=1-2,则角A的值为( ) A.π 4 B. π 3 C.π 2 D. 3π 4 11.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10 6 m(如图所示),则旗杆的高度为( )

(完整word版)三角函数与向量综合题

题型一 三角函数平移与向量平移的综合 三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标. 【例1】 把函数y =sin2x 的图象按向量→a =(-π6 ,-3)平移后,得到函数y =Asin(ωx +?)(A >0,ω>0,|?|=π2 )的图象,则?和B 的值依次为 ( ) A .π12,-3 B .π3,3 C .π3,-3 D .-π12,3 【分析】 根据向量的坐标确定平行公式为??? x =x '+π6y =y '+3 ,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择. 【解析1】 由平移向量知向量平移公式??? x '=x -π6y '=y -3,即??? x =x '+π6y =y '+3 ,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知?=π3 ,B =-3,故选C. 【解析2】 由向量→a =(-π6 ,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6 )-3,即y =sin(2x +π3)-3,由此知?=π3 ,B =-3,故选C. 【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小. 题型二 三角函数与平面向量平行(共线)的综合 此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查. 【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量. (Ⅰ)求角A ; (Ⅱ)求函数y =2sin 2B +cos C -3B 2 的最大值. 【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范

专题33 三角函数与向量问题(解析版)

专题33 三角函数与向量问题 专题知识梳理 平面向量与三角函数是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇命题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件“脱去外衣”转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解. 考点探究 【例1】 (2017·江苏卷)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值; (2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 【解析】(1)∵a ∥b ,∴3sin x =-3cos x ,∴3sin x +3cos x =0, 即sin ????x +π6=0.∵0≤x ≤π,∴π6≤x +π6≤76π,∴x +π6=π,∴x =5π 6. (2)f (x )=a·b =3cos x -3sin x =-23sin ??? ?x -π 3. ∵x ∈[0,π],∴x -π3∈????-π3,2π3,∴-3 2≤sin ????x -π3≤1,∴-23≤f (x )≤3, 当x -π3=-π 3,即x =0时,f (x )取得最大值3; 当x -π3=π2,即x =5π 6 时,f (x )取得最小值-2 3. 【例2】 (2018·南京模拟)已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈????0,π 2,t 为实数. (1)若a -b =???? 25,0,求t 的值; (2)若t =1,且a ·b =1,求tan ? ???2α+π 4的值. 【解析】(1)因为向量a =(2cos α,sin 2α),b =(2sin α,t ),且a -b =???? 25,0, 所以cos α-sin α=15,t =sin 2α.由cos α-sin α=15,得(cos α-sin α)2=125, 即1-2sin αcos α=125,从而2sin αcos α=24 25. 所以(cos α+sin α)2=1+2sin αcos α=49 25. 因为α∈????0,π2,所以cos α+sin α=75 ,

相关主题