搜档网
当前位置:搜档网 › 高分子阻燃剂配方设计指导

高分子阻燃剂配方设计指导

高分子阻燃剂配方设计指导
高分子阻燃剂配方设计指导

高分子阻燃剂配方设计指导

评论:0 条查看:75 次zswinner发表于2008-04-14 07:28

高分子阻燃剂配方设计指导

美国加利福尼亚州最高的、坐落在洛杉矶商业金融区的第一州际银行62层豪华大厦,于88年5月4日晚10点38分发生火灾,这是洛杉矶市历史上最大的高楼火灾。大火直至5日凌晨2时30分才扑灭,大楼被烧掉整整五层,其余楼层损失惨重。《纽约时报》说:这场火灾给现代摩天大楼的消防和安全提出了新问题。

美国的高楼大厦,虽说是钢筋水泥结构,但室内大多铺满化纤地毯或塑料地板块,墙面贴塑料壁纸,再加泡沫海绵沙发和床垫,塑料遮阳百叶窗以及一些含化学原料的家具和用品都是易燃物。地毯起火后,温度高达两千华氏度,产生的烟雾很快能使人窒息中毒。

随着现代科学技术的飞速发展,塑料、橡胶、纤维等高分子材料已渗透到国民经济及日常生活的各个角落。由于绝大多数有机高聚物的易燃性,使它们在电气、交通、建材及家庭等领域应用时的防火安全问题也日益显得突出。对于高分子材料的阻燃问题已引起许多国家的普遍关注,如美国、日本等发达国家已陆续建立起许多有关高分子材料的阻燃法规和标准,并不断地严格、升级。因此,大大刺激了阻燃剂的研制和开发。阻燃剂已成为精细化工产品家族中很重要的一员。本文拟就各种阻燃剂及对阻燃剂的评价和应用作一介绍。

一、阻燃剂的类型

原则上,能够阻止高聚物材料燃烧的物质都可选作阻燃剂。但实际上,除阻燃性外,阻燃剂还必须具备下列条件:

1)热分解温度要高于高聚物的加工温度(大约高出60℃左右)。

2)相溶性好。能够与高聚物均匀混合,不析出。

3)对其施加对象的其他性能无严重不良影响。如机械性能、加工性能、熔融指数及各项强度等。

4)生产成本低、无毒,燃烧时不释放有毒和腐蚀性气体。

实际上,任何单一物质均难以满足上述各种条件,好的阻燃剂往往由两种以上物质协同使用,从而要求人们不仅仅是寻找有效的阻燃剂,还要研究其最佳配方。

按化学组成的不同,阻燃剂大致可以分为卤系阻燃剂、磷系阻燃剂、无机阻燃剂三大类。(一)卤系阻燃剂

卤系阻燃剂品种最多,应用面也最广。卤系中的氟化物由于价格高、阻燃效力差,非特殊情况一般极少作阻燃剂使用。碘化物虽然阻燃效力好,但由于不稳定、易分解,而且价格高,因而也很少使用。唯有氯、溴才是作为卤系阻燃剂中最重要、最普遍的元素。

当前由于我国氯气过剩,开发性能优良的含氯或氯—溴兼有的阻燃剂,对防止高聚物引起火灾有着无法估计的经济意义和现实意义。

实验表明,卤系阻燃剂在单独使用时,往往很难达到理想的阻燃效果,除非增加阻燃剂的用量。可是阻燃剂用量加大,又给高聚物的机械性能、加工性能带来不良影响。为解决这一矛盾,人们尝试添加一些其他物质同卤系阻燃剂混合使用,就可以较少用量获得较好的阻燃效果——这就是协同效应,常用的增效剂有Sb、N、P等化合物、最常见的增效剂是Sb2O3。在表一中同时列出了一些增效剂。

(二)磷系阻燃剂

磷系阻燃剂的特点是阻燃效力高,但由于它对高聚物的机械加工性能影响较大,因而不如卤系阻燃剂使用广泛。磷系阻燃剂包括无机磷阻燃剂和有机磷阻燃剂两大类。

1.无机磷阻燃剂:最常用的是红磷和聚磷酸铵。聚磷酸铵单独使用或与卤代物并用时,阻燃效果不大,当同其他磷化物或氯化物并用时,阻燃效能明显提高。

在燃烧时,会发生以下变化:磷化合物→磷酸→偏磷酸→聚偏磷酸,聚偏磷酸玻璃体覆盖于燃烧体表面,隔绝空气。对于含氧的高聚物,聚偏磷酸还具有脱水作用,使高聚物脱水分解,生成致密的炭化层,使燃烧终止。

2.有机磷阻燃剂:这类阻燃剂主要包括磷酸酯、亚磷酸酯、磷化合物及卤化磷等。这些化合物大多同氮、溴化合物并用以提高阻燃效果。如聚丙烯中添加4.5%氯化石蜡,4.5%

亚磷酸乙烯酯,可通过ASTM—D635—56T燃烧试验,如果不加氯化石蜡,即使加入15%亚磷酸乙烯酯,也达不到以上的阻燃效果。

磷化合物的一个突出优点是防熔滴、发烟少,其中效果最佳的是卤化磷,若与聚磷酸铵并用,效果更好。

(三)其它无机阻燃剂

有机阻燃剂大多都有毒性、腐蚀性、发烟性等缺点,而且价格较贵;无机阻燃剂恰恰可以弥补这些缺陷。一般无机阻燃剂往往兼有阻燃、消烟两种功能。因此近年来无机阻燃剂得到了迅速发展。除了前面提到的Sb、P无机物外,还有含AL、Mg、B、Mo、Zn等的无机物。这些无机物阻燃剂大多是吸热失水,水蒸汽起冷却和稀释可燃气体的作用,从而抑制燃烧的进行。

1.铝化合物:主要品种是AL(OH)3,当外界温度达到190℃时,AL(OH)3开始失水。但由于它的失水温度太低,不大适合于高聚物用。由于氧化铝来源丰富,价格低廉,具有阻燃剂、消烟剂和填充剂三重功能,所以仍不失为一个有发展前途的阻燃剂。

2.硼化合物:硼化合物是一类品种较多的阻燃剂,有硼酸锌、硼酸铵、硼酸、硼砂、偏硼酸钡等。其阻燃机理除同AL(OH)3一样吸热失水外,还具有同磷化合物类似的“膜效应”,生成一层固熔体覆盖在高聚物表面,产生阻燃效果。硼酸锌与Sb2O3等量并用,阻燃效果可超过它们单独使用的任何一个,而且发烟量少、价格低,硼酸锌的价格只有Sb2O3的三分之一左右,是一种理想的Sb2O3代用品。

3.氢氧化镁是高分子材料的添加型无机阻燃剂,与其它无机阻燃剂相比,氢氧化镁具有较多优点:(一)氢氧化镁具有阻燃、消烟和填充三重功能,赋予材料无烟性、无腐蚀性,能获得更优良的阻燃和消烟效果;(二)氢氧化镁在生产、使用和废弃过程中均无有害物质排放,不造成环境污染;(三)氢氧化镁的初始热分解温度为340℃,490℃分解完全,比氢氧化铝的分解温度高140℃。它的总吸热量为44.8KJ/mol,比氢氧化铝的总吸热量约高17%。因此,它能承受更高的加工温度,有利于在产品生产中加快挤塑速度,缩短模塑时间;(四)氢氧化镁在燃烧分解时除自身进行脱水外,还能促进聚合物的成碳作用,形

成保护层,发挥出更好的阻燃效果;(五)氢氧化镁与其它阻燃剂配合使用表现出良好的阻燃协同效应。

二、燃烧及阻燃机理

要研究阻燃剂的阻燃机理,必须首先了解高聚物燃烧机理。

(一)燃烧机理

有机高聚物的燃烧,实质是热分解的过程伴随着发光、发热和氧的化学反应。可燃性物质、氧气和能量是其三要素。燃烧的总反应可简单表示为:

有机高聚物+O2→CO+CO2+H2O+光+热

一些基元反应如下:

1.在O2作用下,大分子链中较弱的键首先发生断裂,产生自由基:~CH+O2→C·+HOO·

2.在高聚物内部无氧区,大分子链吸收外界热量,发生断裂,产生自由基和双自由基:△

~C—C~→2~C·

~C—C·→~C·+·C—C·

3.在自由基作用下,继而发生一系列连锁反应:

~C·+O2→~COO·——①

~CH+HOO·→~C·+H2O2 ——②

H2O2→2HO·——③

RCH3+HO·→RCH2·+H2O ——④

RCH2·+O2→RCHO+HO·——⑤

HO·+H2→H·H2O ——⑥

H·+O2→HO·+·O·——⑦

·O·+H2→HO·+H·——⑧

以上自由基反应延续下去,导致大分子解聚①—⑧式反应产生的HO·和·O·等自由基活性很高,是发展燃烧的关键。

(二)阻燃机理

根据上面的燃烧机理,可以知道通过吸收热能、降低燃烧体的温度,除去能量;隔断空气;供给CO2等惰性气体,使气体的组成改变,离开燃烧极限;捕获活性自由基等办法,使热分解反应终止。

1.气相阻燃机理

气相阻燃就是阻燃剂通过转化为气相物质,发挥其阻燃作用。

(1)捕获自由基

阻燃剂受热后,分解产生气相物质,这些物质能捕获高聚热分解产生的自由基,使热分解反应得到有效控制,从而达到阻燃、灭火的目的。

以卤系阻燃剂为例,卤化物受热产生的卤化氢能捕获到活性的HO·、·O·自由基。通过自由基交换,产生活性较小的自由基:

RX+H·→HX+R·

HX+HO·→H2O+X·

HX+·O·→HO·+X·

(2)“稀释”效应

阻燃剂在高温分解出一种难燃气体(如HX、H2O等),将燃烧体笼罩,“稀释”了周围可燃性气体的浓度,同时吸收大量燃烧热,降低了温度,使燃烧得到控制。

如无机阻燃剂Al(OH)3的阻燃机理:

Al(OH)3→Al2O3+3H2O-71.6(Kcal)

卤系阻燃剂也能分解出比重较大的不燃气体,产生覆盖作用,而隔绝或稀释了空气(同CO2、N2等灭火相类似),不同卤素灭火效力与它们本身的原子量成正比,即:F:Cl:Br:I=1·0:1.9:4.2:6.7按照等重量溴、氯相比,有机溴化物的阻燃效力约为氯化物的两倍。这些事实正是卤系阻燃剂灭火理论的有力证据。2。凝相阻燃机理凝相阻燃就是阻燃剂以凝聚相形态,发挥其阻燃作用。可分成膜阻燃和壁面阻燃效应两种。

(1)成膜效应

阻燃剂受到高温后,在燃烧体表面形成一层不易燃烧、不易挥发的保护膜,从而把燃烧体同O2和火源隔绝开来,使火焰熄灭。无机磷阻燃剂的阻燃机理就以凝相机理为主,在燃烧时,磷化合物逐步分解成磷酸、偏磷酸,最后生成玻璃体状的聚偏磷酸,覆盖于燃烧体的表面,隔绝空气。

(2)壁面效应

所谓壁面效应,就是阻燃剂在高温时产生的一种惰性粉尘,这些惰性粉尘就像容器的器壁一样,既能吸收燃烧热,又能吸附燃烧过程的活性物质,使活性物质失活,从而抑制燃烧。

三、阻燃剂的评估方法

为了评估各种阻燃剂的优劣,国际上陆续建立起许多试验方法和标准。作为先驱,当首推美国的UL规则。自从1928年UL—492(无线电)规则发行以来,大约每三年修订一次。现在的阻燃规则,大多是由UL规则改进而成的。还有美国试验与材料协会制订的“ASTM—D2863—77标准”,国内叫做“氧指数试验”。这两个试验标准在我国已被广泛采用。

1.UL—94竖直燃烧试验标准:试样尺寸分别为5×0.5×1/8吋和5×0.5×1/16吋两种规格。每种规则取三个试样进行平行试验。将试样上端竖直固定,离其下端一处放些药棉。点燃试样下端10秒钟,将火源移走,记录燃烧时间。根据试样的点燃、燃烧时间和滴落情况的不同,将试验结果分为三个等级:VO;Vl;V2。其中VO级阻燃效果最好,V2级最差。

2.氧指数试验:把试样放置在O2和N2的混合气流中,通过测量能够维持试样燃烧一定时间的最低O2含量,来划分试样的相对燃烧性能。把此时测得的O2%叫做氧指数(OI)。 OI=O2流量/(N2流量+O2流量)×100%

目前一般把OI>27.0作为合成材料最低燃烧标准。

具体测试方法见我国标准GB2406—80。

3.模拟火灾试验:为了弥补试验与实际相脱离的缺陷,国外设计了一些大型燃烧试验方法——模拟火灾试验。

美国通用电器公司曾建立了一个大型燃烧试验装置。在野外盖一间12×14的房屋。墙壁嵌以石膏板,房间外面装有各种自动监测仪器,当试验材料在房内燃烧时,监测仪器自动记录下燃烧过程中的各种有关现象和数据,如温度、烟雾、有害气体等。

通过模拟火灾试验测得的结果可信度高,和实际火灾中的真实燃烧结果相吻合,对阻燃剂的研究开发具有更大的指导作用。

四、阻燃剂的追踪与展望

加强阻燃剂应用配方的研究,特别是与Sb2O3、三水合氧化铝、硼酸锌、氢氧化镁等增效剂配方的研究,以及热稳定性、光稳定性、低挥发和无熔滴配方的研究更是阻燃剂开发过

程中的重要课题。积极研制性能好、价格低、耐久、无毒和低发烟的制品,改变我国阻燃剂生产的落后状况,适应近年来我国高聚物材料飞速发展的需要,是高聚物阻燃工艺今后发展的方向。

阻燃剂的主要目的,即对生命和财产的保护,从没有被忽略过。八十年代,人们将列出火灾对人体危害和对财产破坏最小的函数公式,确实研究测量危害人类的危险指数,危险指数由以下几个因素混合而成:点火的快慢、燃烧扩散的速度、烟雾的发散和毒气的产生。危险指数的关键因素是测定时间。要达到保护生命和财产的目的的方法之一就是向人们提供足够的时间,在火灾发生时能安全地离开危险场所。

符合标准试验方法的工作——测量燃烧产物和进行它们对人类和实验动物危害的试验——将继续进行。目前候选的试验方案中,将会有一个或几个成为评价天然和合成物质的阻燃性能的标准的方法。

近几年,国外的阻燃剂研制已向高分子型发展。由于它的分子量大,具有热稳定性高,低毒性,与高聚物的混容性好,对高聚物的物性影响小等优点。我国的阻燃剂生产还是很落后的,这里介绍几种外国先进技术提供给我们一个参考,争取使我国的阻燃剂生产能早日更新换代,赶上世界发展的步伐。

〔1〕氯化石蜡是最早的卤系阻燃剂,效果较差,但由于价格低廉,目前仍是市场上销售量最大者。

〔2〕十溴联苯醚(DBDPO)、良好阻燃剂、但由于环保问题已经被欧盟禁用。

〔3〕六溴环十二烷(HBGD)阻燃效力较高,也面临环保问题。

〔4〕三(2,3一二溴丙基)异氰酸酯(TBC),日本牌号AFR—1002,。

〔5〕四溴双酚A—双(2,3一二溴丙基)醚商品名PE—68。美国Great Lakes化学公司近期开发的新品种。

〔6〕双(2,3—二溴丙基)反丁烯二酸酯(DDBPF)主要用于与苯乙烯系的单体进行共聚来合成阻燃聚苯乙烯类聚合物。

3.镁化合物:镁化合物阻燃剂主要是Mg(OH)2是一个最新发展起来的阻燃剂。它的阻燃机理同AL(OH)3一样,但其失水温度达300—350℃,所以更适用于聚烯烃类。Mg(OH)3也具有阻燃、消烟双重作用。用表面处理剂处理的Mg(OH)2具有更好的阻燃效果。如在聚丙烯中添加47.6%经硬脂酸处理的Mg(OH)2及1.1%NaCl—KCl

固熔体,可达到UL—94—VO标准。

上述的无机阻燃剂,都存在一个致命的缺点:只有在添加量很大时(约40—60%)才能达到阻燃目的,而这么多添加量,势必会导致高聚物机械性能的明显下降。因此,氢氧化镁用作阻燃剂时,必须经过特殊处理和表面改性,具备特定的晶形。一般要求:①晶形为纤维形或片状,这样能够增加材料的延伸率和挠曲强度。②纯度必须高,纯度越高,阻燃效果越好。③颗粒越小越好,实验证明纳米氢氧化镁作为阻燃剂填充到材料中时,各方面性能包括阻燃效果、消烟和机械性能都比微米氢氧化镁优越。④表面极性低,普通氢氧化镁正是由于表面极性高、微观内应力大,作为阻燃剂填充到材料中时影响了材料的机械性能。当表面极性低时,颗粒积聚成团性降低,在材料中分散性和相容性增加,对材料机械性能影响减少。所以要用适当的表面活性剂及用量进行表面处理,来提高与高分子聚合物的相容性,只有具备以上特性的氢氧化镁才能和材料比较好的相容。

高分子加工助剂

1.什么是助剂?为什么要在高分子加工过程中添加助剂(助剂的作用)? 答:1*广义:某种材料和产品在生产、加工过程或使用过程中所需添加的各种辅助物质,用以改善生产工艺和提高产品性能。 狭义:指为改善某些材料的加工性能和最终性能而分散在材料中,对材料结构无明显影响的少量化学物质。 2*在合成材料加工的过程中,助剂是不可缺少的物质条件,它不仅在加工过程中改善工艺性能、影响加工条件、加速反应过程、提高加工效率,还可以改进产品性能、扩大应用范围,延长使用寿命,降低成本,提高产品价值。 2.为什么助剂时与聚合物之间要有良好的相容性? 答:助剂必须长期稳定均匀地存在于聚合物中才能发挥应有的作用,因此要求助剂与聚合物间有良好的相容性。如果相容性不好,助剂就容易析出(固体助剂析出称为“喷霜”,液体助剂析出称为“渗出”或“出汗”),析出后不仅失去作用,而且影响到制品的外观和手感。 3.助剂的损失主要通过哪三个途径? 答:助剂的损失主要是通过挥发、抽出和迁移三条途径。 (挥发性大小取决于助剂本身的结构; 抽出性与助剂在不同介质中的溶解度直接相关; 迁移性大小与助剂在不同聚合物中的溶解度有关。 因此选择助剂应结合产品来进行选择。) 4.解释什么是助剂的协同效应、相抗作用。 答:一种合成材料中常常要同时使用多种助剂,这些助剂间会产生一定的影响。如果相互增效,则起协同作用;如果彼此削弱原有的效能,则起相抗作用。 助剂配方研究的目的之一就是充分发挥助剂之间的协同作用,得到最佳的效果。 5.说明增塑剂的增塑机理。 答:在加热的情况下,分子链的热运动就变得激烈,削弱了分子链的作用力,分子链间的间隔也有增加,增塑剂分子就有可能钻到聚合物分子链间隔中,形成“聚

高分子助剂答案

一、增塑剂 1、什么是增塑剂? 主增塑剂与辅增塑剂有什么本质区别? 内增塑剂与外增塑剂的本质区别。 答:定义:对热和化学试剂稳定的有机化合物。并能在一定范围内与聚合物相容,沸点较高,不易挥发的液体或低熔点的固体,使聚合物的可塑性、柔韧性增加的物质。 主增塑剂可以和树脂充分相容,能单独使用; 辅增塑剂不能和树脂充分相容,只能进入树脂的无定形区,无法进入结晶区,必须与主增塑剂配合使用 内增塑剂是作为第二单体与聚合物共聚,是聚合物分子的一部分,不易跑出;外增塑剂是另外添加到聚合物中的,很容易跑出 2、增塑剂的三种主要增塑机理,各有什么优缺点。 答:润滑理论:增塑剂在高分子材料中的作用就像油在两个移动的物体间起到的润滑剂作用一样,能促进在加工时高分子的大分子链之间的相互移动。小分子的增塑剂在加入之后,小分子包围大分子链,小分子容易运动,带动了大分子相对运动,减少大分子内部的抗形变,克服了大分子之间直接的相互滑动磨擦和范德华力所产生的粘附力。这一理论能解释增塑剂的加入使聚合物粘度减小,流动性增加,易于成型加工,以及聚合物性质不会明显改变的原因。 凝胶理论:聚合物的增塑过程是使组成聚合的大分子力图分开,而大分子之间的吸引力又尽量使其聚集在一起的过程。这种“时集时开”形成一种动态平衡。在一定温度和浓度下,聚合物大分子间的“时开时集”造成分子间存在若干物理“连接点”,增塑剂的作用就是有选择地在这些“连接点”处使聚合物溶剂化,拆散或隔断物理“连接点”,并把使大分子链聚集在一起的作用力中心遮蔽起来,导致大分子间的分开。这一理论更适用于增塑剂用量较大的极性聚合物增塑。 自由体积理论:增塑剂加入后会增加聚合物的自由体积。而所有聚合物在玻璃化转变温度时的自由体积是一定的,因此聚合物的粘度和玻璃化转变温度下降,塑性加大。显然,增塑效果与加入增塑剂的体积成正比。但它不能解释许多聚合物在增塑剂量低时所发生的反增塑现象等 3 、DOP及其基本特性 答:邻苯二甲酸二辛酯(DOP):与绝大多数工业上使用的合成树脂和橡胶均有良好的相容性。具有良好的综合性能,混合性能好,增塑效率高,挥发性较低,低温柔软性较好,耐水抽出,电气性能高,耐热性和耐候性良好。 4、从结构的角度上分,增塑剂可分为哪几类,各有什么特点? 答:邻苯二甲酸酯类:R1,R2是C1-C13的烷基、环烷基和苯基等,R1,R2可以相同,也可以不同。这类增塑剂是目前应用最广泛的一类主增塑剂,它具有色浅、低毒、多品种、电性能、挥发生小、耐低温等特点,具有较全面的性能,其生产量约占增塑剂总量的80%左右。 脂肪族二元酸酯类:n一般为2-11,R1,R2是C4-C11的烷基,R1,R2可以相同,也可以不同。在这类增塑剂中常用长链二元酸与短链二元醇,或短链二元酸与长链一元醇进行酯化,使总碳原子数在18-26之间,以保证增塑剂与树脂间有良好的相容性和低温挥发性。主要是己二酸酯、壬二酸酯等,如己二酸二(2-乙基)己酯(DOA)。 磷酸酯:R1,R2,R3是烷基卤代烷基或芳基,可以相同,也可以不同。磷酸酯是发展较早的一类增塑剂,它们与高分子基体的相容性一般都较好,可作为主增塑剂使用。另外,它除了增塑以外,还具为阻燃的作用,是一种具有多功能的主增塑剂。(TPP 磷酸三苯酯)环氧化物:含有三元环氧基的化合物,主要用于PVC的增塑,它不仅对PVC有增塑作

高分子专业毕业设计

毕业设计(论文) 题目: 子题: 专业:高分子材料指导教师: 学生姓名:班级-学号:高分子 年月

大连工业大学本科毕业设计(论文) 年产2300吨可冷弯PVC电工套管生产车间设计Annual production capacity of 2300 tons of cold-formed PVC electrical casing workshop design 设计(论文)完成日期20 年月日 学院:纺织与材料工程学院 专业:高分子材料 学生姓名: 班级学号: 指导教师: 评阅教师: 年月

摘要 本设计为年产2300吨可冷弯PVC电工套管的配方、工艺流程以及车间的设计,管材的规格为Φ40×2.2mm。其中本设计绪论部分对PVC树脂、PVC管材的发展现状与前景以及PVC电工套管做了简单的介绍;配方设计部分主要对树脂的选择、助剂的选择及最终配方的确定做了详细的介绍;工艺流程设计部分主要是对生产方法进行选择,对工艺流程进行设计;物料衡算部分主要是确定各步工序的物料量和树脂及各助剂的用量;设备选型部分是利用物料衡算计算出的结果来对所需的设备进行选择,组要确定型号和台数;机头设计部分是根据管材的直径及厚度来确定机头的尺寸;车间布置设计部分主要是将设备合理的布置在车间内及车间内房间的设计;车间辅助设施的设计主要是合理的安排电气照明、供暖及通风;能量衡算部分主要对电、水、煤的用量进行计算;最后确定了本设计的投资金额以及对效益的分析。 关键词:PVC;管材;工艺流程;机头设计

Abstract The project is the formula of process design and workshop designed, pipe specifications for Φ40 × 2.2mm for an annual output of 2,300 tons of cold-formed PVC electrical conduit,. Introduction part of this design for PVC resin, PVC pipe development status and prospects, as well as PVC electrical casing brief introduction; The part of the formulating of recipe resin selection, the choice of the additives, and the final formula to determine the detailed introduction; The part of process design is mainly for the selecte of producing methords and process design; Material Balance is mainly to determine the amount of the process materials and resins and additives; The part pf equipment selection is use the material balance calculations calculated results to choose the required equipment group to determine the model number and the number of units; The design for the handpiece is based on the diameter and thickness of the pipe to determine the size of the handpiece; The part of the workshop is mainly about how to arrange the equipment in an reasonable way and the arrangement for the rooms in the workshop; The designe of workshop ancillary facilities is about how to arrange the electrical lighting, heating and ventilation; Energy balance just calculating for the major amount of electricity, water, coal; Finally, determine the amount of investment in the design and analysis of effective. Key Words:PVC;Tubes and pipes;Process flows;Handpiece design

高分子加工助剂名词解释

1助剂是某些材料和产品在生产或加工过程中所需要添加的各种辅助化学品用以改善生产工艺和提高产品性能,树脂和生胶加工成塑料和橡胶制品这一过程中所需要的各种辅助化学品。 2喷聚:固体助剂的析出;发汗:液体助剂的析出。 3焦烧现象:是指橡胶胶料在加工过程中产生的早期硫化的现象。 4促进剂的后效应:在硫化温度以下,不会引起早期硫化达到硫化温度时则硫化活性大的这种性质。 5色母粒:是一种把超常量的颜料或染料均匀载附于树脂之中而制得的聚集体。 6增塑剂:是加进塑料体系中增加塑性同时又不影响聚合物本质特性的物质。 外增塑剂:一般为外加到聚合体系中的高沸点的较难挥发的液体或低熔点固体物质。 内增塑剂:在聚合物的聚合过程中引入能降低了聚合物分子链的结晶度增加了塑料的塑性第二单体物质。主增塑剂:分子既能插入聚合物的无定形区域同时又能插入结晶区域的增塑剂。 辅助增塑剂:分子仅能插入部分结晶的聚合物的无定形区域的增塑剂,此增塑剂又叫非溶剂型增塑剂。 7相容性:增塑剂与树脂相互混合时的溶解能力,是增塑剂最基本要求之一。 8聚能密度(CED):单位体积溶剂的蒸发能。9溶解度参数:单位体积溶剂的蒸发能的平方根所得值。1浊点(Tc):聚合物与增塑剂的稀均相溶液,在冷却下变成浑浊时的温度。 2塑化效率:使树脂达到某一柔软程度的增塑剂用量称为该增塑剂的塑化效率。 3聚合物的氧化是指随着时间的增加聚合物的性能降低,又称为自动氧化。分为诱导期、强烈氧化期。 4抗氧剂:是指对高聚物受氧化并出现老化现象能起到延缓作用的一类化学物质。 主抗氧剂:主抗氧剂被认为是一种自由基的清洗剂,它通过偶合反应(即终止反应)或给出一个氢原子来阻止聚合物中的自由基的破坏作用。辅助抗氧剂:助抗氧剂的作用是可分解聚合物氧化所产生的过氧化物。 5金属离子钝化剂:具有防止重金属离子对聚合物产生引发氧化作用的物质。 6稳定剂:是防止或延缓聚合物在加工、贮藏和使用过程中老化变质的化学药品。 热稳定剂:主要用于PVC和其他含氯的聚合物,既不影响其加工与应用,又能在一定程度上起到延缓其热分解的作用的一类助剂。光稳定剂:凡能抑制或减缓光氧老化进行的的物质称为光稳定剂或紫外光稳定剂。7自由基捕获剂:是一类具有空间位阻效应的哌啶衍生物类光稳定剂,简称为受阻胺类光稳定剂(HALS)。 8光氧老化或光老化:分子材料长期暴露在日光或短期置于强荧光下,由于吸收了紫外线能量,引起了自动氧化反应,导致了聚合物的降解,使得制品变色、发脆、性能下降,以致无法再用。 9阻燃剂:能够增加材料耐燃性的物质叫阻燃剂。0燃烧速度:指试样单位时间内燃烧的长度。1协同效应:指两种或两种以上的助剂配合使用时,其总效应大于单独使用时各个效应的总和。 协同作用体系:阻燃剂的复配是利用阻燃剂之间的相互作用,从而提高阻燃效能,称为协同作用体系。 2燃烧速度:是指试样单位时间内燃烧的长度。燃烧速度是用水平燃烧法和垂直燃烧法等来测得。 3氧指数:是指试样像蜡烛状持续燃烧时,在氮-氧混合气流中所必须的最低氧含量。 4外摩擦:高分子材料在成型加工时,聚合物熔体与加工设备表面间的摩擦。内摩擦:高分子材料在成型加工时,熔融聚合物分子间存在的摩擦。5润滑剂:为减少高分子内摩擦和外摩擦,改进塑料熔体的流动性,防止高分子材料在加工过程中对设备的粘附现象,保证制品表面光洁度而加入的物质称为润滑剂。6脱模剂:对加工模具和被加工材料完全保持化学惰性的物质称为脱模剂。 7发泡剂:是一类能使处于一定粘度范围内的液态或塑性状态的橡胶、塑料形成微孔结构的物质。 发泡助剂:发泡过程中,能与发泡剂并用并能调节发泡剂分解温度和分解速度的物质,或能改进发泡工艺,稳定泡沫结构和提高发泡体质量的物质。物理发泡剂:依靠在发泡过程中本身物理状态变化来达到发泡目地的一类化合物;化学发泡剂:在一定温度下会热分解而产生一种或多种气体,使聚合物发泡。 8抗静电剂:添加在树脂、燃料中或涂附在塑料制品、合成纤维表面的用以防止高分子材料和液体燃料静电危害的一类化学添加剂统称为抗静电剂。外用抗静电剂:采用涂布、喷雾、浸渍等方法使它附在塑料、纤维表面,耐久性较差,所以又叫做暂时性抗静电剂。内用型抗静电剂(或混炼型抗静电剂):在树脂加工过程中(或在单体聚合过程中)添加到树脂组成中的抗静电剂,因其有较好的耐久性,又称为永久性抗静电剂。9偶联剂:是能改善填料与高分子材料之间界面特性的一类物质。 0着色剂:在聚合物中加入的改变制品颜色,提高制品美观性的助剂。 着色力:指颜料影响整个混合物料颜色的能力,着色力大,使用着色剂量就小,成本也低。 1遮盖力:指着色剂阻止光线穿透着色制品的能力。2增透剂:能改善结晶聚合物透明性的助剂。3迁移性:指着色剂向介质渗色或向接触的物质迁移的现象。一般地说,有机酸的无机盐(色淀性颜料)迁移性比较小;分子量较高者比较低者迁移性小。4防霉剂:(生物抑制剂)有抑制霉菌生长和杀灭霉菌的功能。5荧光增白剂:能增加塑料制品的白度、亮度使色彩更加鲜艳夺目的物质。 6防雾剂:又称流滴剂,是防止透明材料雾害的一类添加剂。 7老化:高分子材料在成型、贮存、使用过程中发生结构变化,逐渐地失去使用价值的现象。

功能高分子材料讲义

第三章功能高分子材料 3.1 概述 功能高分子是高分子化学的一个重要领域,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。 3.1.1 功能高分子材料的概念和分类 高分子材料按其使用性能可以分为结构高分子材料和功能高分子材料,结构高分子材料具有较高的比刚度和比强度,可以代替金属作为结构材料,如我们熟知的工程塑料和聚合物基复合材料。 对功能高分子材料,目前尚未有明确的定义,一般认为是指

除了具有一定的力学功能之外还具有特定功能(如导电性、光敏性、化学性和生物活性等)的高分子材料,所谓材料的功能,从根本上说,是指向材料输入某种能量,经过材料的传输转换等过程,再向外界输出的一种作用。材料的这种作用与材料分子中具有的特殊功能的基团和分子结构分不开的。 请注意,不可将功能高分子和功能高分子材料混为一谈,这两者是有明显区别的。功能高分子材料从组成和结构上可以分为结构型和复合型两大类。结构型功能高分子材料是指在高分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由高分子本身的因素决定的。构成结构型功能高分子材料中的高分子叫功能高分子,而复合型功能高分子材料,是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁)的其它材料进行复合而制得的功能高分子材料,这种材料的特殊功能不是由高分子本身提供的。 功能高分子材料涉及范围广、品种繁多,还未有统一的分类方法,一般按其使用功能来分类,大致可以分为以下几类:(1)化学功能高分子材料 主要包括离子交换树脂,高分子催化剂、高分子试剂、螯合树脂、高分子絮凝剂和高吸水性树脂等。

高分子材料加工助剂与配方技术实训

实训任务书

实训任务书

目录 (一)LDPE/HDPE共混物泡沫塑料的配方设计研究 (1) 一、研究综述 (1) 二、设计的目的及意义 (5) 三、设计容 (6) 3.1.PE发泡塑料助剂的选用与配方设计 (6) 3.11.基体 (6) 3.12.助剂的选用 (6) 3.2不同比例LDPE/HDPE共混物泡沫塑料设计制备方案 (7) 3.21基体与助剂的混炼 (7) 3.22.制品的模压成型 (7) 3.23.二次发泡 (7) 3.24.制备步骤流程图 (8) 3.3不同比例LDPE/HDPE共混物泡沫塑料性能测试 (8) 3.31.密度测试 (8) 3.32.泡孔结构 (9) 3.33.拉伸实验 (9) 3.34.冲击强度实验 (9) 四、预测结论分析[11] (11) 参考文献 (11) (二)聚丙烯塑料的阻燃改性配方设计 (13) 前言 (13) 一、实验部分 (14) 1.1 实验材料与设备 (14) 1.1.1 实验材料 (14) 1.1.2 实验设备 (14) 1.2 实验流程图 (14) 1.3 配方设计及计量 (15) 1.4 性能测试 (15) 二、结果与分析 (15) 三、结论 (16) 参考文献 (16) 实训体会及建议 (17) 实训评定表................................................................. 错误!未定义书签。

(一)LDPE/HDPE共混物泡沫塑料的配方设计研究 一、研究综述 摘要:本设计对不同比例LDPE/HDPE共混物泡沫塑料的配方设计、实验操作和性能测试进行了研究,并通过查资料对PE泡沫塑料的情况进行了解。本设计以LDPE/HDPE为变量,添加固定量的EVA、AC发泡剂、DCP交联剂、氧化锌、硬脂酸锌进行模压发泡,并对其密度强度等进行测量,以获取最佳性能的 LDPE/HDPE比例。 关键词:发泡塑料LDPE/HDPE配方研究性能测试 前言:本设计所做的论题是PE发泡塑料的配制,探讨不同比例LDPE/HDPE 共混物泡沫塑料性能的影响。PE泡沫塑料是泡沫塑料中应用较广的一种也是最早成功制得的泡沫塑料之一。早在1941年美国杜邦公司就用氮气发泡制得了PE 泡沫塑料,经过十几年的发展,PE泡沫塑料已发展成熟,在品种及应用方面实现了多样化,开发出各种各样的产品[1]。随着理论研究的不断深入以及发泡技术的进步,PE泡沫塑料在产量和质量方面有了显著提高,应用领域得到不断扩展。阻燃PE泡沫塑料﹑可降解PE泡沫塑料、共混交联等改性PE泡沫塑料及PE泡沫塑料回收再利用是当前PE泡沫塑料的研究方向和发展[2]。 本文作者为做此次论题而收集并查阅了大量文献,主要是最近来有关PE发泡塑料的研究论文、期刊、书籍和发明专利等,如期刊类《高分子材料科学与工程》,书籍类《塑料助剂》等。通过对相应文献的综合分析和归纳整理,现就对综合整理后的文献进行比较专门的、全面的、深入的、系统的评述。 PE发泡塑料是聚乙烯发泡塑料,即英文的缩写为EPE,即定义为以PE为基础而部具有无数微孔性气体的塑料制品,因此它既有聚乙烯的化学性能和泡沫塑料的一般物理性能。PE发泡塑料有优异的化学稳定性,室温下耐盐酸、氢氟酸、磷酸、甲酸、胺类、氢氧化钠、氢氧化钾等各种化学物质,硝酸和硫酸对聚乙烯有较强的破坏作用。PE发泡塑料容易光氧化、热氧化、臭氧分解,在紫外线作用下容易发生降解,碳黑对聚乙烯有优异的光屏蔽作用。受辐射后可发生交联、断链、形成不饱和基团等反应[3]。PE发泡材料具有优异的物理性能,比如:具有质量轻、密度小,能防止空气对流、不易传热、能吸音,具有隔热保温、防震包装、隔音等。它安全无毒,强韧,挠曲性好,有优异的电绝缘性,耐候性和耐化学品性,主要应用于建筑、化工管道、设备等领域的隔热保温。泡孔尺寸减小时热导率有减小的趋势,可以减少热量损失。PE泡沫塑料的成型方法:挤出、注射、

第四章 高分子材料的配方设计

高分子材料加工工艺 Polymer Processing Engineering
青岛科技大学材料科学与工程学院 材料物理教研室
1

高分子材料加工工艺
第四章 高分子材料的配方设计
2

Contents
高分子材料制品设计的一般原则和程序
高分子材料配方设计
3

第四章 高分子材料的配方设计
需求是高分子材料研究、开发的原动力,汽车轻量化、火 车提速、宇宙揭秘、海洋开发等都对高分子材料提出了新的要 求。 研制新的高分子材料,实现产业化、开发产品的新价值, 造福于人类,是高分子材料科学与技术工作者的职责。另一方 面,高分子材料的性能是左右其工业价值的重要因素。 高分子化合物的结构与性能、材料的组成是影响材料性能的 主要因素;制造方法对材料性能具有一定的影响。
4

在配方设计时,需注意以下因素对材料性能的影响: ? 制样条件(成型方法、成型条件、试样形状等) ---例:当采用注射成型、挤出成型和模压成型制作试样 时,成型压力依次递减,试样的分子取向程度也依次递减, 结果性能也不同; ---如:注射成型时,料筒和模具的温度越高,试样分子取 向的程度越低。 ---对于薄的试样,由于表面层所占的比例较大,其对拉伸 强度等的影响比厚试样的大。 ---对于结晶性高分子,成型条件不仅影响分子取向,而且 也影响结晶性,对性能的影响较显著。
5

? 性能测试条件 如:升温速度、作用力的形式及速度)。 ?外界因素 如:温度、湿度、使用环境及光的波长等,如耐热性受氧 的影响大;耐候性受光,尤其是紫外光的影响显著。 一方面,制品对性能的要求是多方面的,也是干差万别 的;另一方面,测定的性能是受制样条件、测试条件及外界 因素等影响的相对值。 作为从事高分子材料成型加工技术人员必须了解这些影 响因素,并在制品的设计和配方设计时充分考虑到这些影 响。
6

高分子材料毕业设计

ChuZhou Vocational Technology College 高分子材料应用技术专业 毕业论文 课题名称:多层共挤高阻隔薄膜的工艺流程 学号:QQ:359973519 班级:09级高分子材料应用技术 姓名: DChris 指导教师:老师好 2011年10月30日

目录 摘要 前言 第一章多层共挤高阻隔薄膜的概述 第一节高阻隔薄膜的概念及特点 1.1.1 概念 1.1.2 产品特点 1.1.3 应用方向 第二节高阻隔薄膜产品的成分 1.2.1 阻隔树脂 1.2.2 肉类包装膜(七层高阻隔薄膜)结构分析 1.2.3 EVOH的性能与特点 第三节肉类包装膜 1.3.1 肉品包装的必要性 1.3.2 肉类包装膜产品特点 第二章多层共挤高阻隔薄膜的生产工艺 第一节多层共挤高阻隔薄膜的工艺介绍 2.1.1 生产工艺 2.1.2 工艺特点 第二节多层共挤高阻隔薄膜的生产原理及设备 2.2.1 原材料的选择和质量控制 2.2.2 生产设备(七层共挤吹塑薄膜的机组设备及型号)第三节肉类包装膜的生产工艺流程 2.3.1 多层共挤包装薄膜(肉类包装膜)成型原理 2.3.2 生产工艺 2.3.3 生产工艺流程示意图及设备 第四节影响阻隔性的主要因素 第三章多层共挤高阻隔薄膜的展望 第一节肉类高阻隔薄膜的发展趋势 3.1.1 肉类高阻隔薄膜的发展及展望 3.1.2 七层以上高阻隔共挤吹塑薄膜生产技术的发展趋势第四章多层共挤高阻隔薄膜的总结 指导老师评语 致谢 参考文献

多层共挤高阻隔薄膜的生产工艺流程设计 摘要 本次的论文主要是讨论和研究多层共挤高阻隔薄膜的生产工艺及应用方向,并特别举例介绍目前市场上所销售的肉类包装膜(火腿肠),其外包装即为七层共挤薄膜,具有很强的阻气阻油性能,市场需求量也很大。在叙述生产过程的同时,也对高阻隔薄膜的前景进行了分析讨论,目前在我国,阻隔性包装薄膜处于推广使用的增长期,国内生产的阻隔性薄膜大多应用在低端产品的包装,性能优良的阻隔性薄膜还需要大量进口,因此市场发展空间很大。 关键词:多层高阻隔薄膜工艺 前言 改革开放几十年来,我国塑料包装行业得到稳步的高速发展,已经从一个初期分散性的行业发展成为独立的、产品门类齐全的现代化产业体系,对塑料制品的年均需求增长率在不断攀升。塑料制品行业成为了增长速度最快,是具有广阔发展前景的朝阳产业。其中,薄膜是用量最大的塑料包装材料,由于其无毒、质轻、包装美观、成本低的特点,因而应用领域在不断拓展,几乎渗透到工农产品和日常生活用品的各个方面,塑料包装薄膜行业的投资正在快速增长。因此,把握国际、国内塑料包装薄膜的技术和市场发展的总体趋势,对于审时度势地进行前瞻性正确决策具有重要现实意义。 随着社会的发展和人们生活水平的提高,产品的分类越来越细,对于产品的包装并不仅仅局限在视觉效果上,而是要根据产品的特点和市场的需求,朝功能化、多样化方向纵深开发。近年来,技术的进步使得塑料包装薄膜的功能化发展趋势日渐明显,高要求、高技术含量的塑料包装薄膜正成为许多企业的支柱产业和研发目标,其包装功能是多样的,除对一般薄膜的抗静电、抗粘连要求外,主要通过原材料、助剂或工艺的调整赋予包装薄膜某些特殊的功能,如适应香烟和饮料包装挺括性与紧贴性需要的热收缩性、适应蔬菜和水果包装需要的透气性、适应电子元件包装需要的导电性、适应可透视包装需要的高光学性能、适应金属设备和仪器包装需要的防锈性以及日益在食品、化妆品、医药方面广泛需要的阻隔性和抗菌性等,薄膜的功能化提高了产品的附加值。 其中阻隔性塑料包装薄膜是目前发展最快的功能薄膜之一。在我国,阻隔性包装薄膜处于推广使用的增长期,国内生产的阻隔性薄膜大多应用在低端产品的包装,性能优良的阻隔性薄膜还需要大量进口,因此市场发展空间很大。 近年来,在日本、欧洲阻隔性薄膜的消费量每年以10%左右的速度增长;而美国阻隔性树脂的消费年均增长13.6%,尽管在我国阻隔性薄膜只是近几年才引起薄膜生产企业的重视,但早已在食品、医药等行业得到广泛的应用,消费市场巨大,有很大的发展空间,发展速度也很快,国内许多相关企业都在根据人们的生活习惯和各类阻隔性包装的实际要求,认真研究相关的包装市场,找准切入点,以期有所收获。综观阻隔性材料的开发及其包装薄膜生产工艺技术的发展状况,笔者认为有一点应该引起我国相关部门的重视,无论是阻隔性原料树脂,还是阻隔性薄膜的生产设备和相关工艺技术,国内科研院所和企业的自主开发能力缺乏,严重依赖进口,国内绝大多数企业实际上还停留在来料加工的初级阶段,包装行业技术整体落后的局面依然

高分子 材料成型 本构方程

本构方程在高分子科学和高分子工程中的应用 (吴其晔,高分子材料流变学) 判断一个本构方程的优劣主要考察: 1)方程的立论是否科学合理,论据是否充分,结论是否简单明了。 2)一个好的理论,不仅能正确描写已知的实验事实,还应能预言至今未知,但可能发生的事实。 3)有承前启后的功能。例如我们提出一个描写非线性粘弹流体的本构方程,当条件简化时,它应能还原为描写线性粘弹流体的本构关系。 4)最后也是最重要的一条,即实验事实(实验数据)是判断一个本构方程优劣的出发点和归宿。实践是检验真理的唯一标准。 对高分子液体流变本构方程理论和实验规律的研究对于促进高分子材料科学,尤其高分子物理的发展和解决聚合物工程中(包括聚合反应工程和聚合物加工工程)若干重要理论和技术问题都具有十分重要的意义。 一则由于高分子材料复杂的流变性质需要精确地加以描述,二则由于高新技术对聚合物制品的精密加工和完美设计提出越来越高的要求,因此以往那些对材料流动性质的经验的定性的粗糙认识已远远不够。 众所周知,高分子结构研究(包括链结构、聚集态结构研究)以及这种结构与高分子材料作为材料使用时所体现出来的性能、功能间的关系研究始终是高分子物理研究的主要线索。与“静态”的结构研究相比,高分子“动态”结构的研究,诸如分子链运动及动力学行为、聚集态变化的动力学规律、

高分子流体的非线性粘弹行为等,更是近年来引人注目的前沿领域。按现代凝聚态物理学的概念,高分子体系被称为软物质(soft matter)或复杂流体(complex fluids)。所谓软物质,即材料在很小的应变下就会出现强烈的非线性响应,表现出独特的形态选择特征。这正是高分子流体的本征特点。如果能精确描述出高分子液体的复杂应力-应变关系,找出这种关系与材料的各级结构间的联系,无疑对高分子凝聚态理论的发展具有重要意义。 在高分子工程方面,当前各种各样新型合成技术及新成型方法、新成型技术(如反应加工成型、气辅成型、振动剪切塑化成型、特种纤维的纺制、新成纤技术等)陆续问世,在每一种技术发展过程中,研究高分子液体(熔体、溶液)的流动规律以及新工艺过程与高分子材料结构性能控制的关系,都是最重要的课题。高分子材料的特点之一是它们的物理力学性能不完全取决于化学结构。化学结构一定的高分子材料可以由于不同的聚集状态(凝聚态结构)而显示出不同性质。在工业上,这不同的凝聚态大多是由于不同的加工成型方法而造成的。因此采用流变本构方程精确地研究和设计成型方法和成型设备,通过在成型过程中对高分子形态的主动控制来获得性能更为优越的新型材料,是高分子工程中的重要热点课题。 要完成这些任务,仅有对高分子熔体和溶液的流动性质粗浅的认识(比如仅仅测量粘度)是不够的。取而代之的是要对大形变下高分子材料的反常的流变性质给出全面的定量的理性描写,要为解决高分子材料合成和加工中出现的流体动力学和应力分析问题提供一种解决问题的手段。目前,高分子流变学的基本原理和方法已深入到高分子科学研究和高分子材料合成和加工工程的各个领域。许多领域中,如高分子材料设计、配方设计、模

谈谈塑料加工用助剂

谈谈塑料加工用助剂 摘要:塑料加工用助剂是指专用于塑料工业为使聚合物配料能顺利成型加工及获得所需应用性能而添加到塑料基材—树脂中的化学品,又被称为“塑料添加剂”。塑料加工用助剂在塑料成型加工中占有特别重要的地位。针对塑料加工用助剂的功用种类和性能特点,分别介绍了塑料加工主要助剂的结构性能、应用技术、发展前景。 关键词:塑料加工、主要助剂、应用技术、发展前景。 塑料助剂又称塑料添加剂,是聚合物(合成树脂)进行成型加工时为改善其加工性能或为改善树脂本身性能所不足而必须添加的一化合物。例如,为了降低聚氯乙烯树脂的成型温度,使制品柔软而添加的增塑剂;又如为了制备质量轻、抗振、隔热、隔音的泡沫塑料而要添加发泡剂;有些塑料的热分解温度与成型加工温度非常接近,不加入热稳定剂就无法成型。因而,塑料助剂在塑料成型加工中占有十分重要的地位。 1 塑料加工助剂的功用种类和性能特点 众所周知,塑料加工助剂的门类繁多,品种各异,它们或者用于改善树脂的加工性能,使之能够顺利完成制品成型的整个过程,并达到提高产量和降低能耗的目的;或者提高聚合物树脂的稳定性能,防止其在加工和应用中老化降解,延长制品的使用寿命;更为重要的是,相当一部分助剂能够赋予制品新的功能。利用助剂来实现塑料改性是一条经济、简便而且非常有效的途径。 从化学结构来看,塑料加工助剂囊括了从无机到有机、从天然化合物到合成化合物、从单一结构的化合物到由多种化合物复合而成的混合物、从低分子量的单体化合物到高分子量聚合物等基几乎所有的化学物质。塑料加工助剂的分类方式很多,按其使用功能分为增塑剂、稳定剂、阻燃剂、润滑剂、抗静电剂、着色剂、发泡剂等。其中,增塑剂是加进塑料体系中增加塑性同时又不影响聚合物本质特性的物质。对促进塑料工业特别是聚氯乙烯工业的发展起着决定性的作用。热稳定剂主要用于PVC和其他含氯的聚合物,既不影响其加工与应用,又能在一定程度上起到延缓其热分解的作用的一类助剂。而由主稳定剂、铺助稳定剂与其他助剂配合而成的复合稳定剂品种,在热稳定剂市场具有举足轻重的地位。阻燃剂能够增加材料耐燃性的物质。阻燃剂可以分为无机阻燃剂和有机阻燃剂。润滑剂是指为了减少高分子内摩擦和外摩擦,从而改进塑料熔体的流动性,防止高分子材料在加工过程中对设备的粘附现象,保证制品表面光洁度而加入的物质。润滑剂作用分为外部润滑作用和内部润滑作用。抗静电剂是指添加在树脂、燃料中或涂附在塑料制品、合成纤维表面的用以防止高分子材料和液体燃料静电危害的一类化学添加剂。抗静电剂可以分为内加型和涂敷型两种类型。着色剂是指为了美观或特定要求而使塑料显示人们所要求颜色的物质。着色剂包括无机颜料、有机颜料和某些染料,以及能产生特殊效果的物质。发泡剂是一类能使处于一定黏度范围内的液态或塑性状态的橡胶、塑料形成微孔结构的物质,它们可以是固体、液体或气体。目前广泛使用的发泡剂有过十几种,而且都是有机化学发泡剂。 2塑料助剂的发展前景 目前,环保、节能已经成为塑料助剂发展的前提条件。许多新型功能性助剂必须在体现环保节能的基本原则上才能考虑其功能性、高效性、差异性、领域扩展性等要求。所以优先支持的研究方向是助剂无害化及高分子化、多种助剂与高分子间相互作用和组分间协同作用、利用新的化合物和新的研究手段,研究助剂的作用机理、高性能工程塑料助剂的研究等。 3结语 总之,品种众多的塑料助剂为蓬勃发展的塑料工业锦上添花,在塑料制品增韧、增强、增塑、阻燃、抗静电、抗菌、抗氧等方面起了重要作用,守到越来越多的关注。

浅谈聚合物配方设计

“十一五”期间,改性塑料行业的发展重点是通用塑料的工程化和工程塑料的高性能化,这两点目前在塑料改性行业里得到了各界同仁的一致认可。如何实现通用塑料的工程化和工程塑料的高性能化呢?这就需要塑料改性技术的创新,塑料技术创新中一个最重要的课题之一就是配方创新。配方创新和配方的设计是密不可分的,如何开发一个新产品,如何设计一个新配方,相信每个塑料改性企业和塑料改性技术人员都十分关心。本人多年在一线从事科研工作,我愿意结合自己的设计配方的经验和心得,同大家探讨和分享。 要设计一个好的塑料改性配方,成为一个真正的优秀技术人员,必须要有扎实的基本功。有了扎实的基本功,才能够进行技术创新。因此我在这里首先浅谈一下配方设计需要具备哪些基本功,供大家参考,不足请指正。 熟悉各种基础树脂的物性、用途以及相关背景 每种基础树脂都有其各自的特点,你只有熟悉它,了解它,才能用好它。这需要长期的基础学习和实践才能做到。在不同的配方里,根据不同的性能指标的要求,选择不同的基础树脂十分重要。这是在配方设计中的基础,譬如盖一栋房子,基础树脂就像是它的基石。因此,要想成功的设计一个配方,必须熟悉各种基础树脂的物性、用途以及相关背景。 (一)、熟悉各种基础树脂的物性 既然是熟悉,就不是一般的简单的了解,要求全面细致,以下举例说明: 例1:聚乙烯类塑料 聚乙烯是指由乙烯单体自由基聚合而成的聚合物,英文名简称PE。PE的合成原料来自石油,自1965年以来一直高居世界树脂产量第一位。目前,聚乙烯的主要品种有:低密度聚乙烯(LDPE),高密度聚乙烯(HDPE),线性低密度聚乙烯(LLDPE),(超)高分子量聚乙烯(UHMWPE),金属聚乙烯(m-PE) 还有其改性品种: 乙烯—乙酸乙烯酯(EVA)氯化聚乙烯(CPE)。 1、聚乙烯类塑料的结构性能 PE为线性聚合物,属于高分子长链脂肪烃;分子对称无极性,分子间作用力小,力学性能不高、电绝缘性好、熔点低、印刷性不好。PE的结构规整,线性度高,因而易于结晶。结晶度从高到低排序:HDPE,LLDPE,LDPE。随结晶度的提高,PE制品的密度、刚性、硬度和强度等性能提高,但冲击性能下降。 (1) 一般性能:PE树脂为无味、无毒的白色粉末或颗粒,外观呈乳白色,有似蜡的手感;吸水率低,小于0.01%。PE膜透明,透明度随结晶度提高而下降。PE膜的透水率低但透气性较大,不适于保鲜包装而适于防潮包装。PE易燃,氧指数仅为17.4%,燃烧时低烟,有少量熔融滴落,火焰上黄下蓝,有石蜡气味。 PE的耐水性较好,制品表面无极性,难以粘合和印刷,须经表面处理才可改善。 (2)力学性能:PE的力学性能一般,其拉伸强度较低,抗蠕变性不好,耐冲击性能较好。PE的耐环境应力开裂性不好,但随分子量增大而改善。PE耐穿刺性好,并以LLDPE最好。 (3)热学性能:PE的耐热性不高,随分子量和结晶度的提高而改善。PE的耐低温性好,脆化温度一般可达-50℃以下;随分子量的增大,最低可达-140℃。PE的线膨胀系在塑料中属较大的。PE的热导率属塑料中较高的。 (4)电学性能:PE无极性,因此电性能十分优异。介电损耗很低,且随温度和频率变化极小。PE是少数耐电晕性好的塑料品种,介电强度又高,因而可用做高压绝缘材料。 (5) 环境性能:PE具有良好的化学稳定性。在常温下可耐酸、碱、盐类水溶液的腐蚀,具

高分子材料课程设计

2011级高分子材料课程设计题目:羟丙基纤维素合成 学院名称:材料工程学院 专业:化学工程与工艺 班级: 学号: 姓名: 指导教师姓名: 二零一四年六月

一、绪论 (1) 1.羟丙基纤维素发展简史 (1) 2.羟丙基纤维素的特性和结构式 (1) 3. 羟丙基纤维素的应用 (2) 3.1 HPC在医药工业的应用 (3) 3.2 HPC在食品工业中的应用 (4) 3.3 HPC在聚氯乙烯(PVC)悬浮聚合中的应用¨ (4) 3.4 HPC在建筑行业的应用 (5) 3.5 其他应用 (5) 二、羟丙基纤维素合成方法 (5) 2.1 非均相法 (5) 2.1.1 液相法 (5) 2.1.2 气相法 (7) 2.2 均相法 (7) 三、原料 (8) 四、有关设计参数 (8) 五、物料衡算 (9) 六、性能检测设计 (11) 1.温度对HPC 溶液流变性的影响 (11) 2. HPC 质量分数对HPC 溶液流变性能的影响 (12) 3. 醚化剂用量对HPC 溶液流变性能的影响 (13) 4. HPC 溶液的非牛顿指数 (14) 七、参考文献 (17)

一、绪论 1.羟丙基纤维素发展简史 纤维素是自然界最丰富的可更新资潭,自1973年世界上出现了石油涨价之后, 再一次引起了人们的重视.纤维素衍生种类很多. 一般可分为纤维素醋和纤维素醚两大类, 纤维素醚又可分 为离子型和非离子型. 轻丙基纤维索(H P C)是国外继乙墓纤维素( E C )、羚乙基纤维素( H E C )、经乙基甲基纤维素(H E M C )之后工业化生产较早的非离子型纤维索醚之一。国外离子型纤维素醚的生产和用量都很大, 可广泛应用于建筑、石油开采、涂料、食品及食品包装. 高分子合成医药辅料等各个行业, 其生产量约占纤维素醚总产量的一半左右. 发展速度远远超过离子 型纤维素醚类. 我国纤维素衍生物工业虽然已有几十年的发展史, 但除几 种纤维素醋和纤维素醚中的玫甲基纤维素钠( 离子型. 年产量 约3 万吨) 具有一定的生产规模外, 世界上用量越来越大的非 离子型纤维素醚, 产盘甚徽。因此, 我国的纤维素醚, 特别是非离子型纤维素醚的发展应引起有关部门和广大科技人员的高度 重视. 2.羟丙基纤维素的特性和结构式 羟丙基纤维素(HPC)是一种水溶性的非离子型纤维素醚,它是一种以天然纤维素为原料经化学改性制得的半合成型高分子 聚合物,HPC具有热塑性、胶结能力、乳化能力、发泡能力以及

高分子加工工艺

1.塑料管材的“四节”特点节能、节水、节地、节材 2.PVC软管、硬管的挤出工艺区别软管的挤出生产线不设定径装置,而是靠通入压缩空气维持一定形状,起到定径效果。 3.我国管材定型一般采用外径还是内径定型,具体有几种形式我国塑料管材尺寸规定为外径公差,故多采用外径定型法。具体形式:内压定径法、真空定径法、顶出法。 4.请分别解释挤出PVC板材时三辊压光机的作用,冷却输送辊的形式以及作用三辊压光机的作用:起冷却定型作用,不起延展成型作用;冷却输送辊的形式:排管冷却器; 作用:①支持没有完全冷却的板材防止变形;②充分冷却板材 5.挤出板材时机头温度一般如何控制?①机头温度沿板材幅宽分多段控制,使中间低两边高,以保证机头两边的物料容易流动;②机头温度比机身温度高5-10℃.(机头较宽,物料要在较宽机头范围内均匀分布,必须提高料温,才能保证熔料的流动性。) 6.请问注射螺杆与挤出螺杆有哪些不同?注射螺杆的独特之处:①旋转运动加轴向水平运动; ②长径比小,压缩比小;③加料段较长;④螺杆头部多为尖头,一般有止逆环。 7.请简单介绍反应注射成型工艺(RIM)由单体或低聚物以液态形式计量,瞬间混合的同时注入模腔,在模腔中迅速反应,以极快的速度生成含有新的特性基团结构的聚合物。SRIM:将玻璃纤维毡、网等预成型体,预先铺放在预热的模具中,使用RIM注射机进行注射成型 8.PP周转箱一般有什么用途?可采用什么材料成型?并请给出采用注射成型时的工艺流程图。用途:周转和贮存食品,饮料。可采用PP/HDPE材料成型 成型前的准备→合模→注射(充模)→保压→冷却固化→开模→顶出制品→后处理 9.采用压延成型法加工软制PVC薄膜时,请给出完整工艺流程。 配料→捏合→塑炼(开炼机、密炼机、挤出机)→供料→金属探测→压延→引离→轧花→冷却→β射线测厚→卷曲切割 1.什么是蜡状层?请分析其产生原因?该如何消除?蜡状层:采用不适当的稳定剂使压延机辊筒表面蒙上的一层薄膜蜡状物质,致使薄膜表面不光,生产中发生黏辊的现象或在更换产品时发生困难。原因:所用的稳定剂与树脂相容性较差,而且其分子极性基团的正电性较高,以致压延时被挤出而包围在辊筒表面,形成蜡状层。消除:①选用正电性低的适当的稳定剂 ②掺入含水氧化铝等吸收金属皂类更强的填料③加入酸性润滑剂 2.PVC人造革主要生产方法。压延法成型PVC人造革的两种方法生产方法:压延、涂覆、层合。压延分为:直接贴合--直接利用压延机将物料贴合引入布基,分布层合--压延成薄膜,复合设备将薄膜与布基分次贴合。 3.压延成型时,采用60m/min的辊速,但仍然采用40m/min时的辊温,料温会如何?制品质量情况?料温上升,流动性增加,出现脱辊或破裂现象,制品质量下降 压延成型时,采用40/min的辊速,但仍然采用60/min的辊温,料温会如何?制品质量情况?料温过低,难以正常包辊,制品表面毛糙,不透明,有气泡甚至出现孔洞 4.PE挤出吹塑桶的成型工艺流程:物料→熔融塑化→挤出型坯→吹胀→制品冷却→脱模→后处理→制品 5.挤出吹塑时,如果吹气速度过快会出现什么情况?(1)进气处产生局部真空造成型坯内陷,完全吹胀后形成横隔模片(2)型坯从口模处被气流拉断以及无法吹胀 6.缠绕成型的概念,湿法缠绕成型工艺流程图将浸过树脂胶液的连续纤维或布带,按照一定规律缠绕到芯模上,然后固化脱模成为增强塑料制品。用于制造各种回转体。 分为干法(预浸带)和湿法(有胶槽)缠绕成型。 湿法工艺流程图:纱架→胶槽浸胶→张力控制(张力辊)→芯模缠绕→固化→脱模 干法与湿法区别:干法--采用预浸胶处理的预浸纱带在缠绕机上经加热软化至粘流态后缠绕

相关主题