搜档网
当前位置:搜档网 › 2屈服强度的测定

2屈服强度的测定

2屈服强度的测定
2屈服强度的测定

二、屈服强度σ0.2的测定

一、概述

金属材料的屈服点(屈服强度)是工程实际中广泛应用的一个重要强度性能指标。对于没有明显屈服现象的金属材料,通常固定以产生0.2%残余应变时的应力(称为规定残余伸长应力)作为这类材料的屈服点,故又称为名义屈服极限、屈服强度等,用σ0.2表示。

二、实验目的:

1.学会测定无明显屈服阶段材料的名义屈服极限的原理和方法;

2.测定45钢的规定残余伸长应力σ0.2;

3.学习试验机和相关仪器的操作使用。

三、实验仪器,材料:

电子万能试验机,引伸计,游标卡尺,拉伸试样

四、实验原理

国标GB228-87《金属拉伸试验方法》规定,σ0.2表征试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距长度的0.2%时的应力,简称为规定残余伸长应力。表达式为:

σr0.2=F r0.2A0

?

式中,F r0.2为规定产生0.2%的残余伸长力,

A0为试样平行长度部分的原始横截面面积。

金属材料规定残余伸长应力σ0.2和屈服点一样,表征材料开始塑性变形时的应力。其测试方法可分为图解法和引伸计(卸力)法。

1、图解法测σ0.2时,需要借助试验机上的自动绘图装置做出载荷F与伸长△L的关系曲线图。如图1所示。为了确保其测量精度,要求力轴每毫米所代表的应力一般不大于10N/mm2 ,曲线的高度应使F r出于力轴量程的1/2以上。伸长放大倍数的选择应使图中的OC段的长度不小于5mm。然后,在绘出的F-△L曲线图上,自弹性直线段与伸长轴的交点O起,在伸长轴上截取一相应于规定非比例伸长的OC段,即

OC=L r×K×0.2%=KL rεr其中L r为

图1 图解法测定σ0.2

引伸计标距,K为引伸计放大倍数,εr为残余伸长应变,即等于0.2%。然后过C点做弹性直线段的平行线CA交曲线于A点,则A点对应的拉力F r即为所测规定残余伸长相对应的F r0.2。根据F r0.2可计算出规定残余伸长应力σ0.2。此法是一次加载后,即可求出σ0.2,但要求有高精度的自动测绘设备,例如电子万能试验机(力传感器、位移传感器及记录绘图装置等)才能保证其测量精度要求。所以在一般情况下不采用此法。常采用引伸计(卸力)法来测量金属材料的σ0.2。

2、采用引伸计(卸力)法σ0.2时,其具体步骤为:

(1)根据前面拉伸实验做好准备工作,如测量直径,安装试样及调整引伸计等。(2)计算引伸计标距L r内产生0.2%的残余变形所对应的规定残余伸长值

(0.2%L r)及其在引伸计上的飞个数A,

即规定残余伸长值在引伸计上的分个数A=规定残余伸长值

引伸计每分格值

(3)加初始载荷F0。即相当于预计规定残余伸长应力的10%的力。安装好引伸计。继续加力至2F0后再卸力到F0,调整引伸计的零点或引伸计的条件零点为1分格(分格数的初读数)

(4)从F0开始加载,第一次施力致使试样在引伸计标距内产生的总伸长为

K×L r×εr+(1~2)分格,即A+(1~2)格。式中第一项为规定残余伸长,

第二项为弹性伸长。然后卸载至F0,在引伸计上读出首次卸力的残余伸长。以后每次施力应使试样产生总伸长为其前一次的总伸长加上规定残余伸长与二次残余伸长(卸至F0)之差,再加上1~2分格的弹性伸长增量。实验直至实测的残余伸长值等于或稍大于规定残余伸长值为止,如图2所示。

(5)的分格数计入附表中,然后计算其残余伸长值并与规定残余伸长应力σ0.2所要求的残余伸长比较。最后用内插法计算出相当于规定残余伸长时所对应的力F r0.2。

图2 引伸计(卸力)法测定σ0.2

五、实验步骤:

1.测量直径d。用千分尺测量试样工作长度内两端及中央三处的直径,每处应在

两个相互垂直的方向各测量一次,取平均值。

2.用分度机对试样进行分度,将试样的工作长度分为十等分,每等分间距10mm。

3.安装引伸计,装夹试样到试验机上,开启油泵,对试样进行加载。

4.加载时注意记录屈服载荷P s及最大载荷P b。

5.取下试样,用游标卡尺测量断裂后的总长度L k和颈缩处的最小直径d k。

六、实验报告要求

1.简述实验名称、目的要求、设备仪器及实验过程。

2.给出材料的σ0.2的值(包含记录原始数据表格)。

3.分析实验误差及其原因。

七、思考题

1.测定材料的规定残余伸长应力σ0.2有何实际意义?

2.用引伸计(卸力)法来测量金属材料的σ0.2时为什么要反复加、卸载?初始

载荷F0是否影响测量结果?

屈服强度的测定

二、屈服强度σ0.2的测定 一、概述 金属材料的屈服点(屈服强度)是工程实际中广泛应用的一个重要强度性能指标。对于没有明显屈服现象的金属材料,通常固定以产生0.2%残余应变时的应力(称为规定残余伸长应力)作为这类材料的屈服点,故又称为名义屈服极限、屈服强度等,用σ0.2表示。 二、实验目的: 1.学会测定无明显屈服阶段材料的名义屈服极限的原理和方法; 2.测定45钢的规定残余伸长应力σ0.2; 3.学习试验机和相关仪器的操作使用。 三、实验仪器,材料: 电子万能试验机,引伸计,游标卡尺,拉伸试样 四、实验原理 国标GB228-87《金属拉伸试验方法》规定,σ0.2表征试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距长度的0.2%时的应力,简称为规定残余伸长应力。表达式为: σr0.2=F r0.2A0 ? 式中,F r0.2为规定产生0.2%的残余伸长力, A0为试样平行长度部分的原始横截面面积。 金属材料规定残余伸长应力σ0.2和屈服点一样,表征材料开始塑性变形时的应力。其测试方法可分为图解法和引伸计(卸力)法。 1、图解法测σ0.2时,需要借助试验机上的自动绘图装置做出载荷F与伸长△L的关系曲线图。如图1所示。为了确保其测量精度,要求力轴每毫米所代表的应力一般不大于10N/mm2 ,曲线的高度应使F r出于力轴量程的1/2以上。伸长放大倍数的选择应使图中的OC段的长度不小于5mm。然后,在绘出的F-△L曲线图上,自弹性直线段与伸长轴的交点O起,在伸长轴上截取一相应于规定非比例伸长的OC段,即 OC=L r×K×0.2%=KL rεr其中L r为 图1 图解法测定σ0.2

拉伸屈服强度的测定

拉伸屈服强度的测定 颁发日期: 第六章拉伸屈服强度的测定 1试验范围 本指导书适用于各种类型的热塑性塑料管材。 2试验依据 GB/T8804.2—2003 热塑性塑料管材拉伸性能测定第一部分:试验方法总则 GB/T8804.2—2003 热塑性塑料管材拉伸性能测定第2部分:硬聚氯乙烯PVC-U、氯化聚氯乙烯PVC-C、和高抗冲聚氯乙烯PVC-HI 管材(idt ISO 6259-2:1997) GB/T8804.3—2003 热塑性塑料管材拉伸性能测定第3部分:聚烯烃管材(idt ISO 6259-3:1997) 3试验原理 沿热塑性塑料管材的纵向裁切或机械加工制取规定形状和尺寸的试样。通过拉力试验机在规定的条件下测得管材的拉伸性能 4试验设备 4.1拉力试验机 4.2夹具 用于夹持试样的夹具连在试验机上,使试样的长轴与通过夹具中心线的拉力方向重合。试样应加紧,使它相对于夹具尽可能不发生位移。

拉伸屈服强度的测定 颁发日期: 夹具装置系统不得引起试样在夹具处过早断裂。 4.3负载显示器 拉力显示仪能显示被夹具固定的试样在试验的整个过程中所受拉力,它在一定速率下测定时不受惯性滞后的影响且其测定的准确度应控制在实际值得±1%范围内。 4.4引伸计 测定试样在试验过程中任一时刻的长度变化。此仪表在一定速率下测定时不受惯性滞后的影响且能测量误差范围在±1%内的形变。试验时,此仪表应安置在使试样经受最小的伤害和变形的位置,且它与试样之间不发生相对滑移。夹具应避免滑移以防影响伸长率测量的精确性。 注:推荐适用自动记录试样的长度变化或任何其他变化的仪表。 4.5测量仪器 游标卡尺 4.6裁刀 4.7制样机和铣刀 5试验试样 5.1试样要求

屈服强度概述

屈服强度概述 屈服强度是材料开始发生明显塑性变形时的最低应力值。 1.概念解释 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值); (2)对于屈服现象不明显的材料,和应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。 当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。

有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度。 首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)。 建筑钢材以屈服强度作为设计应力的依据。 2.屈服极限,常用符号δs,是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值); (2)对于屈服现象不明显的材料,和应力-应变的直线关系的极限偏差达到规定值(通常为材料发生0.2%延伸率)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生塑性变形,应变增大,使材料失效,不能正常使用。 当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为下屈服点和上屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。 a.屈服点yield point(σs) 试样在试验过程中力不增加(保持恒定)仍能继续伸长(变形)

抗拉强度和屈服强度.

抗拉强度和屈服强度 抗拉强度 抗拉强度(tensile strength) 抗拉强度(бb)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 拉伸强度 拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。 (1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa 表示。有些错误的称之为抗张强度、抗拉强度等。 (2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。 (3)拉伸强度的计算: σt = p /(b×d) 式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。 注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。 屈服强度 材料拉伸的应力-应变曲线 yield strength 是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是在屈服点在应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。因为材料屈服后产生颈缩,应变增大,使材料失去了原有功能。 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这

钢筋的屈服强度和抗拉强度

钢筋的屈服强度和抗拉强度 HPB235钢筋,屈服点强度为235MPa,(延伸率为17%); HRB335钢筋,屈服点强度为335MPa,(延伸率为16%); HRB400钢筋,屈服点强度为400MPa,(延伸率为15%)。 根据规定,直径28-40的钢筋,断后延伸率可降低1%,40以上的钢筋可降低2%。 以上要求是交货检验的最小保证值 实验钢筋的拉伸试验 简单的说就是钢筋伸长段与钢筋原长的比。 ①钢筋强度的计算 试件的屈服强度按下式计算: 式中ps——屈服点荷载,n; a0——试件横截面积,cm2。 试件的抗拉强度按下式计算: 式中p0——屈服点荷载,n; a0——试件横截面积,cm2。 ②伸长率的测定 a. 将已拉断试件的两段在断裂处对齐,尽量使其轴线位于一条

直线上。如拉断处由于各种原因形成缝隙,则此缝隙应计入试件拉断后的标距部分长度内。 b. 如拉断处到邻近标距端点的距离大于(1/3)l0时,可用卡尺直接量出已被拉的标距长度l1(mm)。 c. 如拉断处到邻近的标距端点的距离小于或等于(1/3)l0时,可按移位法计算。 d. 伸长率按下式计算(精确至1%): 式中δ——伸长率,%,精确至1%; l0——原标距长度,mm; l1——试件拉断后直接量出或按移位法确定的标距部分的长度,mm(测量精确 mm)。 e. 如试件在标距端点上或标距外断裂,则试验结果无效,应重作试验。 将测试、计算所得到的结果δ10、δ5(δ10、δ5分别表示l0=10a和l0=5a时的断后伸长率),对照国家规范对钢筋性能的技术要求,如达到标准要求则合格,如未达到,可取双倍试验重做,如仍未达到标准者,则钢筋的伸长率不合格。 联系电话: 企业网址:山东金业机械有限公司

屈服强度与抗拉强度

屈服强度与抗拉强度的定义屈服强度又称为屈服极限,常用符号δs,是材料屈服的临界应力值。(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。 抗拉强度(tensile strength) 试样拉断前承受的最大标称拉应力。对于塑性材料,它表征材料最大均匀塑性变形的抗力;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 抗拉强度的定义及符号表示: 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横

截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。抗拉强度(Rm)指材料在拉断前承受最大应力值。万能材料试验机当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定。

屈服强度的工程意义

屈服强度的工程意义:传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。通常采用试验机来测试屈服强度。 抗拉强度的意义:在材料不产生颈缩时抗拉强度代表断裂抗力。脆性材料用于产品设计时,其许用应力是以抗拉强度为依据的。抗拉强度对一般的塑性材料有什么意义呢?虽然抗拉强度只代表产生最大均匀塑性变形抗力,但它表示了材料在材料试验机进行的静拉伸条件下的极限承载能力。对应于抗拉强度σb的外载荷,是试样所能承受的最大载荷,尽管此后颈缩在不断发展,实际应力在不断增加,但外载荷却是在很快下降的。 弹性模量的意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。 静力韧度的意义:材料在用试验机进行静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。严格的说,它应该是真应力-应变曲线下所包围的面积也就是工程上为了简化方便,近似地采取:对塑性材料静力韧度是一个强度与塑性的综合指标。单纯的高强度材料象弹簧钢,其静力韧度不高,而只具有很好塑性的低碳钢也没有高的静力韧度,只有经淬火高温回火的中碳(合金)结构钢才具有最高的静力韧度。 硬度并不是金属独立的基本性能。一般硬度计进行硬度测试。它是指金属在表面上的不大体积内抵抗变形或者破裂的能力。 现在这些表征力学性能的量都可以通过材料试验机进行试验直接得出结果的。比如我们澳珂仪器网站上就有万能材料试验机,液压万能试验机等可以测试这些力学性能的材料试验设备。但是,各种力学性能测试根据不同的标准,不同的试验机得出的数据有所差异。因而在选购试验机的时候要特别注意听专家的意见。应该提供试验规程或标准并获取相应的技术方案较为稳妥。 金属材料的硬度含义 金属材料的硬度含义(如HBS,HB,HR,HK,HRA,HRB,HRC等) HBS(布氏硬度)是硬度指标。布氏硬度是根据压痕单位表面积上的载荷大小来计算硬度值,它不适用于测定硬度较高的材料。 布氏硬度=F(载荷)/A凹(压痕球形表面积) 金属材料抵抗硬的物体压陷表面的能力,称为硬度。根据试验方法和适用范围不同,硬度又可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度、显微硬度和高温硬度等。对于管材一般常用的有布氏、洛氏、维氏硬度三种。 A、布氏硬度(HB)

弹性模量、屈服强度和抗拉强度

弹性模量、屈服强度和抗拉强度 (1) 弹性模量 钢材受力初期,应力与应变成比例地增长,应力与应变之比为常数,称为弹性模量,即E =б/ε。这个阶段的最大应力(P点对应值)称为比例极限бp。 弹性模量反映了材料受力时抵抗弹性变形的能力,即材料的刚度,它是钢材在静荷载作用下计算结构变形的一个重要指标。 (2) 弹性极限 应力超过比例极限后,应力-应变曲线略有弯曲,应力与应变不再成正比例关系,但卸去外力时,试件变形能立即消失,此阶段产生的变形是弹性变形。不产生残留塑性变形的最大应力(e点对应值)称为弹性极限бe。事实上,бp与бe相当接近。 (3) 屈服强度和条件屈服强度 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度,用бs表示。 有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(б0.2)。高碳钢拉伸时的应力-应变曲线如图2-4所示。 图2-4 高碳钢拉伸б-ε曲线 (4) 极限强度 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈

缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度бb。

抗拉强度和屈服强度之间的区别

昆山海达精密仪器有限公司抗拉强度和屈服强度之间的区别 试验机在给材料做试验时都会遇到屈服强度和抗拉强度等试验机术语,有经验的操作员很容易就会明白其中的特点和他们之间的区别,下面是几点简单的介绍可以帮助用户更好的了解和关于试验机的抗拉强度和屈服强度。 试验机的抗拉强度: 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值(b 点对应值)称为强度极限或抗拉强度。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为 N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。抗拉强度( Rm)指材料在拉断前承受最大应力值。 试验机的屈服强度: 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度。 屈服强度的计算公式:σ=F/S,其中σ为屈服强度,单位为“帕”,对塑性材料来讲F为材料屈服时所受的最小的力,单位为“牛”,对脆性材料来讲F为材料发生塑性变形量为原长的0.2%时所受的力,单位还是:“牛”,S为受力材料的横截面积,单位为“平方米”。 昆山海达精密仪器有限公司第 1 页共 1 页

钢材屈服强度试验方法

5 试验加载 5.1 支承装置 5.1.1 试验试件的支承应满足下列要求: 1 支承装置应保证试验试件的边界约束条件和受力状态符合试验方案的计算简图; 2 支承试件的装置应有足够的刚度、承载力和稳定性; 3 试件的支承装置不应产生影响试件正常受力和测试精度的变形; 4 为保证支承面紧密接触,支承装置上下钢垫板宜预埋在试件或支墩内;也可采用砂浆或干砂将钢垫板与试件、支墩垫平。当试件承受较大支座反力时,应进行局部承压验算。 5.1.2 简支受弯试件的支座应符合下列规定: 1 简支支座应仅提供垂直于跨度方向的竖向反力; 2 单跨试件和多跨连续试件的支座,除一端应为固定铰支座外,其他应为滚动铰支座(图5.1.2-1),铰支座的长度不宜小于试件在支承处的宽度; 3 固定铰支座应限制试件在跨度方向的位移,但不应限制试件在支座处的转动;滚动铰支座不应影响试件在跨度方向的变形和位移,以及在支座处的转动(图5.1.2-2); 4 各支座的轴线布置应符合计算简图的要求;当试件平面为矩形时,各支座的轴线应彼此平行,且垂直于试件的纵向轴线;各支座轴线间的距离应等于试件的试验跨度;

5 试件铰支座的长度不宜小于试件的宽度;上垫板的宽度宜与试件的设计支承宽度一致;垫板的厚宽比不宜小于l/6;钢滚轴直径宜按表5.1.2取用; 6 当无法满足上述理想简支条件时,应考虑支座处水平移动受阻引起的约束力或支座处转动受 阻引起的约束弯矩等因素对试验的影响。 5.1.3 悬臂试件的支座应具有足够的承载力和刚度,并应满足对试件端部嵌固的要求。悬臂支座 可采用图5.1.3所示的形式,上支座中心线和下支座中心线至梁端的距离宜分别为设计嵌固长度c 的1/6和5/6,上、下支座的承载力和刚度应符合试验要求。 5.1.4 四角简支及四边简支双向板试件的支座宜采用图5.1.4所示的形式,其他支承形式双向 板试件的简支支座可按图5.1.4的原则设置。

钢材强度计算Word版

屈服强度计算:用拉伸试验读取的下屈服点力值(N),除以试件截面面积(㎜2),所得即屈服强度。单位N/㎜2 钢筋屈服强度标准值就是的等级如HPB235钢筋的屈服强度标准值就是235MPa,HRB335钢筋的屈服强度标准值就是335MPa,HRB400,钢筋的屈服强度标准值就是400MPa,钢筋的屈服强度实际值是检测(取样试验)出来的。 屈服强度是标准件的拉伸试验获得的计算不出来的 钢板的承受力怎么计算? 钢板的屈服强度X受力截面=该面发生变形的力。 也可写成钢板的杨氏模量X钢板的长度=变形力 屈服强度代号:σs;单位:MPa(或N/mm2) 指金属材料受拉力作用到某一程度时,其变形突然增加很大时的材料抵抗外力的能力. 读西格玛Sigma 以下供你参考 希腊字母的正确读法 1 Α α alpha a:lf 阿尔法 2 Β β beta bet 贝塔 3 Γ γ gamma ga:m 伽马 4 Δ δ delta delt 德尔塔 5 Ε ε epsilon ep`silon 伊普西龙 6 Ζ ζ zeta zat 截塔 7 Η η eta eit 艾塔 8 Θ θ thet θit 西塔 9 Ι ι iot aiot 约塔 10 Κ κ kappa kap 卡帕 11 ∧ λ lambda lambd 兰布达 12 Μ μ mu mju 缪13 Ν ν nu nju 纽磁阻系数 14 Ξ ξ xi ksi 克西 15 Ο ο omicron omik`ron 奥密克戎 16 ∏ π pi pai 派 17 Ρ ρ rho rou 肉 18 ∑ σ sigma `sigma 西格马 19 Τ τ tau tau 套 20 Υ υ upsilon j up`silon 宇普西龙 21 Φ φ phi fai 佛爱 22 Χ χ chi phai 西 23 Ψ ψ psi psai 普西角速; 24 Ω ω omega o`miga 欧米伽 希腊字母读法 Αα:阿尔法Alpha Ββ:贝塔Beta

测试钢的强度

《钢材质量检验》单元教学设计一、教案头

二、教学过程设计

三、教学内容(讲义) 1.金属的强度 金属的应力是指金属在外力的作用下,单位面积上所承受的力。即:σ= F/S 金属的强度是指金属在力的作用下达到极限时所能承受的最大应力,它反映材料在力的作用下不发生宏观变形或断裂的能力。金属的强度指标一般包括抗拉强度和屈服强度两项。抗拉强度是指金属在力的作用下发生断裂前,所能承受的最大应力。屈服强度是指金属在外力的作用下产生完全弹性变形时所能承受的最大应力。 钢铁材料一般用作结构材料或工具材料,承力能力是其最基本的性能要求。因此,几乎所有的钢铁材料在出厂前或在加工过程中都要进行强度测验。有了强度指标作指导,在使用过程中,将外力限制在一定的范围内,钢材或其构件就不会产生宏观变形或断裂,这也是工程人员设计和选材的重要依据。对于冶金生产来说,钢的强度检验是指导冶金厂不断改进生产加工工艺、提高产品质量、生产符合标准的钢材产品,以及指导用户合理选材、正确进行冷热加工和热处理的重要依据。 钢的强度检验一般采用拉伸试验来完成。拉伸试验是力学性能试验中最基本也最重要的检测试验,钢材的拉伸试验方法依据GB/T228—2002《金属材料的拉伸试验方法》中的规定进行。 2.拉伸试验 拉伸试验是指,将标准试样夹持在拉伸试验机上,均匀施加轴向作用力,采用自动记录装置记下材料在拉伸过程中所受的拉伸力和变形量,得到如下图所示的拉伸曲线。 下面对拉伸曲线作简要分析。拉伸曲线是力-伸长曲线,横坐标表示试样在拉伸过程中的伸长量,纵坐标表示试样所受到的轴向拉伸力。观察拉伸曲线,可将其分为四个阶段。 Oa——弹性变形阶段。试样的变形完全是弹性的,力卸载后,伸长变形消失,试样可恢复到原来的尺寸。

拉力试验机如何测试物体的屈服强度

拉力试验机如何测试物体的屈服强度 屈服强度是金属材料发生屈服现象时的屈服极限,也就是抵抗微量塑性变形的应力。对于无明显屈服现象出现的金属材料,规定以产生0.2%残余变形的应力值作为其屈服极限,称为条件屈服极限或屈服强度。 大于屈服强度的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面

积的抗拉极限载荷。单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。 所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。抗拉强度是材料单位面积上所能承受外力作用的极限。超过这个极限,材料将被解离性破坏。 材料在外力作用下,发生弹性形变,遵循胡克定律。什么叫弹性形变呢?就是外力消除,材料会恢复原来的尺寸和形状。当外力继续增大,到一定的数值之后,材料会进入塑性形变期。材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。从晶体角度来说,只有拉力超过屈服点,材料的晶体结合才开始被破坏!材料的破坏,是从屈服点就已经开始,而不是从断裂的时候开始的! 在做万能拉力检测时,当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度。 拉力试验机测试中,屈服强度和抗拉强度的区别如下: 1、拉力试验机中抗拉强度 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 2、拉力试验机中屈服强度 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶

测定铝合金材料的名义屈服强度

图解法测定铝合金材料的弹性模量E 和屈服强度 [实验目的] 1、学习用图解法测定塑性材料的规定非比例延伸强度R P 。 2、了解电子引伸计测量试样伸长量的原理,掌握电子引伸计的安装和使用方法 ,并能正确使用。 3、测定铝合金材料的弹性模量E 和规定非比例延伸强度R P 0.2。 [使用仪器] 万能试验机或拉力试验机、电子引伸计、游标卡尺(最小分度不大于0.05 mm )、自动绘图系统、待测铝合金拉伸试样等 [实验原理] 1、图解法测定铝合金材料的弹性模量E 在试验机自动记录的F -ΔL 曲线的弹性直线段上取相距 尽可能远的A 、B 两点,并读取其相应的载荷增量值ΔF 和伸长增量值δL (见图5-1),则所测材料的弹性模量为: L S L F δΔE av e ??= (5-1) 式中L e 为引伸计标距,S av 为所用试样原始横截面平均面积。 2、图解法测定规定非比例延伸强度R P 0.2 除了中、低碳钢、16锰钢及一些高强度低合金钢等金属材料外,大部分金属都不具有 明显的屈服现象,它们的拉伸曲线由直线部分(弹性阶段)直接过渡到曲线部分(强化阶段),因此不能像测低碳钢那样测定这些材料的屈服强度,而材料的屈服强度是衡量材料强度的重要力学性能指标之一,所以对于没有明显屈服阶段 的塑性材料,工程上常用对应于塑性应变(残余应变) ε =0.2﹪时的应力作为衡量材料强度的指标,并用R 0.2表示,称为材料的名义屈服强度或条件屈服强度或规定延伸强度R 0.2,其数值的确定方法如图5-2所示。图中的CD 直线与弹性阶段内的直线部分平行,即在ε轴上取OC =0.2﹪,过C 点作 直线CD 平行于σ-ε图中的直线段,交曲线于D 点,于是点D 的纵坐标即为R 0.2。 规定延伸强度R 0.2有两种含义:一是试样非比例延伸率等于引伸计标距的0.2﹪时的应力,称为规定非比例延伸强度,用R P 0.2表示,其测定方法是在加载情况下用图解法或引 图5-1 材料的F -ΔL 曲线 图5-2 R 0.2的确定方法

抗拉强度和屈服强度

抗拉强度和屈服强度 Prepared on 22 November 2020

抗拉强度和屈服强度抗拉强度 抗拉强度(tensile strength) 抗拉强度(бb)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 拉伸强度 拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。 (1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa表示。有些错误的称之为抗张强度、抗拉强度等。 (2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。 (3)拉伸强度的计算: σt = p /( b×d) 式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。 注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。 屈服强度 材料拉伸的应力-应变曲线 yield strength 是屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是在在();(2)对于屈服现象不明显的材料,与应力-应变的直线关系的达到规定值(通常为%的永久形变)时的应力。通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。因为材料屈服后产生,增大,使材料失去了原有功能。 当应力超过后,增加较快,此时除了产生外,还产生部分。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ)。 有些(如)无明显的屈服现象,通常以发生微量的塑性变形(%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。 首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状发生变化)

抗拉强度和屈服强度

抗拉强度和屈服强度文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

抗拉强度和屈服强度抗拉强度 抗拉强度(tensile strength) 抗拉强度(бb)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 拉伸强度 拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。 (1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa表示。有些错误的称之为抗张强度、抗拉强度等。 (2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。 (3)拉伸强度的计算: σt = p /(b×d)

式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。 注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。 屈服强度 材料拉伸的应力-应变曲线 yield strength 是屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是在在();(2)对于屈服现象不明显的材料,与应力-应变的直线关系的达到规定值(通常为%的永久形变)时的应力。通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。因为材料屈服后产生,增大,使材料失去了原有功能。 当应力超过后,增加较快,此时除了产生外,还产生部分。当应力达到B 点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ)。 有些(如)无明显的屈服现象,通常以发生微量的塑性变形(%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。 首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状发生变化)

材料的力学性能测试

材料力学实验指导书 (第一部分) 材料的力学性能测试 浙江工业大学机电学院 2006年9月

第一部分 材料的力学性能测试 任何一种材料受力后都有变形产生,变形到一定程度材料就会降低或失去承载能力,即发生破坏,各种材料的受力——变形——破坏是有一定规律的。材料的力学性能(也称机械性能),是指材料在外力作用下表现出的变形和破坏等方面的性能,如强度、塑性、弹性和韧性等。为保证工程构件在各种负荷条件下正常工作,必须通过试验测定材料在不同负荷下的力学性能,并规定具体的力学性能指标,以便为构件的强度设计提供可靠的依据。材料的主要力学性能指标有屈服强度、抗拉强度、材料刚度、延伸率、截面收缩率、冲击韧性、疲劳极限、断裂韧性和裂纹扩展特性等。金属材料的力学性能取决于材料的化学成分、金相结构、表面和内部缺陷等,此外,测试的方法、环境温度、周围介质及试样形状、尺寸、加工精度等因素对测试结果也有一定的影响。 材料的力学性能测试必修实验为5学时,包括:轴向拉伸实验、轴向压缩实验、低碳钢拉伸弹性模量E 的测定、扭转实验、低碳钢剪切弹性模量G 的测定。 §1-1 轴向拉伸实验 一、实验目的 1、 测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断 面收缩率Z (ψ)。 2、 测定铸铁的抗拉强度m R (b σ)。 3、 比较低碳钢(塑性材料)和铸铁(脆性材料)在拉伸时的力学性能和断口特征。 注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。 二、设备及试样 1、 电液伺服万能试验机(自行改造)。 2、 0.02mm 游标卡尺。 3、 低碳钢圆形横截面比例长试样一根。把原始标距段L 0十等分,并刻画出圆周等分线。 4、 铸铁圆形横截面非比例试样一根。 注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。非比例试样0L 与0S 无关。 三、实验原理及方法 低碳钢是指含碳量在0.3%以下的碳素钢。这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。 ΔL (标距段伸长量) 低碳钢拉伸图(F —ΔL 曲线) 以轴向力F 为纵坐标,标距段伸长量ΔL 为横坐标,所绘出的试验曲线图称为拉伸图,即F —ΔL 曲线。低碳钢的拉伸图如上图所示,F eL 为下屈服强度对应的轴向力,F eH 为上屈服强度对应的轴向力,F m 为最大轴向力。

浅谈材料屈服强度及其影响因素

浅谈材料屈服强度及其影响因素 屈服标准: 工程上常用的屈服标准有三种: 1、比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 2、弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 3、屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 影响屈服强度的因素: 影响屈服强度的内在因素有: ---结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化;(2)形变强化;(3)沉淀强化和弥散强化;(4)晶界和亚晶强化。沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: ---温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率

特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度 屈服强度的工程意义 ----传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 ----屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。

钢材强度计算.

屈服强度计算:用拉伸试验读取的下屈服点力值(N,除以试件截面面积(㎜2,所得即屈服强度。单位N/㎜2 钢筋屈服强度标准值就是的等级如HPB235钢筋的屈服强度标准值就是 235MPa,HRB335钢筋的屈服强度标准值就是335MPa,HRB400,钢筋的屈服强度标准值就是400MPa,钢筋的屈服强度实际值是检测(取样试验出来的。 屈服强度是标准件的拉伸试验获得的计算不出来的 钢板的承受力怎么计算? 钢板的屈服强度X受力截面=该面发生变形的力。 也可写成钢板的杨氏模量X钢板的长度=变形力 屈服强度代号:ζs;单位:MPa(或N/mm2 指金属材料受拉力作用到某一程度时,其变形突然增加很大时的材料抵抗外力的能力. 读西格玛Sigma 以下供你参考 希腊字母的正确读法 1 Α α alpha a:lf 阿尔法 2 Β β beta bet 贝塔 3 Γ γ gamma ga:m 伽马 4 Γ δ delta delt 德尔塔 5 Δ ε epsilon ep`silon 伊普西龙

6 Ε δ zeta zat 截塔 7 Ζ ε eta eit 艾塔 8 Θ ζ thet ζit 西塔 9 Η η iot aiot 约塔 10 Κ θ kappa kap 卡帕 11 ∧ ι lambda lambd 兰布达 12 Μ κ mu mju 缪13 Ν λ nu nju 纽磁阻系数 14 Ξ μ xi ksi 克西 15 Ο ν omicron omik`ron 奥密克戎 16 ∏ π pi pai 派 17 Ρ ξ rho rou 肉 18 ∑ ζ sigma `sigma 西格马 19 Τ η tau tau 套 20 Υ υ upsilon j up`silon 宇普西龙 21 Φ θ phi fai 佛爱 22 Φ χ chi phai 西 23 Χ ψ psi psai 普西角速; 24 Ψ ω omega o`miga 欧米伽 希腊字母读法

拉伸常用计算公式

常用计算公式: 1、钢板拉伸: 原始截面积=长×宽 原始标距=原始截面积的根号×L 0=K S0 k为S0为原始截面积 断后标距-原始标距 断后伸长率= ×100% 原始标距 原始截面积—断后截面积 断面收缩率= ×100% 原始截面积 Z=[(A0—A1)/A0]100% 2、圆材拉伸: 2 原始截面积= 4 (= D=直径)标距算法同钢板 3、光圆钢筋和带肋钢筋的截面积以公称直径为准,标距=5×钢筋的直径。断后伸长同钢板算法。 4、屈服力=屈服强度×原始截面积 最大拉力=抗拉强度×原始截面积 抗拉强度=最大拉力÷原始截面积 屈服强度=屈服力÷原始截面积 5、钢管整体拉伸: 原始截面积=(钢管外径—壁厚)×壁厚×(=)标距与断后伸长率算法同钢板一样。

6、抗滑移系数公式: N V=截荷KN P1=预拉力平均值之和 nf=2 预拉力(KN)预拉力之和滑移荷载Nv(KN) 第一组425 第二组345 428 第三组343 424 7、螺栓扭矩系数计算公式:K= P·d T=施工扭矩值(机上实测) P=预拉力

d=螺栓直径 已测得K值(扭矩系数)但不知T值是多少可用下列公 式算出:T=k*p*d T为在机上做出实际施拧扭矩。K为 扭矩系数,P为螺栓平均预拉力。D为螺栓的公称直径。8、螺栓标准偏差公式: K i=扭矩系数K2=扭矩系数平均值用每一组的扭矩系数减去平均扭矩系数值再开平方,八组相加之和,再除于7。再开根号就是标准偏差。 例:随机从施工现场抽取8 套进行扭矩系数复验,经检测:螺栓直径为22 螺栓预拉力分别为:186kN,179kN,192kN,179kN,200kN,205kN,195kN,188kN; 相应的扭矩分别为: 530N·m,520N·m,560N·m,550N·m,589N·m,620N·m,626N·m,559N·m K=T/(P*D) T—旋拧扭矩P—螺栓预拉力D—螺栓直径(第一步先算K值,如186*22=4092 再用530/4092=,共算出8组的K值,再算出这8组的平均K 值,第二步用每组的K值减去平均K值,得出的数求出它的平方,第三步把8组平方数相加之和,除于7再开根号。得出标准差。 解:根据规范得扭矩系数: 2 1 () 1 n i i K K n σ= - = - ∑

相关主题