搜档网
当前位置:搜档网 › 吊车梁形式与设计

吊车梁形式与设计

吊车梁形式与设计
吊车梁形式与设计

吊车梁形式与设计

在设计中经常遇到吊车梁的设计,本文主要从吊车梁所承受的荷载、吊车梁的形式、吊车梁的设计等方面简单谈一下。

标签:吊车梁荷载截面设计稳定性验算制动结构

0引言

在工业工程项目中,设计时经常遇到吊车梁,下面我简要谈谈我在这方面的总结,主要包括;吊车梁所承受的荷载、吊车梁的形式、吊车梁的设计等方面。

1吊车梁所承受的荷载

吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载、横向水平荷载和沿吊车梁纵向的水平荷载。纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。吊车沿轨道运行、起吊、卸载以及工件翻转时将引起吊车梁振动,特别是当吊车越过轨道接头处的空隙时还将发生撞击,因此在计算吊车梁及其连接强度时吊车竖向荷载应乘以动力系数。对悬挂吊车(包括电动葫芦)及工作级别A1~A5的软钩吊车,动力系数可取1.05:对工作级别A6~A8的软钩吊车、硬钩吊车和其他特种吊车,动力系数可取为1.1。

横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。手动吊车及电动葫芦可不考虑水平荷载。

计算重级工作制吊车梁及其制动结构的强度、稳定性以及连接(吊车梁、制动结构、柱相互间的连接)的强度时,由于轨道不可能绝对平行、轨道磨损及大车运行时本身可能倾斜等原因,在轨道上产生卡轨力,因此钢结构设计规范规定应考虑吊车摆动引起的横向水平力,此水平力不与小车横行引起的水平荷载同时考虑。

2吊车梁的形式

吊车梁一般设计成简支梁,设计成连续梁固然可节省材料,但连续梁对支座沉降比较敏感,因此对基础要求较高。吊车梁的常用截面形式,可采用工字钢、H型钢、焊接工字钢、箱型梁及桁架做为吊车梁。桁架式吊车梁用钢量省,但制作费工,连接节点在动力荷载作用下易产生疲劳破坏,故一般用于跨度较小的轻中级工作制的吊车梁。一般跨度小起重量不大(跨度不超过6米,起重量不超过30吨)的情况下,吊车梁可通过在翼缘上焊钢板、角钢、槽钢的办法抵抗横向水平荷载,对于焊接工字钢也可采用扩大上翼缘尺寸的方法加强其侧向刚度。

吊车梁设计

吊车梁系统结构组成 吊车梁设计 吊梁通常简单地支撑(结构简单,施工方便且对轴承不敏感) 常见形式为:钢梁(1),复合工字梁(2),箱形梁(3),起重机桁架(4)等。 吊车梁上的负载 永久载荷(垂直) 具有横向和横向方向的动载荷具有重复作用的特征,并且容易引起疲劳破坏。因此,对钢的高要求,除抗拉强度,伸长率,屈服点等常规要求外,还要确保冲击韧性合格。 吊车梁结构系统的组成 1.吊梁 2.制动梁或制动桁架 吊车梁的负载 吊车梁直接承受三个载荷:垂直载荷(系统重量和重量),水平载荷(制动力和轨道夹紧力)和纵向水平载荷(制动力)。 吊车梁的设计不考虑纵向水平荷载,而是根据双向弯曲进行设计。 垂直载荷,横向水平载荷和纵向水平载荷。 垂直载荷包括起重机及其重量以及起重机梁的自重。 当起重机通过导轨时,冲击将对梁产生动态影响。设计中采用增加车轮压力的方法。 横向水平载荷是由轨道夹紧力(轨道不平整)产生的,它会产生

横向水平力。 起重机负荷计算 根据载荷规范,起重机水平横向载荷的标准值应为横向小车的重力g与额定起重能力的Q之和乘以以下百分比: 软钩起重机:Q≤100kN时为20% 当q = 150-500kn时为10% Q≥750kn时为8% 硬钩起重机:20% 根据GB 50017的规定,重型工作系统起重机梁(工作高度为a6-a8)由起重机摆动引起的作用在每个车轮压力位置上的水平力的标准值如下: 吊车梁的内力计算 计算吊车梁的内力时,吊车荷载为移动荷载, 首先,应根据结构力学中影响线的方法确定每种内力所需的起重机负载的最不利位置, 然后,计算在横向水平载荷作用下的最大弯曲力矩及其相应的剪切力,支座处的最大剪切力和水平方向上的最大弯曲力矩。 在计算吊车梁的强度,稳定性和变形时,应考虑两台吊车; 疲劳和变形的计算采用起重机载荷的标准值,而不考虑动力系数。 1.首先,根据影响线法确定载荷的最不利位置; 2.其次,计算吊车梁的最大弯矩和相应的剪力,支座处的最大剪力以及横向水平荷载下的最大弯矩。

吊车梁设计

1设计资料 简支起重机梁,跨度为12m,工作吊车有两台,均为A5级DQQD 型桥式起重机,起重机跨度L=10.5m,横行小车自重g=3.424t。 起重机梁材料采用Q235钢,腹板与翼缘连接焊接采用自动焊,自动梁宽度为1.0m。最大轮压标准值FK=102kN. 起重机侧面轮压简图如下: 1.内力计算 (1)两台起重机作用下的内力。竖向轮压在支座A产生的最大剪力,最不利轮位只可能如下图所示:由图可知:

243.53KN )3.635.01(1212 1 102KN V K.A =++??= 即最大剪力标准值243.53KN.V kmax = 竖向轮压产生的最大弯矩轮压如图所示 : 最大弯矩在C 点处,其值为 mm a 800102 31650 1024050102=??-?= KN 2.63112000 6400 KN 0213R A =? ?= m KN 38.31605.4102KN -4.6KN 2.631M K C ?=??= 计算起重机梁及制动结构强度时应考虑油起重机摆动引起的横向水

平力,产生的最大水平弯矩为: ()kN n g Q M yk 2.3238.63148.9270.14424.312.038.631%12=??+? =?+? = (2) 一台起重机作用下的内力最大剪力如图所示: 169.6kN )21(7.951/12kN 021V K1=+??= 最大弯矩如图所示:

kN 8.4812 4.988 kN 0212R A =? ?= m kN 0.234m 988.4kN 8.48M kc1?=?= 在C 点处的相应的剪力为: kN 8.48R V A K C1== 计算制动结构的水平挠度时应采用由一台起重机横向水平荷载标准值Tk (按标准规范取值)所产生的挠度: ()kN kN n g Q T k 2.54 8 .9270.14424.312.0%12=?+?=+= 水平荷载最不利轮位和最大弯矩图相同,产生的最大水平弯矩 m kN m kN M yk ?=??=56.21102 2 .50.4231 (3)内力汇总,如下表

吊车梁设计计算书

吊车梁设计 (1)设计资料 车。距 (2m ax 1m ax Q F P αβγ==1..05×1.03×1.4×38=57.54KN 57.542375 45.556000 45.55 2.375108.18.57.5445.5511.99B C C C R K N M K N m V V K N ?= ==?==-=-=左右 2)求m ax T M

() max 57.54 3.5691.116 V KN ?+= = 4)求m ax T V m ax 2.191.11 3.3357.54 T V K N = ?= (3)截面估算 1)梁高 ①按经济条件确定: 6 3 1.2108.1810 603795215 73007300292sh W m m h m m ??= ==?=? = ②按允许挠度值确定: 66min 0.6100.6215600050010387l h fh m m v -?? =?=????=????

③建筑净空无要求 故取h=500mm 。 2)腹板厚度 ①经验公式: 73730.58.5mm w t h =+=+?= ②按抗剪要求: 3 max min 1.2 1.291.1110 1.75.500125 w V t m m h f ??= = =? ③按局部挤压要求: 52505102134368z y R l a h h m m =++=+?+?= 3 m in 1.057.5410 0.73.368215 w z F t m m l f ψ??= ==? 故取8w t m m = ④局部要求 50062.5808 =<= 3)翼缘尺寸 为使截面经济合理,选用上、下翼缘不对称工字形截面,所要翼缘板面积按下列公式近似计算。 16037951.85005416500 6 w w W A t h m m h = -= -??= 取上翼缘A=250×10=25002mm 下翼缘A=200×10=20002mm 即初选上翼缘板-250×10,下翼缘板-200×10

吊车梁最大弯矩点计算

吊车梁最大弯矩点 内力计算 1.计算吊车梁的内力时,由于吊车荷载为动力荷载,首先应确定求各内力所需吊车荷载的最不利位置,再按此求梁的最大弯矩及其相应的剪力、支座最大剪力,以及横向水平荷载作用下在水平方向所产生的最大弯矩M T(当为制动梁时)或在吊车梁上翼缘的产生的局部弯矩M H(当为制动桁架时)。 2.常用简支吊车梁,当吊车荷载作用时,其最不利的荷载位置、最大剪矩和剪力,可按下列情况确定: (2)两个轮子作用于梁上时(图8-4) 最大弯矩点(C)的位置为:a2= a1/4最大弯矩为:(8-6) 最大弯矩处的相应剪力为:(8-7) (2)三个轮子作用于梁上时(图8-5) 最大弯矩点(C)的位置为:最大弯矩为:(8-8) 最大弯矩处的相应剪力为:(8-9) (3)四个轮子作用于梁上时(图8-6) 最大弯矩点(C)的位置为: 最大弯矩为:(8-10)

最大弯矩处的相应剪力为:(8-11) 当时 最大弯矩及其相应剪力均与公式(8-10)及公式(8-11)相同,但公式中的应用代入 (4)六个轮子作用于梁上时(图8-7): 最大弯矩点(C)的位置为: 最大弯矩为:(8-12) 最大弯矩处的相应剪力为:(8-13) 当及时,最大弯矩点(C点)的位置为: 其最大弯矩及相应剪力均与公式(8-12)及公式(8-13)相同,但公式中的应用代入 (5)最大剪力应在梁端支座处。因此,吊车竖向荷载应尽可能靠近该支座布置(图8-4b)至图8-7b),并按下式计算支座最大剪力: (8-14) 式中n—作用于梁上的吊车竖向荷载数。

选择吊车梁截面时所用的最大弯矩和支座最大剪力,可用吊车竖向荷载作用下所产生的最大弯矩和支座最大剪力乘以表8-2的(为考虑吊车梁等自重的影响系数)值,即 (8-15) (8-16) 3.吊车横向水平荷载作用下,在水平方向所产生的最大弯矩,可根据图8-4(a)至图8-7(a)所示荷载位置采用下列公式计算: 当为轻、中工作制(A1-A5)吊车梁的制动梁时,(8-17) 当为重级或特重级工作制(A6-A8)吊车梁的制动梁时,(8-18) (2)吊车横向水平荷载作用下制动桁架在吊车梁翼缘所产生的局部弯矩可近似地按下列公式计算(图8-8): 当为起重量Q≥75t的轻、中级工作制吊车的制动桁架时 (8-19) 当为起重量Q≥75t的重级工作制(特重级不受起重量限制)吊车的制动桁架时 (8-20) 当为起重量Q≤50t的轻、中级工作制吊车的制动桁架时 (8-21) 当为起重量Q≤50t的重级工作制(特重级不受起重量限制)吊车的制动桁架时 (8-22)

吊车及吊车梁设计

钢结构设计规范(新规范)GB50017-2003中表A.1.1 手动吊车梁和单梁吊车(包括悬挂吊车)L/500 轻级工作制桥式吊车L/800 中级工作制桥式吊车L/1000 重级工作制和起重量Q≥50的中级工作制桥式吊车L/1200 风荷载控制柱顶位移,1/500,1/400; 吊车作用下,仅重级工作制控制梁顶处节点位移,1/1250;中级可以放松吊车下位移,有PKPM 计算的图籍为例吊车下位移(1/800). A1-A3 轻级如:安装,维修用的电动梁式吊车.手动梁式吊车. A4-A5中级如:机械加工车间用的软钩桥式吊车 A6-A7 重级如:繁重工作车间软钩桥式吊车 A8超重级如:冶金用桥式吊车,连续工作的电磁,抓斗桥式吊车 吊车轻重级别不能片面的根据工作频繁程度分,但是和吨位无关系。 如前帖所说,按照载荷状态和利用等级两个指标来分。 1、载荷状态:是一个概率分布参数,通俗的说,就是这台吊车在整台吊车的寿命期间内(如20年),吊额定载荷的次数和所有的吊装次数的百分比。分轻、中、重、特重4级。 举例来说,对于港口的抓斗,它在自己的寿命内,每吊一次都是额定载荷,属于特重,而有些车间的检修桥吊,它一辈子只吊额定载荷只有几次,其余只吊额定载荷的几分之一。就属于轻。 2、利用等级:整个寿命期间的工作循环数,通俗的说,就是一辈子的吊多少次。从U0~U9分为10个级别,U0是1.6E+4,也就是少于16000次,U9为4E+6,也就是多于400万次。 3、根据上述2个指标,列表后,X方向为利用等级,Y为载荷状态,根据对角线原则再确定。如果载荷状态为轻,但是利用等级为U9,也是特重;如果载荷状态为特重,但是利用等级为U0,也是轻级。 有关吊车荷载主要有以下几种: 1、吊车竖向荷载标准值应采用吊车最大轮压或最小轮压。(《荷规》5.1.1) Pmax与Pmin关系: Pmin= (Q总+Q)/n-Pmax Dmax与Dmin根据影响线求出:Dmax与Dmin同时出现,一端出现Dmax时,对应另一端出现Dmin。 吊车梁计算时,先确定最大弯矩(Mc)出现的截面和极限荷载Pk,根据截面C处的弯矩影响线,求出吊车梁绝对最大弯矩标准值。并注意吊车梁计算时应乘以动力系数(轻中级区1.05,重级1.1)和分项系数。 排架计算时,通过支座反力的影响线,确定极限荷载的位置,求出支座反力最大值,即为吊车对排架产生的竖向荷载Dmax,和Dmin. 2、吊车纵向水平荷载应按作用在一边轨道上所有的刹车轮的最大轮压之和的10%采用;作用点位于刹车轮与轨道的接触点,其方向与轨道方向一致。 单侧所有刹车轮的纵向水平荷载标准值: Tv=0.1 *Pmax*2/n N表示吊车的单侧轮数 3、吊车横向水平荷载应取横行小车与吊重之和的某个百分数。

简支吊车梁计算书

简支吊车梁验算计算书一. 设计资料 1 基本信息: 验算依据:钢结构设计规范(GB 50017-2003) 建筑结构荷载规范(GB 50009-2012) 吊车梁跨度:l=6000 mm 吊车梁平面外计算长度:l0=6000 mm 吊车梁所在柱列:边列柱 吊车梁所在位置类型:中间跨 2 吊车信息: 吊车梁上有两台完全相同的吊车同时运行 第一台吊车基本信息(参图Ⅰ) 吊车类型:T5t105_中级软钩吊车 吊车跨度:10500 mm 吊车自重:12.715 t 小车重量:2.126 t 吊车起重量:5 t 工作级别:A4~A5(中级) 吊钩形式:软钩吊车 单侧轮子数:2个 最大轮压:74 kN 最小轮压:26.3 kN 制动轮子数:1个 轨道类型:43Kg/m 吊车宽度:5050 mm 吊车额定速度:90 m/min 小车额定速度:40.1 m/min 吊车轮距C1:3400 mm

3 荷载信息: 吊车竖向荷载增大系数:ηv=1.03 吊车荷载分项系数:γc=1.4 当地重力加速度值:g=9.8 附加竖向均布活载标准值:0 kN/m 附加水平均布活载标准值:0 kN/m 吊车一动力系数:μ1=1.05 吊车一横向水平刹车力系数:β1=0.12 吊车一摆动力系数:α1=0 4 验算控制信息: 吊车梁竖向挠度允许值:l/1000 吊车梁水平挠度允许值:l/2200 对中级工作制吊车梁按《钢规》要求不进行疲劳验算5 吊车梁截面信息: 截面型号:H-750*300*10*12 用户自定义截面 截面材料类型:Q235 截面每米质量:113.51 kg/m 截面几何参数如下: 截面高度 H=750 mm 上翼缘宽度 B1 =300 mm 下翼缘宽度 B2 =300 mm 腹板厚度 T w =10 mm 上翼缘厚度 T f1=12 mm 下翼缘厚度 T f2=12 mm 截面力学参数如下: x轴毛截面惯性矩 I x =129932.658 cm^4 x轴净截面惯性矩 I nx =122646.136 cm^4 x轴上翼毛截面抵抗矩 W x =3464.871 cm^3 x轴上翼净截面抵抗矩 W nx =3155.656 cm^3

吊车梁设计

吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载、横向水平荷载和沿吊车梁纵向的水平荷载。纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。吊车沿轨道运行、起吊、卸载以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应乘以动力系数。对悬挂吊车(包括电动葫芦)及工作级别A1~A5的软钩吊车,动力系数可取1.05;对工作级别A6~A8的软钩吊车、硬钩吊车和其他特种吊车,动力系数可取为1.1。 吊车的横向水平荷载由小车横行引起,其标准值应取横行小车重量与额定起重量之和的下列百分数,并乘以重力加速度: 1)软钩吊车:当额定起重量不大10吨时,应取12%;当额定起重量为16~50吨时,应取10%;当额定起重量不小于75吨时,应取8%。 2)硬钩吊车:应取20%。 横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。手动吊车及电动葫芦可不考虑水平荷载。 计算重级工作制吊车梁及其制动结构的强度、稳定性以及连接 (吊车梁、制动结构、柱相互间的连接)的强度时,由于轨道不可能绝对平行、轨道磨损及大车运行时本身可能倾斜等原因,在轨道上产生卡轨力,因此钢结构设计规范规定应考虑吊车摆动引起的横向水平力,此水平力不与小车横行引起的水平荷载同时考虑。 二、吊车梁的形式 吊车梁应该能够承受吊车在使用中产生的荷载。竖向荷载在吊车梁垂直方向产生弯矩和剪力,水平荷载在吊车梁上翼缘平面产生水平方向的弯矩和剪力。吊车的起重量和吊车梁的跨度决定了吊车梁的形式。吊车梁一般设计成简支梁,设计成连续梁固然可节省材料,但连续梁对支座沉降比较敏感,因此对基础要求较高。吊车梁的常用截面形式,可采用工字钢、H 型钢、焊接工字钢、箱型梁及桁架做为吊车梁。桁架式吊车梁用钢量省,但制作费工,连接节点在动力荷载作用下易产生疲劳破坏,故一般用于跨度较小的轻中级工作制的吊车梁。一般跨度小起重量不大(跨度不超6米,起重量不超过30吨)的情况下,吊车梁可通过在翼缘上焊钢板、角钢、槽钢的办法抵横向水平荷载,对于焊接工字钢也可采用扩大上翼缘尺寸的方法加强其侧向刚度。对于跨度或起重量较大的吊车梁应设置制动结构,即制动梁或制动桁架;由制动结构将横向水平荷载传至柱,同时保证梁的整体稳定。制动梁的宽度不宜小于1~1.5米,宽度较大时宜采用制动桁架。吊车梁的上翼缘充当制动结构的翼缘或弦杆,制动结构的另一翼缘或弦杆可以采用槽钢或角钢。制动结构还可以充当检修走道,故制动梁腹板一般采用花纹钢板,厚度6~10毫米。对于跨度大于或等于12米的重级工作制吊车梁,跨度大于或等于18米的轻中级工作制吊车梁宜设置辅助桁架和下翼缘(下弦)水平支撑系统,同时设置垂直支撑,其位置不宜设在发生梁或桁架最大挠度处, 以免受力过大造成破坏。对柱两侧均有吊车梁的中柱则应在两吊车梁间设置制动结构。二、吊车梁的设计1、吊车梁钢材的选择吊车梁承受动态载荷的反复作用,因此,其钢材应具有良好的塑性和韧性,且应满足钢结构设计规范GB50017条款3.3.3—3.3.4的要求。 2、吊车梁的内力计算由于吊车荷载为移动载荷,计算吊车梁内力时必须首先用力学方法确定使吊车梁产生最大内力(弯矩和剪力)的最不利轮压位置,然后分别求梁的最大弯矩及相应的剪力和梁的最大剪力及相应弯矩,以及横向水平载荷在水平方向产生的最大弯矩。计算吊车梁的强度及稳定时按作用在跨间荷载效应最大的两台吊车或按实际情况考虑,并采用载荷设计值。计算吊车梁的疲劳及挠度时应按作用在跨间内载荷效应最大的一台吊车确

钢结构厂房吊车梁设计

吊车梁设计 3.3.1设计资料 P 轮压P 图3-1 吊车轮压示意图 吊车总重量:8.84吨,最大轮压:74.95kN ,最小轮压:19.23kN 。 3.3.2吊车荷载计算 吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为 竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=??=??= 横向荷载设计值 0.10()0.108.849.8 1.4 3.032 Q Q g H kN n γ?+??==?= 3.3.3力计算 3.3.3.1吊车梁中最大弯矩及相应的剪力 如图位置时弯矩最大

A 图2-2 C 点最大弯矩Mmax 对应的截面位置 考虑吊车来那个自重对力的影响,将力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为: 2 22.max 274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ?? ∑- ? ????-??==?=???? ? 2max ()2110.18(30.125) 2 1.0387.07.5 c w l P a V kN l β-??-==?=∑ 3.3.3.2吊车梁的最大剪力 如图位置的剪力最大

图2-3 A 点受到剪力最大时截面的位置 3.5 1.03110.18( 1)179.606 A R kN =??+=,max 179.69V kN =。 3.3.3.3水平方向最大弯矩 max 3.3312.688.6110.18 c H H M M kN m P = =?=?。 3.3.4截面选择 3.3. 4.1梁高初选 容许最小高度由刚度条件决定,按容许挠度值(500 l v = )要求的最小高度为:6min 0.6[][]0.6600050020010360l h f l mm v -≥=????=。 由经验公式估算梁所需要的截面抵抗矩 6 33max 1.2 1.2312.68101876.0810200 M W mm f ??===? 梁的经济高度为:300563.34h mm ==。取600h mm =。 3.3.4.2确定腹板厚度 0600214576h mm =-?=。 按抗剪强度要求计算腹板所需的厚度为: 3 max 01.2 1.2179.6910 2.34576160 w v V t mm h f ??===?? 2.40 3.5 w t mm ===。取6w t mm =。 3.3. 4.3确定翼缘尺寸 初选截面时: 01111 (~)(~)576115.2~1925353 b h mm ≈=?=

吊车梁计算

一份详细的焊接工字钢吊车梁计算书!跨度6米,10吨单梁吊车!希望能给大家带来帮助!*****吊车梁计算书***** [设计资料] 吊车数:1台吊车 工作级别:A1-A3 吊车的轮数2 吊车轮子间间距a1=0.25m, a2=2m, a3=0m 最大轮压标准值40KN 横向荷载标准值5KN 竖向轮压动力系数1.05 钢材类型:Q235 支座形式:平板式 吊车梁长度6m 轨道高度107mm 建筑允许高度10m 控制挠度值1/600 欠载系数0 受拉翼缘与腹板连接处焊缝及附近的主体金属疲劳应力幅0N/mm^2 横向加劲肋端点处手工焊缝附近的主体金属疲劳应力幅0N/mm^2 无制动结构 支撑数:0 (1)截面特征计算 吊车梁高度h=450 mm 腹板厚度tw=10 mm 上翼缘宽度bs=330 mm 上翼缘厚度ts=14 mm 下翼缘宽度bx=200 mm 下翼缘厚度tx=14 mm 吊车梁截面面积A=11640 mm^2 吊车梁X轴惯性矩Ix=4.01852e+008 mm^4 吊车梁X轴抵抗矩Wx1=2.10488e+006 mm^3 吊车梁X轴抵抗矩Wx2=1.55104e+006 mm^3 吊车梁Y轴抵抗矩Wy=310879 mm^3 吊车梁上翼缘截面对Y轴抵抗矩Wy1=254100 mm^3 吊车梁最大面积矩Sx=1.22977e+006 mm^3 (2)内力计算 吊车竖向荷载标准值P=40KN 吊车竖向荷载设计值P=1.4x1.05x40=58.8KN 吊车横向荷载标准值T=5KN

吊车横向荷载设计值T=1.4x5=7KN 吊车梁的最大设计弯矩Mmax=122.5 kN*m 吊车梁的最大设计弯矩处相应的设计剪力Vc=49 kN 梁端支座处的最大设计剪力Vcmax=98 kN 吊车梁在水平荷载作用下的最大设计弯矩MTmax=14.583 kN*m 局部承压验算的集中荷载设计值F=58.8 kN (3)承载力验算 1)强度验算 上翼缘: 最大正应力σ=Mmax/Wx1 + MTmax/Wy1=115.59N/mm213 ,所以需要验算吊车梁的整体稳定 梁的整体稳定系数Фb = 0.918 整体稳定应力σ=Mmax/Фb/Wx1 + MTmax/Wy=110.3N/mm^2

吊车梁截面的设计

吊车梁截面的设计 摘要:本文根据吊车的载荷情况,对吊车梁的截面进行了深入的分析。通过对吊车梁截面进行验算,进行合理地设计,保证了吊车梁结构的安全和可靠,同时又节省了用钢量。 关键词:动力作用,制动结构,截面验算 abstract: according to the load carried by the crane,the cross section of the crane beam is deeply analysised in tis article. the safty and reliability of the structure of the crane beam will be ensured by the checking computations and rational design on the cross section of the crane beam, which will reduce the quantity of the steel needed at the same time. keywords:dynamical effect; brake structure; section checking computations 中图分类号:s611文献标识码: a 文章编号: 1 引言 吊车梁是吊车的路基,吊车梁上有吊车轨道,吊车就通过轨道在吊车梁上来回行驶。在吊车梁的设计中,主要是吊车梁截面的设计。吊车梁承受吊车的动力作用,合理设计的吊车梁有利于吊车的稳定运行。本文主要从以下几个方面对吊车梁截面的设计进行详细的描述。 2 吊车梁的载荷 吊车梁直接承受吊车载荷,计算其强度及稳定时,应考虑吊车载

钢结构厂房吊车梁设计

吊车梁设计 设计资料 P 轮压P 图3-1 吊车轮压示意图 吊车总重量:吨,最大轮压:,最小轮压:。 吊车荷载计算 吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为 竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=??=??= 横向荷载设计值 0.10()0.108.849.8 1.4 3.032 Q Q g H kN n γ?+??==?= 内力计算 吊车梁中最大弯矩及相应的剪力 如图位置时弯矩最大

A 图2-2 C 点最大弯矩Mmax 对应的截面位置 考虑吊车来那个自重对内力的影响,将内力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为: 2 22.max 274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ?? ∑ - ? ????-??==?=????? 2max ()2110.18(30.125) 2 1.0387.07.5 c w l P a V kN l β-??-==?=∑ 吊车梁的最大剪力 如图位置的剪力最大

图2-3 A 点受到剪力最大时截面的位置 3.5 1.03110.18( 1)179.606 A R kN =??+=,max 179.69V kN =。 水平方向最大弯矩 max 3.3312.688.6110.18 c H H M M kN m P = =?=?。 截面选择 梁高初选 容许最小高度由刚度条件决定,按容许挠度值(500 l v = )要求的最小高度为:6min 0.6[][]0.6600050020010360l h f l mm v -≥=????=。 由经验公式估算梁所需要的截面抵抗矩 6 33max 1.2 1.2312.68101876.0810200 M W mm f ??===? 梁的经济高度为:300563.34h mm ==。取600h mm =。 确定腹板厚度 0600214576h mm =-?=。 按抗剪强度要求计算腹板所需的厚度为: 3 max 01.2 1.2179.6910 2.34576160 w v V t mm h f ??===?? 2.40w t mm = ==。取6w t mm =。 确定翼缘尺寸 初选截面时: 01111 (~)(~)576115.2~1925353 b h mm ≈=?= 上翼缘尺寸取35014mm mm ?,下翼缘尺寸取24014mm mm ?。

型钢吊车梁计算书

吊车梁计算书 焊接工字钢吊车梁计算书!跨度6米,10吨单梁吊车 [设计资料] 吊车数:1台吊车 工作级别:A1-A3 吊车的轮数2 吊车轮子间间距a1=0.25m, a2=2m, a3=0m 最大轮压标准值40KN 横向荷载标准值5KN 竖向轮压动力系数1.05 钢材类型:Q235 支座形式:平板式 吊车梁长度6m 轨道高度107mm 建筑允许高度10m 控制挠度值1/600 欠载系数0 受拉翼缘与腹板连接处焊缝及附近的主体金属疲劳应力幅0N/mm^2 横向加劲肋端点处手工焊缝附近的主体金属疲劳应力幅0N/mm^2 无制动结构 支撑数:0 (1)截面特征计算 吊车梁高度h=450 mm 腹板厚度tw=10 mm 上翼缘宽度bs=330 mm 上翼缘厚度ts=14 mm 下翼缘宽度bx=200 mm 下翼缘厚度tx=14 mm 吊车梁截面面积A=11640 mm^2 吊车梁X轴惯性矩Ix=4.01852e+008 mm^4 吊车梁X轴抵抗矩Wx1=2.10488e+006 mm^3 吊车梁X轴抵抗矩Wx2=1.55104e+006 mm^3 吊车梁Y轴抵抗矩Wy=310879 mm^3 吊车梁上翼缘截面对Y轴抵抗矩Wy1=254100 mm^3 吊车梁最大面积矩Sx=1.22977e+006 mm^3 (2)内力计算 吊车竖向荷载标准值P=40KN 吊车竖向荷载设计值P=1.4x1.05x40=58.8KN 吊车横向荷载标准值T=5KN 吊车横向荷载设计值T=1.4x5=7KN

吊车梁的最大设计弯矩Mmax=122.5 kN*m 吊车梁的最大设计弯矩处相应的设计剪力Vc=49 kN 梁端支座处的最大设计剪力Vcmax=98 kN 吊车梁在水平荷载作用下的最大设计弯矩MTmax=14.583 kN*m 局部承压验算的集中荷载设计值F=58.8 kN (3)承载力验算 1)强度验算 上翼缘: 最大正应力σ=Mmax/Wx1 + MTmax/Wy1=115.59N/mm213 ,所以需要验算吊车梁的整体稳定 梁的整体稳定系数Фb = 0.918 整体稳定应力σ=Mmax/Фb/Wx1 + MTmax/Wy=110.3N/mm^2

吊车梁设计总结

吊车梁设计总结[转贴] 一、吊车梁所承受的荷载 吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载、横向水平荷载和沿吊车梁纵向的水平荷载。纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。吊车沿轨道运行、起吊、卸载以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应乘以动力系数。对悬挂吊车(包括电动葫芦)及工作级别A1~A5的软钩吊车,动力系数可取1.05;对工作级别A6~A8的软钩吊车、硬钩吊车和其他特种吊车,动力系数可取为1.1。 吊车的横向水平荷载由小车横行引起,其标准值应取横行小车重量与额定起重量之和的下列百分数,并乘以重力加速度: 1)软钩吊车:当额定起重量不大于10吨时,应取12%;当额定起重量为16~50吨时,应取10%;当额定起重量不小于75吨时,应取8%。 2)硬钩吊车:应取20%。 横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。手动吊车及电动葫芦可不考虑水平荷载。 计算重级工作制吊车梁及其制动结构的强度、稳定性以及连接(吊车梁、制动结构、柱相互间的连接)的强度时,由于轨道不可能绝对平行、轨道磨损及大车运行时本身可能倾斜等原因,在轨道上产生卡轨力,因此钢结构设计规范规定应考虑吊车摆动引起的横向水平力,此水平力不与小车横行引起的水平荷载同时考虑。 二、吊车梁的形式 吊车梁应该能够承受吊车在使用中产生的荷载。竖向荷载在吊车梁垂直方向产生弯矩和

吊车梁计算书

简支焊接工字型钢吊车梁设计输出文件 ************************************************************************************************* 简支焊接工字型钢吊车梁设计输出文件 输出结果文件:吊车梁计算书.pdf 设计依据:《建筑结构荷载规范》(GB50009-2012)、《钢结构设计规范》(GB50017-2003) 设计程序:PKPM系列钢结构设计软件STS(PKPM2010 V2.1版) 设计时间:2015年 12月 22日 ************************************************************************************************* (一)设计信息 1、基本信息 吊车梁跨度(mm):12000 相邻吊车梁跨度(mm):12000 吊车台数 :1 第一台的序号:1 第二台的序号(只有一台时=0):0 吊车梁的类型:制动桁架 钢材钢号:Q345 计算方式:验算截面 2、吊车数据:(除特殊说明,重量单位为 t;长度单位为 m) P P 9175000917 6834 图1 吊车1几何尺寸示意图 (mm) 序号起重量工作级别一侧轮数最大轮压最小轮压小车重吊车宽度轨道高度卡轨力系数轮距110A6重级硬钩216.5010.80 1.70 6.8340.1340.105 3、截面几何参数 (mm) 吊车梁总高:1250.000 腹板的厚度:10.000 上翼缘的宽度:350.000 上翼缘的厚度:14.000 下翼缘的宽度:280.000 下翼缘的厚度:12.000 连接吊车轨道的螺栓孔直径:0.000 连接制动板的螺栓孔直径:24.000 连接轨道的螺栓孔到吊车梁中心的距离:80.000 连接制动板的螺栓孔到制动板边缘的距离:35.000

吊车梁设计

一、吊车梁所承受的荷载 吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载、横向水平荷载和沿吊车梁纵向的水平荷载。纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。吊车沿轨道运行、起吊、卸载以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应乘以动力系数。对悬挂吊车(包括电动葫芦)及工作级别A1~A5的软钩吊车,动力系数可取1.05;对工作级别A6~A8的软钩吊车、硬钩吊车和其他特种吊车,动力系数可取为1.1。 吊车的横向水平荷载由小车横行引起,其标准值应取横行小车重量与额定起重量之和的下列百分数,并乘以重力加速度: 1)软钩吊车:当额定起重量不大10吨时,应取12%;当额定起重量为16~50吨时,应取10%;当额定起重量不小于75吨时,应取8%。 2)硬钩吊车:应取20%。 横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。手动吊车及电动葫芦可不考虑水平荷载。 计算重级工作制吊车梁及其制动结构的强度、稳定性以及连接 (吊车梁、制动结构、柱相互间的连接)的强度时,由于轨道不可能绝对平行、轨道磨损及大车运行时本身可能倾斜等原因,在轨道上产生卡轨力,因此钢结构设计规范规定应考虑吊车摆动引起的横向水平力,此水平力不与小车横行引起的水平荷载同时考虑。 二、吊车梁的形式 吊车梁应该能够承受吊车在使用中产生的荷载。竖向荷载在吊车梁垂直方向产生弯矩和剪力,水平荷载在吊车梁上翼缘平面产生水平方向的弯矩和剪力。吊车的起重量和吊车梁的跨度决定了吊车梁的形式。吊车梁一般设计成简支梁,设计成连续梁固然可节省材料,但连续梁对支座沉降比较敏感,因此对基础要求较高。吊车梁的常用截面形式,可采用工字钢、H 型钢、焊接工字钢、箱型梁及桁架做为吊车梁。桁架式吊车梁用钢量省,但制作费工,连接节点在动力荷载作用下易产生疲劳破坏,故一般用于跨度较小的轻中级工作制的吊车梁。一般跨度小起重量不大(跨度不超6米,起重量不超过30吨)的情况下,吊车梁可通过在翼缘上焊钢板、角钢、槽钢的办法抵横向水平荷载,对于焊接工字钢也可采用扩大上翼缘尺寸的方法加强其侧向刚度。对于跨度或起重量较大的吊车梁应设置制动结构,即制动梁或制动桁架;由制动结构将横向水平荷载传至柱,同时保证梁的整体稳定。制动梁的宽度不宜小于1~1.5米,宽度较大时宜采用制动桁架。吊车梁的上翼缘充当制动结构的翼缘或弦杆,制动结构的另一翼缘或弦杆可以采用槽钢或角钢。制动结构还可以充当检修走道,故制动梁腹板一般采用花纹钢板,厚度6~10毫米。对于跨度大于或等于12米的重级工作制吊车梁,跨度大于或等于18米的轻中级工作制吊车梁宜设置辅助桁架和下翼缘(下弦)水平支撑系统,同时设置垂直支撑,其位置不宜设在发生梁或桁架最大挠度处, 以免受力过大造成破坏。对柱两侧均有吊车梁的中柱则应在两吊车梁间设置制动结构。二、吊车梁的设计1、吊车梁钢材的选择吊车梁承受动态载荷的反复作用,因此,其钢材应具有良好的塑性和韧性,且应满足钢结构设计规范GB50017条款3.3.3—3.3.4的要求。 2、吊车梁的内力计算由于吊车荷载为移动载荷,计算吊车梁内力时必须首先用力学方法确定使吊车梁产生最大内力(弯矩和剪力)的最不利轮压位置,然后分别求梁的最大弯矩及相应的剪力和梁的最大剪力及相应弯矩,以及横向水平载荷在水平方向产生的最大弯矩。计算吊车梁的强度及稳定时按作用在跨间荷载效应最大的两台吊车或按实际情况考虑,并采用载荷设计值。计算吊车梁的疲劳及挠度时应按作用在跨间内载荷效应最大的一台吊车确

在钢结构厂房中对钢吊车梁设计的探析

在钢结构厂房中对钢吊车梁设计的探析 摘要:对吊车梁的支座连接构造设计及双层翼缘板焊接工字型吊车梁的某些受 力特征等进行论述,以便作为吊车梁设计时的参考 关键词:节点连接;填板;垂直隔板;双层翼缘板; 引言 近年来,工业厂房设计正向着大跨度、大柱距和大吨位吊车的重型复杂工业厂房发展。 吊车梁系统是工业厂房重要的承重系统之一。吊车梁或吊车桁架一般设计成简支结构(简支 结构具有传力明确、构造简单、施工方便等优点)。同时,钢吊车梁又以其自重小、制作施 工方便而被广泛应用。本文结合近几年我院设计钢结构生产厂房为案例。谈谈对钢结构厂房 钢吊车梁设计中应注意的一些问题,仅供参考。 1钢结构厂房的特点 1.1 从建筑上讲,要求构成较大的空间。 钢结构厂房是冶金、机械等车间的主要形式之一。为了满足在车间中放置尺寸大、较重型的 设备生产重型产品,要求厂房适应不同类型生产的需要,构成较大的空间。 1.2 从结构上讲,要求厂房的结构构件要有足够的承载能力。 由于产品较重且外形尺寸较大。因此作用在钢结构厂房结构上的荷载、厂房的跨度和高度都 往往比较大,并且常受到来自吊车、动力机械设备的荷载的作用,要求厂房的结构构件要有 足够的承载能力。 1.3吊车梁系统是工业厂房重要的承重系统之一。近年来,随着生产工艺和生产规模不断发展变化,吊车的使用频率在不断提高,且人们在吊车梁设计中经常会遇到大跨度、大吊车 吨位的吊车梁。多年来,在使用过程中,吊车梁系统的某些部位总会首先破损,这些容易破 损的连接在设计中如何采取最优的方法来解决,才能保证系统在正常使用状态时的耐久性; 以保证它们共同而协调地工作。下面就工字型焊接钢吊车梁支座节点连接处填板的设置、垂 直横隔板的设置以及双层冀缘等方面的问题进行分析。 1.4吊车梁的设计分类:对吊车梁系统的设计是其功能发挥好坏的重要 保证环节之一(其他保证环节有施工、使用维护等),工业厂房中支承各类型吊车的吊 车梁系统结构,按照吊车生产使用状况和吊车工作制可分为轻级、中级、重级及特重级(冶 金厂房内的夹钳、料耙等硬钩吊车)四级。 2吊车梁中梁与梁间连接填板位置的设想 近年来笔者发现,吊车梁突缘支座板底端的破损较明显且严重。 它的破损直接影响到吊车梁系统的使用安全,一直以来未能找到有效的解决办法。 根据吊车梁的计算分析很容易得到跨中最大弯矩Mmax。由于吊车梁上的荷载是不等距 的集中荷载,由M=ql2/8,得q=8M/l2,即相当于均布荷载为q的外力作用于吊车梁上,这时,很容易算得吊车梁支座处的转角:θ=ql2/(24EI)。由此,可近似地算得吊车梁高度上拟设螺栓处所产生的水平位移δ。如果吊车梁的突缘支座板刚度足够大时,这个变型δ则完全 由螺栓及腹板产生。 连接填板的位置对吊车梁的受力特征也将产生很大影响,尤其对突缘支座板底端与支承 板接触处。当连接填板位于吊车梁高度中部以上时,吊车梁突缘支座板底端与支承板接触处 的水平摩擦力较小,且变化亦不大,对减缓吊车梁突缘支座板底端的破损是有利的。 3吊车梁支座处垂直隔板连接的设想 一般来讲,当吊车梁梁端高度大于或等于1.5m时,对于重级工作制吊车梁,在与柱连接处,宜在梁端高度中部增设与柱连接的垂直隔板。垂直隔板的设置确实加强了梁端的稳定性,改善了梁的横向承载能力。 但在近年来调查中发现,吊车梁系统的破损也时常发生在垂直隔板及上翼缘与柱连接的 连接板处,且垂直隔板和连接板处往往不是同时破损,通常是尺寸较大的垂直隔板先于破损。因此,如何使二者的受力状态协调一致,对结构有利,值得探讨。 目前,设置垂直隔板时往往将其尺寸做得比上翼缘连接板大,以下就如此处理对吊车梁

吊车梁计算说明书

第二部分 钢混吊车梁设计部分 一、吊车梁截面型式 此电站单机容量为3.5万KW ,电站的吊车梁为两跨连续梁,跨长为7米,梁 的截面形式为T 型,其截面尺寸如图所示。 吊车跨度m L K 14=,根据最大起重重量3G =23t ,选用30t 单小车桥式起重机。吊车其他数据为:吊车轮距K=0m ,吊车主钩极限位置m l 1.11=,吊车重1G =26.1t ,单个小车重t G 5.92=,吊车两边轮数m=1,吊车轨道及埋件600N/m 。 1、高度:根据T 型梁截面混凝土梁的截面一般为跨度的1/5~1/8,即为7000/5~7000/8,即1400~875,取h=900mm 。 2、梁肋宽:梁肋宽为梁高的1/2~1/3,即450~300,取b=400mm 。 3、翼板厚度:翼板厚度常为梁的1/7~1/10,但不小于100mm ,故取为150mm 。 4、翼板宽度除考虑受力要求外,还应有足够尺寸以布置钢轨及埋件钢轨附件,一般不小于350mm ,在梁端部,肋宽宜适当加大,以利于主筋的锚固。 5、设计原则及混凝土标号、钢筋型号按《混凝土结构设计规范(GBJ-8为9)》。吊车梁混凝土标号为C40,纵筋Ⅱ级,箍筋为Ⅰ级。

二、吊车梁荷载计算 2.1、均布恒荷载q (取单位长度为1m 计算) (1)、吊车梁自重: N/m 109360.1024)6.015.04.075.0(q 431?=???+?= (2)、砂浆抹平层(3cm 容量为34/102m N ?)及埋件重(m N /600) N /m 10960.010)06.06.003.02(q 442?=?+??= (3)、均布荷载: N /m 1003.110)096.0936.0(q 44?=?+= 2、垂直最大轮压:N t p 4104.224.22?== 3、横向水平制动力: T 0=1.633N 410? 三、吊车梁内力计算 3.1、在垂直作用下 (1)、弯矩计算:从《水工钢筋混凝土结构学》附录表中应得n a 和n k 值。 则 各截面的弯矩值可计算,并绘制弯矩包络图, (2) 、剪力计算: 因此:

相关主题