搜档网
当前位置:搜档网 › 线性代数常用公式

线性代数常用公式

线性代数常用公式
线性代数常用公式

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确

(),n

T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,

0总有唯一解 是正定矩阵 R 12,s i

A p p p p n

B AB E AB E

??

???

?????

??

??=????==?? 是初等阵

存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合n R 叫做n 维向量空间.

()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的??

??

?????特征向量

○注 ()()a b r aE bA n aE bA aE bA x οολ+

+=?+=???

有非零解=-

?

?

?????

→????

:;具有

向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ???:

错误!未找到引用源。称为n

?

的标准基,n

?

中的自然基,单位坐标向量87p 教材;

错误!未找到引用源。12,,,n e e e ???线性无关; 错误!未找到引用源。12,,,1n e e e ???=; ④tr =E n ;

⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示.

1212121112121222()

1212()n n n

n n

j j j n j j nj j j j n n nn

a a a a a a D a a a a a a τ=

=-∑

L

L L

L

L M M M L

1

√ 行列式的计算:

错误!未找到引用源。行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.

推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

错误!未找到引用源。若A B 与都是方阵(不必同阶),则

==()mn A O A A O

A B O B O B B O A A

A B B O B O

*==**=-1(拉普拉斯展开

式)

错误!未找到引用源。上三角、下三角、主对角行列式等于主对角线上元素的乘积.

④关于副对角线:

(1)2

1121

21

1211

1

()n n n

n

n n n n n n n a O

a a a a a a a O

a O

---*

==-K N

N 1 (即:所有取自不同

行不同列的n 个元素的乘积的代数和)

⑤范德蒙德行列式:()1

2

2

22

12

11

1

1

12n

i

j

n

j i n

n n n n

x x x x x x x x x x x ≤<≤---=-∏L L L

M M

M

L

111

由m n ?个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ??

? ?

=

?

???

L L M M M L

称为m n ?矩阵.记作:()ij m n A a ?=

m n A ?

()

1121112222*

12n T

n ij

n n nn A A A A A A A A A A A ??

? ?

==

?

???

L L M M M L ,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:

错误!未找到引用源。 1

A A A *-= ○注: 1

a b d b c d c a ad bc --????= ? ?--??

??1 L L 主换位副变号 错误!未找到引用源。1()()A E E A -????→M

M 初等行变换

错误!未找到引用源。

1

2

31111

2

13a a a a a a -???? ?

?

=

? ? ? ? ??

??

?

3

2

1

1

1

112

13a a a a a a -????

? ?

=

? ? ? ? ?????

√ 方阵的幂的性质:m n m n A A A += ()()

m n

mn

A A =

√ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,

则m s

AB C ?=?()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα??

? ?

???= ?

???

L L L M M M L ?i i A c β= ,(,,)i s =L 1,2?i β为i Ax c =的解?()()()121212,,,,,,,,,s s s A A A A c c c ββββββ???=???=L ?12,,,s c c c L 可由12,,,n ααα???线

性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,T

A 为系数矩阵.

即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ??????

??? ?

??? ?= ??? ?

??? ???????L L M M M M M L ?111122121

211222

222

11222n n m m mn m

a a a c a a a c a a a c βββββββββ+++=??+++=????+++=?L L L L L L √ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.

√ 分块矩阵的转置矩阵:T

T

T T

T A B A C C D B

D ??

??= ? ?????

分块矩阵的逆矩阵:1

11A A B B ---????

=

? ????

? 1

11A B B

A

---?

?

??= ? ?????

1111A C A A CB O B O

B ----????= ? ????? 1111A O A O

C B B CA

B ----????= ? ?

-???? 分块对角阵相乘:11

112222,A B A B A B ????

==

? ?

???

??11112222A B AB A B ??= ??

?,1122n

n n A A A ??

= ???

分块对角阵的伴随矩阵:*

*

*A BA B AB ????=

? ????? *

(1)(1)mn mn A A B B

B A **?

?

-?

?= ? ?

?-????

√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)

A B E X ????→M

M 初等行变换

(I)的解法:构造()()

T T T T

A X

B X X

=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得

① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.

③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)

④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关?对应元素成比例;两两正交的非零向量组线性无关114p 教材. ⑥ 向量组12,,,n ααα???中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.

⑦ 向量组12,,,n ααα???线性相关?向量组中至少有一个向量可由其余n -1个向量线性表示. 向量组12,,,n ααα???线性无关?向量组中每一个向量i α都不能由其余n -1个向量线性表示. ⑧ m 维列向量组12,,,n ααα???线性相关()r A n ?<; m 维列向量组12,,,n ααα???线性无关()r A n ?=.

⑨ 若12,,,n ααα???线性无关,而12,,,,n αααβ???线性相关,则β可由12,,,n ααα???线性表示,且表示法唯一. ⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.

可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖

线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时,

? 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:

对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .

如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =

向量组12,,,n αααL 的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααL

A 经过有限次初等变换化为

B . 记作:A B =%

12,,,n ααα???和12,,,n βββ???可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ???=???%

? 矩阵A 与B 等价?PAQ B =,,P Q 可逆?()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩

相等的向量组不一定等价.

矩阵A 与B 作为向量组等价?1212(,,,)(,,,)n n r r αααβββ???=???=1212(,,,,,,)n n r αααβββ??????? 矩阵A 与B 等价.

? 向量组12,,,s βββ???可由向量组12,,,n ααα???线性表示?AX B =有解

?12(,,,)=n r ααα???1212(,,,,,,)n s r αααβββ???????12(,,,)s r βββ???≤12(,,,)n r ααα???.

? 向量组12,,,s βββ???可由向量组12,,,n ααα???线性表示,且s n >,则12,,,s βββ???线性相关.

向量组12,,,s βββ???线性无关,且可由12,,,n ααα???线性表示,则s ≤n .

? 向量组12,,,s βββ???可由向量组12,,,n ααα???线性表示,且12(,,,)s r βββ???12(,,,)n r ααα=???,则两向量组等价;

p 教材94,例10

? 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ? 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ? 若两个线性无关的向量组等价,则它们包含的向量个数相等. ? 设A 是m n ?矩阵,若()r A m =,A 的行向量线性无关;

若()r A n =,A 的列向量线性无关,即:12,,,n ααα???线性无关. √ 矩阵的秩的性质:

①()A O r A ≠?若≥1 ()0A O r A =?=若 0≤()m n r A ?≤min(,)m n ②

()()()T T r A r A r A A == p 教材101,例15

③()()r kA r A k =≠ 若0 ④()(),,()0m n n s r A r B n A B r AB B Ax ??+≤?=??=?

若若0的列向量全部是的解

⑤()r AB ≤{}min (),()r A r B

()()()()

A r A

B r B B r AB r A ?=?=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.

⑦若()()()m n Ax r AB r B r A n AB O B O A AB AC B C ο??=??

=??=???=?=?

?????=?=??

? 只有零解

在矩阵乘法中有左消去律;

若()()()n s r AB r B r B n B ?=?=??

? 在矩阵乘法中有右消去律.

⑧()r

r E O E O r A r A A O

O O

O ????

=?

? ?????

若与唯一的等价,称为矩阵的等价标准型.

⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70

⑩()()A O O A r r A r B O B B O ????==+ ? ?????

()()A C r r A r B O B ??

≠+ ???

线性代数性质公式

线性代数 第一章行列式 一、相关概念 1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积 的代数和,这里是1,2,···n的一个排列。当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即 (1.1) 这里表示对所有n阶排列求和。式(1.1)称为n阶行列式的完全展开式。 2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。一个排列的逆序总是称为这个排列的逆序数。用表示排列的逆序数。 3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。 4.2阶与3阶行列式的展开——, 5.余子式与代数余子式——在n阶行列式中划去所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式 称为的余子式,记为;称为的代数余子式,记为,即。

6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作。 二、行列式的性质 1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。 2.两行互换位置,行列式的值变号。特别地,两行相同(或两行成比例),行列式的值为0. 3.某行如有公因子k,则可把k提出行列式记号外。 4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和: 5.把某行的k倍加到另一行,行列式的值不变: 6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0 三、行列式展开公式 n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即 |A|按i行展开的展开式 |A|按j列展开的展开式 四、行列式的公式 1.上(下)三角形行列式的值等于主对角线元素的乘积; 2.关于副对角线的n阶行列式的值 3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则 4.范德蒙行列式 5.抽象n阶方阵行列式公式(矩阵) 若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:

线性代数公式大全最全最完美

线性代数公式大全——最新修订 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

考研线性代数公式速记大全

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○ 注 ()()a b r aE bA n aE bA aE bA x οολ+

12121211 12121222()121 2()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 √ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ②若A B 与都是方阵(不必同阶),则 == ()mn A O A A O A B O B O B B O A A A B B O B O *= =* * =-1(拉普拉斯展开式) ③上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④关于副对角线: (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==- 1 (即:所有取自不同行不 同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1 2 2 22 1211 1112n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏ 111 由m n ?个数排成的m 行n 列的表11 12121 2221 2 n n m m mn a a a a a a A a a a ?? ? ? = ? ? ?? 称为m n ?矩阵.记作:()ij m n A a ?=或m n A ? () 1121112222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ? ?? ,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法: ① 1 A A A *-= ○注: 1 a b d b c d c a ad bc --????= ? ? --???? 1 主换位副变号

线性代数重要公式

②、1 11A O A O O B O B ---?? ?? = ? ?????;(主对角分块) ③、1 11O A O B B O A O ---?? ?? = ? ? ???? ;(副对角分块) ④、11111A C A A CB O B O B -----?? -??= ? ????? ;(拉普拉斯) ⑤、 11111A O A O C B B CA B -----???? = ? ?-???? ;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形就是唯 一确定的:r m n E O F O O ??? = ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ? :; 2. 行最简形矩阵: ①、只能通过初等行变换获得; ②、每行首个非0元素必须为1; ③、每行首个非0元素所在列的其她元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、 若(,)(,)r A E E X :,则A 可逆,且1 X A -=; ②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1 A B -, 即:1 (,)(,) c A B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)r A b E x :,则A 可逆,且1 x A b -=; 4. 初等矩阵与对角矩阵的概念: ①、初等矩阵就是行变换还就是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;

线性代数公式模板

线性代数公式 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 8. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

线性代数重要公式、定理大全

1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1) (1) i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1) 2 1 (1) n n D D -=-;(1) 2 2 (1) n n D D -=- 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1) m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ -=-=+ -∑,其中k S 为k 阶主子式; 7. 证明 A =的方法: ①、 A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ? 齐次方程组0 Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

最全线性代数公式笔记

线性代数公式必记 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

线性代数公式大全——最新修订(突击必备)

线性代数公式大全 1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式:A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 5. 对于n 阶行列式A ,恒有:1(1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 6. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0; ?T A A 是正定矩阵; ?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵; 2. 对于n 阶矩阵A :* * AA A A A E == 无条件恒成立; 3. 1* *1 11**()()()()()()T T T T A A A A A A ----=== * * * 1 1 1 ()()()T T T AB B A AB B A AB B A ---=== 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12 s A A A A ?? ? ?= ? ?? ? ,则: Ⅰ、12s A A A A = ; Ⅱ、1 1112 1s A A A A ----?? ? ?= ? ? ?? ? ; ②、1 11A O A O O B O B ---?? ?? = ? ????? ;(主对角分块) ③、1 11O A O B B O A O ---?? ??= ? ? ???? ;(副对角分块) ④、1 1111A C A A CB O B O B -----?? -?? = ? ????? ;(拉普拉斯) ⑤、1 111 1A O A O C B B CA B -----?? ?? = ? ?-???? ;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m n E O F O O ???= ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:

2020考研 线性代数_常用公式

考研数学线性代数常用公式 数学考研考前必背常考公式集锦。希望对考生在暑期的复习中有所帮助。本文内容为线性代数的常考公式汇总。 1、行列式的展开定理 行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之 和,即 C 的 3、设A 为n 阶方阵,*A 为它的伴随矩阵则有**==AA A A A E . 设A 为n 阶方阵,那么当AB =E 或BA =E 时,有1-B =A 4、 对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种: 第一种:交换单位矩阵的第i 行和第j 行得到的初等矩阵记作ij E ,该矩阵也

可以看做交换单位矩阵的第i 列和第j 列得到的.如1,3001010100?? ?= ? ?? ?E . 第二种:将一个非零数k 乘到单位矩阵的第i 行得到的初等矩阵记作()i k E ;该矩阵也可以看做将单位矩阵第i 列乘以非零数k 得到的.如 2100(5)050001?? ?-=- ? ?? ?E . 第三种:将单位矩阵的第i 行的k 倍加到第j 行上得到的初等矩阵记作()ij k E ;该矩阵也可以看做将单位矩阵的第j 列的k 倍加到第i 列上得到的.如 3,2100(2)012001?? ?-=- ? ??? E . 注: 1)初等矩阵都只能是单位矩阵一次初等变换之后得到的. 2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵()ij k E 看做列变换是将单位矩阵第j 列的k 倍加到第i 列,这一点考生比较容易犯错. 5、矩阵A 最高阶非零子式的阶数称之为矩阵A 的秩,记为()r A . 1)()()(),0r r r k k ==≠T A A A ; 2)()1r ≠?≥A O A ; 3)()1r =?≠A A O 且A 各行元素成比例; 4)设A 为n 阶矩阵,则()0r n =?≠A A . 6、线性表出 设12,,...,m ααα是m 个n 维向量,12,,...m k k k 是m 个常数,则称1122...m m k k k ααα+++为向量组12,,...,m ααα的一个线性组合. 设12,,...,m ααα是m 个n 维向量,β是一个n 维向量,如果β为向量组

线性代数重要公式定理大全

1、行列式 1. n行列式共有n2个元素,展开后有n!项,可分解为2n行列式; 2. 代数余子式的性质: ①、A j和a^的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ; 3. 代数余子式和余子式的关系:M ij ( 1)i j A ij A ij ( 1)i j M ij 4. 设n行列式D : n(n 1)n(n 1)将D上、下翻转或左右翻转,所得行列式为D!,则U ( 1)F D;D2 ( 1L D 将D顺时针或逆时针旋转90o,所得行列式为D2,贝U; 将D主对角线翻转后(转置),所得行列式为D3,则D3 D ; 将D主副角线翻转后,所得行列式为D4,则D4 D ; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; n(n 1) ②、副对角行列式:副对角元素的乘积(1)h ; ③、上、下三角行列式(、i ):主对角元素的乘积; n (n 1) ④、匚和丄:副对角元素的乘积(1)F ; ⑤、拉普拉斯展开式: A||B、(1)mgn A B ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; n 6. 对于n阶行列式A,恒有:E A n(1)W nk,其中S k为k阶主子式; k 1 7. 证明A 0的方法: ①、A A ; ②、反证法; ③、构造齐次方程组Ax 0,证明其有非零解; ④、利用秩,证明r(A) n ; ⑤、证明0是其特征值; 2、矩阵 1. A是n阶可逆矩阵: A 0 (是非奇异矩阵); r(A) n (是满秩矩阵) A的行(列)向量组线性无关; 齐次方程组Ax 0有非零解; b R n,Ax b总有唯一解;

线性代数公式大全

概率论公式大全(2010版) 1.随机事件及其概率 吸收律:A AB A A A A =?=??Ω=Ω?)( A B A A A A A =???=??=Ω?)( )(AB A B A B A -==- 反演律:B A B A =? B A AB ?= n i i n i i A A 11=== n i i n i i A A 11=== 2.概率的定义及其计算 )(1)(A P A P -= 若B A ? )()()(A P B P A B P -=-? 对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=? )()()(B P A P B A P +≤? )()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++- =∑∑∑ 3.条件概率 ()=A B P ) ()(A P AB P 乘法公式 ())0)(()()(>=A P A B P A P AB P

()() ) 0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式 ∑==n i i AB P A P 1)()( )()(1i n i i B A P B P ?=∑= Bayes 公式 )(A B P k )()(A P AB P k = ∑==n i i i k k B A P B P B A P B P 1 ) ()()()( 4.随机变量及其分布 分布函数计算 ) ()()()()(a F b F a X P b X P b X a P -=≤-≤=≤< 5.离散型随机变量 (1) 0 – 1 分布 1,0,)1()(1=-==-k p p k X P k k (2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n k k n ,,1,0,)1()( =-==- *Possion 定理 0lim >=∞ →λn n np 有 ,2,1,0!)1(l i m ==---∞→k k e p p C k k n n k n k n n λλ (3) Poisson 分布 )(λP ,2,1,0,!)(===-k k e k X P k λλ

线性代数重要公式模板.

线性代数重点公式

目录 1 行列式 (1) 2 矩阵 (2) 3 矩阵的初等变换与线性方程组 (3) 4 向量组的线性相关性 (6) 5 相似矩阵和二次型 (9)

1 行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;

线性代数公式必记

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1) i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1) 2 1(1)n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1) 2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1) 2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1) 2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1) m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ -=-=+ -∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0 Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ? 齐次方程组0 Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0;

考研线性代数公式

考研线性代数公式

————————————————————————————————作者:————————————————————————————————日期: ?

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;

精心整理线性代数公式大全

1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1 (1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2 D ,则(1)2 2 (1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3 D ,则3 D D =; 将D 主副角线翻转后,所得行列式为4 D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式 : A O A C A B C B O B = =、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子 式; 7. 证明0A =的方法: ①、A A =-; ②、反证法;

线性代数重要公式

主对角线翻转后(转置),所得行列式为 n A B

s A ?? 2 s A A ;12 A -

②、1 11A O A O O B O B ---?? ?? = ? ?????;(主对角分块) ③、1 11O A O B B O A O ---?? ?? = ? ? ???? ;(副对角分块) ④、11111A C A A CB O B O B -----?? -??= ? ????? ;(拉普拉斯) ⑤、 11111A O A O C B B CA B -----???? = ? ?-???? ;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一 确定的:r m n E O F O O ??? = ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵: ①、只能通过初等行变换获得; ②、每行首个非0元素必须为1; ③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、 若(,)(,)r A E E X ,则A 可逆,且1 X A -=; ②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1 A B -,即: 1(,)(,) c A B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,) r A b E x , 则A 可逆,且1 x A b -=; 4. 初等矩阵和对角矩阵的概念: ①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;

线性代数公式精简版

1、行列式 1. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 逆序数计算 2. 行列式的重要公式: (1)、主对角行列式:主对角元素的乘积; (2)、上、下三角行列式( = ◥◣):主对角元素的乘积; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; 2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 3. 1**111**()()()()()()----===T T T T A A A A A A *** 111()()()T T T AB B A AB B A AB B A ---=== 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 方阵行列式性质。(1)||||;(2)||||;(3)|||||===T n A A A A AB A B λλ 注意:矩阵乘法不满足交换律。 3、矩阵的初等变换与线性方程组 1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m n E O F O O ??? = ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵: ①、只能通过初等行变换获得; ②、每行首个非0元素必须为1; ③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、若(,)(,)r A E E X ,则A 可逆,且1X A -=; ②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)c A B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)r A b E x ,则A 可逆,且1x A b -=; 4. 矩阵秩的基本性质: ①、0()min(,)m n r A m n ?≤≤; ②、()()T r A r A =; ③、若A B ,则()()r A r B =; ④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+; ⑥、()()()r A B r A r B +≤+; ⑦、()min((),())r AB r A r B ≤;

线性代数重要公式

0; 【线性代数重要公式】 1、行列式 1. n 行列式共有n 2 个元素,展开后有n !项,可分解为2n 行列式; 2. 代数余子式的性质: ① 、A j 和a j 的大小无关; ② 、某行(列)的元素乘以其它行(列)元素的代数余子式为 ③ 、某行(列)的元素乘以该行(列)元素的代数余子式为 I A ; 代数余子式和余子式的关系:M ij= (-1)i j A ij A ij =(J )i j M ij 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为 D ,则D i =(_1) (J D ; 将D 顺 时针或逆时针旋转90 ,所得行列式为D 2 ,则D 2= (-1)"TD ; 将D 主对角线翻转 后(转置),所得行列式为 D 3 ,则DD ; 将D 主副角线翻转后,所得行 列式为D 4 ,则D" D ; 行列式的重要公式: ① 、主对角行列式:主对角元素的乘积; ② 、副对角行列式:副对角元素的乘积 (-1) "("■I ) ; ③ 、上、下三角行列式(、二X ):主对角元素的乘积; ④、匚和丄:副对角元素的乘积(一1)"( T ; ⑥ 、范德蒙行列式:大指标减小指标的连乘积; ⑦ 、特征值; 6. 对于n 阶行列式A ,恒有:-A Z 」(-1)k S k'njc ,其中S k 为k 阶主子式; k=t 7 7. 证明A =0的方法: ①、A=-A ; ② 、反证法; ③ 、构造齐次方程组Ax=O ,证明其有非零解; 3. 4. 5. ⑤、拉普拉斯展开式: =AB 、 = ^1)m - A B

④、利用秩,证明r (A):n ; 0;

学习线性代数总结

竭诚为您提供优质文档/双击可除 学习线性代数总结 篇一:线性代数学习总结 线性代数学习总结 ----------应化11王阳(2110904024) 时间真快,一转眼看似漫长的大一就这样在不知不觉中接近尾声。纵观一年大学的学习和生活,特别是在线代的学习过程中,实在是感慨颇多。在此,我就从老师教学和自身学习方面,谈谈自己的一点体会。 老师在教学中,也应该以一些具体的实例入手来教学,如果脱离了实际应用,只是讲抽象的概念和式子,是很难明白的,并且有实例的对照,可以加深记忆理论知识。然后要注重易混淆概念的区别,必要时应该拿出来单独讲讲,比如矩阵和行列式的区别,矩阵只是为了计算线性方程而列的一个数据单而已,并无实际意义。而行列式和矩阵有本质的区别,行列式是一个具体的数值,并且行列式的行数和列数必须是相等的。其实老师在教学过程中,应该学会轻松一点,我不希望看到老师在讲台上讲得满头大汗,而学生坐在下面

听得云里雾里的场面,这就需要老师能够精选一些内容讲解,不需要都讲,而其他相关的内容让学生自己通过举一反三就得到就可以了。老师可以自己选一些经典的例子来讲,而不一定要讲书上的例子。然后对于例子中的计算,老师就可以不用算了,多叫学生动动手,增加我们的积极性,并且这样也更能发现问题。再就是线性代数的课时少,这是一个客观存在的原因,所以更要精讲。而不需全部包揽。当然,若果能通过改革,增加课时是最好不过了。这也算一点小小的建议吧。 再者,在自身学习过程中,我想说明的是,大学里的学习是不能靠其他任何人的,只能靠自己,老师只是起到一个引导作用。所以教材是我们最重要的学习资源,如果没有书本,就是天才也不可能学好。总体看来,我们使用的课本题型简单易懂,非常适合初学者学习。但它也有许多的不足之处,就个人在看这本教材时,觉得它举得实例太少了,并且例子不太全面,本来线性代数是一门比较抽象的学科,加上计算量大,学时少,所以要学好它,就只有靠自己在课余时间多加练习,慢慢领悟那些概念性的东西。然后对于教材内容的侧重点,我觉得应该放在线性方程组这一块,因为它是其他问题的引出点,不管是矩阵,行列式,还是矩阵的秩和向量空间,都是为线性方程组服务的。我们对向量组的线性相关性的讨论,还有对矩阵的秩,向量组的秩的计算,都是

线性代数重要公式定理大全

线性代数重要公式定理 大全 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-;(1)2 2(1) n n D D -=- 将D 顺时针或逆时针旋转90,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -;

③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B = =、 (1)m n C A O A A B B O B C = =- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵);

相关主题