搜档网
当前位置:搜档网 › 高炉轴流风机喘振分析及防喘振控制系统研究

高炉轴流风机喘振分析及防喘振控制系统研究

高炉轴流风机喘振分析及防喘振控制系统研究
高炉轴流风机喘振分析及防喘振控制系统研究

高炉轴流风机喘振分析及防喘振控制系统研究

张红庆 陕西维远科技有限公司 710054

摘要:本文介绍了轴流风机喘振现象的形成机理、不同气温条件下喘振曲线的动态补偿方法,分析了常见的传统防喘振控制工艺中存在的不足,以及先进防喘振控制技术应用于高炉轴流风机的优化控制策略。

关键词:轴流鼓风机;防喘振;优化控制

引言

目前静叶可调式轴流风机在钢铁企业400~2000m3的高炉上已普遍使用。在高炉风机的控制系统中,防喘振控制系统是最核心的控制环节,必须综合考虑高炉生产、机组安全、节能降耗等多方面需求,如果在控制工艺中采用常规的简单、粗放的设计方法,不仅能耗浪费严重,也是极大的安全隐患。本文介绍的高精度防喘振控制系统,不仅可以更有效地保证机组和安全和稳定,同时也可以充份发挥机组的最大性能范围,对高炉安全性和产量的提高起到显著的促进作用。

轴流风机喘振现象的本质

为了更好地理解和设计防喘振控制系统,有必要对轴流压缩机形成发生喘振现象的本质原因加以说明。

轴流风机转子的叶片呈多级排列,每一级叶片环绕转子形成一组叶栅。空气流经过多级叶栅逐级压缩传递,最终经末级叶栅到达出口。在一定的静叶角度下,气体的流量与风机出口的压力有关,压力越高,流量越低。喘振是指风机达到出口压力极高、流量极低极限后的工况突变。

气流冲角及叶片背面表层气流脱离失速现象

气流沿轴向进入叶栅时,气流方向与风机叶片之间的夹角称为气流冲角。随着压力的增高,入口流量愈小,气流冲角也就愈大。当气流冲角增大到一定程度时,沿叶片的非工作面将发生气流脱离现象。这种现象称为脱流或失速。失速是叶轮式轴流输送设备都会遇到的一种现象,失速又叫旋转脱流,即由于气体对叶片的冲角过大而使得气流的流线脱离叶片表面,结果叶片表面处的气流变为紊流,同时可导致叶片颤振。失速区沿叶栅旋转传递和不断扩展,就会引起压缩机的工况突变,即喘振。

气流冲角增大至一定程度后,沿叶片背面形成气流脱离现象示意图 当风机发生喘振时,整个风机的管网系统气流周期性振荡现象,这时,轴流风机虽然仍在旋转,但对气体所做的功却不能提高风机的流量和压力,而是基本上转化为空气热能。风机的气动参数(流量、压力)将作大幅度的纵向脉动,且发出低沉的异常声音和震动。在轴流风机发生喘振时,纵向推力来回振荡会导致

致密封瓦及推力轴承损坏,另外,机组内部温度急聚增加,会造成叶片软熔、变形、碰撞断裂,甚至会在短时间内摧毁风机全部叶片。

高精度防喘振控制系统的实现

1、高精度调节回路:防喘振系统的首要目标是确保机组和高炉生产的安全。高炉轴流风机一旦发生喘振,供风将完全中断,造成高炉塌料影响炉况,严重时可能导致渣铁灌死风口。因此喘振现象不仅严重威胁机组设备的安全,也有可能对高炉生产造成巨大损失。防喘振系统对工况变化的反应必须足够灵敏,保证在生产过程中能够避免此类情况的发生。

另外,防喘振调节系统不仅仅要防止风机发生喘振,更要保证生产全过程中供风的稳定。防喘调节过程必须在无需操作干预的情况下,实现全自动化高精度调节,保证供风压力不因防喘调节而发生变化和波动。

在高炉风机控制应用实践中发现,当由于工艺管网阻力发生扰动,防喘振阀进行调节动作时,要同时做到供风稳定和防止风机喘振这两种后果是非常困难的,“保风机”和“保高炉”似乎是一对不可调和的矛盾。由于高炉、热风炉存在巨大的管网容量,导致调节对象(排气压力)具有很强的滞后性,如果采用的常规的PID调节回路,无法使工况点被稳定控制在调节线附近。

在高精度防喘振控制回路的设计中,不是将排气压力直接做为调节对象,而是采用工艺阻尼补偿计算的方式做为主要调节手段。风机出口压力的变化,归根结底是由于高炉工艺阻力的变化引起的。当高炉料层厚度、密度增加,或出现悬料等工况时,都有可能造成供风压力增加。另外,TRT和热风炉操作时也有可能造成风压波动。为了计算工艺阻力的变化情况,我们把整个工艺系统简化成一个容积为800m3左右的气体容器,所有工艺阻力的变化都等价于容器出口的一个假想的调节阀开度的变化,而风机则相当于一个恒量的气流源。工艺系统内的压力可以用气体方程表示:

P=K*ρ/V

P 气体压力 kPa

K 常数

ρ 气体质量总量

V 工艺系统管网总容量 m3

工艺阻力增大,相当于这个假想的调节阀的开度减小,整个工艺系统的进风流量大于出风流量,气体压力增加,在1秒钟时间内,压力的变化量与管网内的气体总容量变化成正比:

⊿P=K*⊿ρ/V = K*(Qin-Qout)/V

⊿P: 工况点移动速度 kPa/s

Qin: 风机供风流量(近似为恒定值) m3/s

Qout: 工艺出口假想调节阀流量 m3/s

根据以上公式,只要我们通过一阶微分计算出工况点的的移运速率⊿P,即可以根据管网容量的大小,使用气体方程反推出工艺阻力在一定控制周期内的实际变化,进而控制防喘阀开度向相反方向等比例调节,补偿工艺阻尼的变化。

实践结果表明,在高炉风机防喘振控制系统中采用工艺阻尼模型的控制效果明显优于将排气压力做为直接调节对象,可以做到在不需要人为干预的情况下,自动将工况点稳定控制在防喘调节线附近,压力没有任何波动、振荡现象。另外,在高炉偶尔发生异常情况,憋风、憋压时,能够及时迅速地调节调节阀打开一定角度,即能够避免风机喘振,又能保持供风的持续稳定。

2、性能曲线补偿:在不同的气温下,同等体积的空气密度不同,温度越高,气体密度越低,喘振点能达到的实际压力越低。如果忽略喘振曲线随气温改变产生的实际变化,则无法确保运行的安全,也无法发挥机组的最佳性能。

河北省四季温差较大,冬季极低气温为-10℃,夏季极限高温接近40℃。下图是一台A V50-13风机在不同气温条件下的理论喘振性能曲线:

由上到下,分别是风机入口温度为-10℃,0℃,10℃,20℃,30℃,40℃时的喘振曲线 曲线上的正方形小节点(由左至右)分别表示静叶角度为25、35、45、55、65度

由上图可以看出,这台A V50-13轴流风机在-10℃和+40℃两种极端气温条件下,在常用静叶角度55°左右时,喘振点压力分别为448kPa 和338kPa。在极高和极低温条件下,对应同一喉部差压,喘振点压力值的变化幅度为100kPa 左右,这一数值远远超过了喘振线与防喘调节线之间的裕量。也就是说,如果喘振曲线的温度补偿被忽略,就有可能无法保证工况控制范围处于安全区域内,也有可能因调节线位置不正确而产生不必要的放风能耗和风机供风能力不足。

在以压缩机入口差压为横座标,压缩机压比为纵座标的防喘振工况图中,对于压比的温度补偿应用以下算式:

1

1

11)(1)(221)(1)('2+???

???

?????+??

????

????

?????

????=ααα

αA P A P T T A P A P

其中P2’/P1为经过温度补偿后的压比,P2/P1为压力实际测量喘振点压比。

α

为等熵指数,对于空气而言,数值为1.4。上式中压力值均为绝对压力(A ),

温度值单位为开尔文(K )。如果忽略大气压的变化和风机入口滤芯压损,则可近似认为P1=100kPa ,并且以表压值和摄氏度做为计量单位,上式即转换为:

1

1

11100100215.273215.2731100100'2+???

???

??

???+????????

??

??

???+++=+ααα

αP T T P

对于压缩机入口差压(或喉部差压)来说,也需要进行温度补偿:

15

.273'115

.2731'++=

ΔΔT T P P 使用上述公式对轴流风机的喘振性能曲线进行补偿,其结果与实测值能够准确吻合。通过对同一台A V50-12风机在冬季(平均-5.5℃)和夏季(平均33℃)进行两次喘振性能实验,夏季实测得到喘振点与冬季喘振曲线的理论温度补偿结果非常接近,最大误差不超过5kPa:

1 2 3 4 静叶角度(°) 32.2* 41.9* 51.7* 61.7 排气压力(kPa) 264 357.2 423.1 467.8 喉部差压(kPa) 3.62 5.06 6.67 9.37 冬 季 实 测 入口温度(℃) -5.68 -5.66 -5.42 -5.32 静叶角度(°) 32.3* 41.7* 51.9* 62.1* 排气压力(kPa) 219.2 294.5 343.7 380.5 喉部差压(kPa) 3.21 4.50 5.95 8.40 夏 季 实 测 入口温度(℃) 31.20 31.74 33.05 33.57 排气压力(kPa) 216.3 289.2 340.7 375.5 喉部差压(kPa) 3.16

4.42

5.83

8.20

根据 冬季 数据 补偿 理论 值

平均入口温度(℃)

33.0

该风机在冬季和夏季实测喘振曲线结果 “ * ” 表示实际达到喘振

将上表数据绘制成坐标曲线直观显示如下:

上图中两条红色实线分别表示冬季和夏季喘振曲线实测结果,蓝色虚线表示 根据冬季测试结果,补偿计算得到的理论夏季喘振曲线,与实测值基本吻合。

控制效果总结

通过技改项目的实施,我公司在高炉风机上相继应用了高精度防喘振调节系统(简称PCBB),与原有的常规控制方式相比,在春秋季(气温20度)风机的最大排气压力提高20~30Kpa左右,冬季(气温10度以下)提高40Kpa左右。运行过程中风机防喘振阀开度减小或达到完全关闭,消除了大量不必要的放风能耗,节能降耗效益十分显著。另外,运行过程中,风机在各种工况下都可以向高炉提供稳定的风压,在调节过程中送风压力保持平稳,供风稳定性和持续性良好。

[参考文献]

[1] 乐志成,吕灿,轴流压缩机,北京:机械工业出版社,1980:138~146

[2] 王再英,轴流风机防喘振分析及基于SLPC的防喘振控制系统设计,化工自

动化与仪表,2005,32(4),61~64

Analysis of Anti Surge Control System for Blast Furnace Blowers The microcosmic analysis of axial blower surge phenomenon is introduced, as well as the temperature compensating calculation for dynamic anti-surge line. The method of an advanced anti surge control strategy, which works more effectively and safer, can be used to optimize the conventional control system for BF blowers.

KEY WORDS: Anti-Surge Control, Axial Blower, Optimized Control

高炉风机防喘振先进控制技术

高炉风机防喘振先进控制技术 高炉鼓风机是炼铁过程中的核心动力设备,对于整个钢铁企业而言,鼓风机的运行状态与企业的产量、效益、安全息息相关,防喘振控制作为高炉风机控制中最重要的一环,其控制效果完善与否,在很大程度上决定了能否充分发挥鼓风机的潜能,为高炉提供一个安全、稳定、高效的风源,保证高炉达到理想的利用系数。 一、目前在炼铁行业高炉风机防喘振控制技术中普遍存在的问题 1.“保风机”与“保高炉”之间的矛盾: 在防喘振控制回路中,由于缺少完备的数学算法,在工况点接近喘振线时,“保风机”和“保高炉”往往成为一对不可调和的矛盾。防喘振动作的速度主要由调节器的增益值来决定,在调试过程中,往往对增益值如何设定感到两为其难:如增大数值,防喘振阀在动作时打开得过快、过大势必会产生较大的流量和压力波动,这种波动是高炉正常生产中无法接受的。如减小数值,又不能保证在工况点上升较快的情况下保证风机不进入喘振区。产生这一矛盾根本的原因是防喘振控制回路设计的出发点是保护风机本体,对如何在保护风机的同时又保护高炉的正常生产缺少必要的考虑。目前普遍应用的防喘振控制效果的现实情况是:一旦工况点越过防喘振线,防喘振阀进行调节动作,工况点在2~3秒钟内由接近喘振区域被向下拉至距离防喘线以下,风机出口压力的波动至少会超过40kPa,在高炉憋压比较突然的情况下,压力的波动甚至可能达到100~150kPa,这样幅度的波动远远超过了高炉操作所允许的范围。一般来说,导致来自高炉的阻力增大、风机工况接近喘振线的原因可能是以下几种:在热风炉切换的过程中操作不慎、高炉炉料下落、炉顶煤气压力控制不稳等,这些原因都可能导致炉料料层透气性下降、高炉工况恶化。从维持高炉工况的角度出发,在这种情况下,最需要的就是高炉风机能够保证稳定的送风压力,使高炉工况得以好转,而由于防喘振控制的局限性,往往恰是在这一时候,供风压力最不稳定,导致和加剧了高炉座料,而高炉工况一旦变坏后往往需要几天的时间才能逐渐恢复,由此给炼铁企业造成巨大的经济损失。 2.AV系列轴流风机尚未发挥出最大效益: 由于目前普遍应用的防喘振控制过分侧重于风机本身,使AV(静叶可调式)系列轴流风机无法在最大工况点上稳定工作。工况点一旦达到或越过防喘振线,防喘阀就会在调节器的作用

防喘振控制原理及方法

4.2 离心压缩机防喘振控制 4.2.1 离心压缩机的喘振 1.离心压缩机喘振现象及原因 离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。此时可看到气体出口压力表、流量表的指示大幅波动。随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。如不及时 采取措施,将使压缩机遭到严重破坏。例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。 下面以图 4.2-1 所示为离心压缩机的特性曲线 来说明喘振现象的原因。离心压缩机的特性曲线显 示压缩机压缩比与进口容积流量间的关系。当转速 n 一定时,曲线上点c 有最大压缩比,对应流量设 为P Q ,该点称为喘振点。如果工作点为B 点,要 求压缩机流量继续下降,则压缩机吸入流量 P Q Q < ,工作点从C 点突跳到D 点,压缩机出口 压力C P 从突然下降到D P ,而出口管网压力仍为 C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到 D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重 复上述过程,出现工作点从B A D C B →→→→的反复循环, 由于这种循环过程极迅速,因此也称为“飞动”。由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。 2.喘振线方程 喘振是离心压缩机的固有特性。离心压缩机的喘振点与被压缩机介质的特性、转速等有关。将不同转速下的喘振点连接,组成该压缩机的喘振线。实际应用时,需要考虑安全余量。 喘振线方程可近似用抛物线方程描述为: θ 2 121Q b a p p += (4.2-1) 式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流 量和温度;b a 、是压缩机系数,由压缩机厂商提供。喘振线可用图4.2-2 表示。当一台离心压缩机用于压缩不同介质 气体时,压缩机系数会不同。管网容量大时,喘振频率低,喘 振的振幅大;反之,管网容量小时,喘振频率高,喘振的振幅 小。 图4.2-2 离心压缩机的喘振线

循环气压缩机防喘振控制(内容充实)

循环气压缩机防喘振控制 摘要: 本文系统介绍TRICON系统在循环气压缩机机组防喘振控制的应用及控制原理。重点介绍防喘振系统的功能模块的构建,同时简述机组运行故障时的检修方法与分析思路。 关键词定义: 喘振机理喘振线防喘振控制安全裕量盘旋设定点 1、前言: 大型离心式压缩机组由于其高效,经济,在现代企业中应用广泛,成为工艺连续运行的“心脏”。但是由于其造价相对于往复式压缩机而言要高很多,控制系统复杂,而且占用的空间大等缺点,对于工艺成熟的企业一般不设置备用机组。喘振是离心式压缩机固有的特性,每一台离心式压缩机都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防止喘振的发生。本文以天利高新技术公司醇酮厂的循环气压缩机C41101(SVK1-H型)为例,详细介绍TRICON三重化控制系统如何构建机组防喘振系统,并简述防喘振仪表常见故障的处理方法。 2、离心式压缩机喘振机理: 离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线是指压缩机的出口压力与入口压力之比(或称压缩比)与进口体积流量之间的关系曲线P2/P1~Q的关系,其压缩比是指绝对压力之比,特性曲线如图所示: 图2.1 离心式压缩机喘振曲线 由图2.1可见,其特性曲线随着转速不同而上下移动,组成一组特性曲线,而且每一条特性曲线都有一个最高点。如果把各条曲线最高点联接起来得到一条表征喘振的极限曲线,如图中虚线。所以,图中还有阴影部分称为喘振(或飞动)区;在虚线的右侧为正常工作区。实线与虚线之间是临界区,压缩机可以运行,但太靠近喘振区,应尽量避免长期工作。

图2.2固定转速机下的特性曲线 图2.2是一条某一固定转速机下的特性曲线,喘振时工作点由A-B-C-D-A反复迅速的突变。 喘振是一种危险现象,发生喘振时,可发现在入口管线上的压力表指针大幅度摆动,流量指示仪表也发生大幅度的摆动.喘振现象会损坏压缩机的各部件,轴承和密封也将受到严重损害,严重时造成轴向窜动,甚至打碎叶轮,烧轴,使压缩机遭受破坏。 喘振是离心式压缩机固有的特性,每一台都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防喘振的发生。 3、工艺流程简介: 醇酮装置是利用环己烷(C6H12)在铁系催化剂的催化作用下与贫氧空气(氧含量:10%)中的氧组分发生氧化反应,生成环己醇(分子式:C6H11OOH)、环己酮(分子式:C6H10O)、还己基过氧化物(可分解为环己醇、环己酮),前两者合称醇酮。另外,由于反应温度、氧气含量的不同,会产生甲酸、二元酸等付产品。 循环气压缩机组是用于反应尾气的重复利用,与来自新鲜空气压缩机C41102的新鲜空气配制贫氧空气(氧含量:10%)。循环气机组部分的实时工艺流程如图3.1,流程说明如下: 4.5MPa中压蒸汽自管网来,经过减温减压后至4.1MPa,用于驱动汽轮机(杭汽大陆产:B0.3-4.1/1.1型)C41101/2,蒸汽凝结水直接排入地沟。汽轮机通过齿轮变速箱升速后驱动贫氧空气压缩机C41101/1,使之达到18831r/min。 经过醇酮反应器贫氧催化反应消耗掉贫氧空气中氧组分的尾气,通过洗涤工艺后主要成分为氮气(N2:95.52%),氧气(O2:3.44%)、微量CO、CO2、环己烷蒸汽等。经过贫氧空气压缩机入口气液分离器分离出凝结液体后进入压缩机升压,经出口气液分离后进入气气混合器R41103,与来自新鲜空气压缩机的新鲜空气混合调配成氧含量为不大于10%的贫氧空气,送往醇酮反应器进行贫氧催化反应。

防喘振

1. 压缩机的防喘振控制方案 以往方案大致可分为固定极限流量和可变极限流量防喘振控制两类。但到目前为止,对于不同摩尔质量、温度、压力的压缩气体,还没有一种切实可行的方法来有效、精确地计算压缩机的喘振线,通常都是建立一个较大的额外安全空间,保证机组在可预设的最佳工作状况下安全运行,但这种方法使得压缩机的工作效率大为降低,因此有关的专业技术人员一直在寻找更有效的方法来解决防喘振控制过程中的安全与效率问题。TS3000 系统的成功应用, 就较好地解决了此问题。 2. 喘振线作图的基本方法 压缩机防喘振控制系统的基本原理,如图2 所示。 图中:Yl=Y2/Y3=Pd/Ps=(PT2+ 1.0332)/(PT1+1.0332); SP=Y4=V(Pd/Ps)+K(给定);Y5= h/Ps=FT5/(PT1+1.0332)(测量)采用Pd/Ps 和c·h/Ps 做喘振曲线,其基本形状为抛物线,而采用Pd/Ps 和(c· h/Ps )2作图时得到的喘振线则在工作点附近基本呈直线形状(简化后,C2h/Ps)。 其关系式如下: h/Ps=V·(Pd/Ps)+K式中,Pd—压缩机出口压力(绝压),kPa;Ps—压缩机入口压力(绝压),kPa;C—常数(由孔板尺寸决定),m2;h—孔板差压(与流量的关系式为Q2=H),kPa 3. 工艺控制方案 (1)压缩机防喘振调节画面组成

(a)防喘振动态示意图,将压缩机实际工作点在防喘振示意图上相应显示。 (b)动态数据,将实际工作点数据在ESD 画面相应处显示。 (c)点击ESD 流程图上相应调节阀,可弹出PID 画面,可在线修改设定值或输出值。 (2)调节防喘振电磁阀设定3 种状态,正常运转状态下,可设定自动调节,开停工或异常状态下, 可设定手动调节或强制调节。 (3)报警 利用声光报警及画面报警提示。 (4)控制要点 (a)开压缩机前,应先将防喘振阀强制打开至100%。 (b)当压缩机实际工作点靠近防喘振线时,应提高压缩机转速,维持正常生产,若压缩机 转速已达最大,则应打开防喘振阀,并适当降低装置负荷,保证压缩机的正常运行。 (c)当压缩机进入喘振区,ESD 声光报警时,应立即打开防喘振阀,并相应降低装置生产 负荷,消除喘振,使压缩机回到正常工作区运转,避免压缩机损坏或故障。 (5)机组喘振线及防喘振线示意图 见图3。

预旋技术防喘振原理

预旋技术防喘振原理 旋转进口导流叶片和静叶片的防喘机理:通过旋转进口导流叶片,使其出气角改变,控制导流叶片出气角的大小和方向可以使流入第一级动叶的气流攻角处于正常位置,调节旋转前面级的静叶片出气角可以使这些静叶片后的动叶处于满意的工况下工作,因而可以避免喘振,并使压气机偏 离设计工况下仍能保持正常工作。 从速度三角形分析,用旋转静叶片防止喘振的方法,就是在非设计工况时改变压气机速度三 角形上的预旋(改变C1u)来改变冲角i,使气流速度W1的方向,保持在设计值附近,部分地消除喘振。在图2中给出了如果进口导流叶片不能转动,当工作轮转速不变,气流轴向速度C1a发生变化(即来流流量发生变化)时叶型上气流的冲角所发生的改变。从图中可以看出在流量大于或小于设计流量时,转子叶片的来流攻角将小于或等于0,此时叶片压、吸力面就会发生不同程度的分离, 严重时可能导致压气机喘振。 图3表示借助于适当的转动导流叶片安装角可以使气流流入工作轮叶片通道内的相对速度方向在流量变化时保持不变,这就保证了转子叶片在非设计工况下都可以工作在设计状态附近,从而消除了喘振[4]。 可调进口导流叶片和静叶叶片,作为多级轴流压气机的防喘措施之一,其优点突出,不仅达到防喘措施,而其非设计工况下效率高,同时还可以改善燃机的加速性,又适用于高增压比压气机,所以这种防喘调节机构广泛地应于80年代新发展的压气机设计中,同时在大型风机中也得到很好的应用,如陕西鼓风机厂在这种理论指导下已成功研制出全静叶可调的大型鼓风机。 鉴于该方法广泛的工程应用前景,国内外许多学者、专家都在这方面开展了大量的探索研究,并取得许多卓有成效的理论和试验成果。我国张健等[4]应用试验的方法,在设计转速下,通过试验调节一台三级轴流压气机各级组合,找到了压气机的一组最佳角度匹配。试验结果分析表明,静叶角度的改变对压气机性能有着极为明显的影响,采用最佳角度匹配,最高绝热效率提高了7.4个百分点,稳定工作裕度也有显著的增加。对于如何改善低速状态下的压气机性能,夏联等[5]进行了一台七级轴流高压压气机的静叶调节试验研究。试验结果分析表明:在低速状态下,通过静叶角度优化调节能有效地改善压气机性能,拓宽稳定工作范围;并且,压气机低速性能受静叶可调角度的配比影响很大。静叶角度调节技术与其他技术相结合,能更有效地改善压气机性能。楚武利等[6]通过试验研究了带导叶的单级轴流压气机在进口导叶无预旋、全叶高预旋2度和叶顶端部预旋2度时,压气机总性能、基元性能及失速边界的变化情况。对比分析了三种导叶在不同转速下的性能曲线,结果表明导叶预旋对压气机在非设计转速下有很好的扩稳效果;进一步研究发现:利用端弯技术可以推迟轴流压气机不稳定流动的发生,扩大压气机稳定工作范围。另外西北工业大学的范非达等也在这方面开展了大量工作并取得良好的效果[7~8]。 但这种防喘措施结构比较复杂,特别是对多级静叶调节实现起来更加困难。此外从气动方面来看,这种方法只能着重改善气流沿叶高某一半径上的流动情况,对整个叶片的三维流动不能很好的兼顾,例如照顾了平均半径就不能很好地照顾叶尖和叶根。

高炉轴流风机防喘振控制系统优化及实验

高炉轴流风机防喘振控制系统优化及实验 摘要:针对萍钢4#高炉鼓风机存在的问题,阐明了防喘振控制优化的方案,包括工况点沿防喘线精确控制,入口温度对喉部差压、出口压力的补偿,提出了控制优化的具体实施方法,优化达到了预期目标。 【关键词】轴流风机防喘振优化实施 一、前言 高炉鼓风机是高炉炼铁生产的关键动力设备,为确保鼓风机的安全稳定运行,在其控制系统中必须配备防喘振自动控制,并应兼顾高炉生产、机组安全、节能降耗等各方因素,高炉作为鼓风机供风的负载,炉内状况瞬息万变,鼓风阻力发生扰动,控制系统将使防喘振阀动作,就会在高炉意外崩料和风机喘振之间处于两难的境地,本文以萍乡钢铁公司4#高炉鼓风机的防喘振控制优化为例,阐述控制系统在防喘振调节过程中如何保证送风压力的稳定性,在安全运行前提下充分发挥风机能力,进而为高炉稳产、高产奠定基础。 二、存在的问题 萍乡钢铁公司4#高炉采用AV45-13全静叶可调式轴流风机,由于防喘振控制侧重于保护鼓风机,加之防喘振控制品质不高,2010年投产以来,防喘振控制系统运行状况不甚理想,主要表现在以下几方面: 1)防喘阀开度基本在10%左右,轴流风机经常处于放风状态,造成大量无谓能量损失,放风噪声污染严重。 2)防喘振的控制品质有待提高:一旦高炉路况不顺,鼓风阻力增大使风机工况点进入调节区时,通常是采用人工紧急干预打开防喘阀使工况点回到稳定工作区,保守的安全意识使工况点总是远离防喘振线。 3)不同入口温度对风机喘振性能有较大影响,采用固定的喘振性能曲线不能真实地反映风机喘振性能,一方面可能影响风机的安全、稳定运行,另一方面可能制约风机供风能力的充分发挥。 三、防喘振控制优化方案 1.防喘振控制优化的先决条件 为了实现防喘振控制的优化,必须借助于性能优良的PLC系统。PLC的高速运算性能可使用户程序的扫描周期在10毫秒级,为有效克服鼓风阻力瞬变扰动成为可能;PLC丰富的运算和编程功能可以实现各种先进控制算法,达到预期的控制效果;PLC的高可靠性,实现风机控制系统的安全运行进而确保风机的安全可靠运行。4#高炉鼓风机采用西门子S7-400H PLC,配备冗余414CPU可很好地实现各项控制任务。 为了实现防喘振控制的优化,必须借助于性能优良的防喘振阀。防喘振阀具有可靠的快开性能,当一旦压力过高,可释放由于喘振引起的压力波动;防喘振阀应具有良好的调节性能,当运行点接近防喘振线时,能充分调节流量以防止起浪点;防喘阀应具备灵敏的阶跃响应,超调应限制在最小,可满足风机在启动和停车时的压力、流量变化。4#高炉鼓风机采用的fisher防喘阀可以较好地满足上述要求。 2. 工况点沿防喘线精确控制 (1)防喘振的基本控制方法以喉部差压为横坐标、以出口压力为纵坐标,建立了运行工况画面,画面包含喘振线(红线)、喘振报警线(黄线)和防喘振控制线(蓝线),黄线和蓝线分别设在红线下方97%和93.5%处,以实际运行工况下的喉部差压和出口压力坐标建立运行工况点,如下图所示。根据当前喉部差压(补偿后),在防喘线上查询对应的出口压力,作为防喘振控制的给定值SP,以当前风机出口压力作为防喘振控制的测量值PV,二者之偏差西门子STEP7的PID模块FB41进行控制运算,当工况点接近或越过蓝线时,PLC控制防喘阀打开一定角度,来减小压缩机出口的阻力,使工况点回到稳定工作区,以避免轴流风机喘振现象的发生。 在工况点接近喘振线时,要求轴流风机的防喘阀必须动作迅速,但防喘阀动作速度太快、动作幅度过大,势必会使风机出口压力、流量产生大幅度波动,影响高炉炉况的稳定。由于防喘振控制是以风机吸入气体流量和排气压力为调节对象,二者的变化都具有极强的瞬时性,而信号测量、计算输出、执行机构动作及工艺过程都不可避免会产生一定的时间滞后,在这样一个瞬时性非常强的闭环控制回路里,以滞后的测量信号为计算依据,采用的常规的PID运算,虽然可以在工况点跃过防喘线时迅速地打开放空阀,但无法使工况点在响应线附近被稳定控制,难以实现精确控制。

高炉轴流风机喘振分析及防喘振控制系统研究

高炉轴流风机喘振分析及防喘振控制系统研究 张红庆 陕西维远科技有限公司 710054 摘要:本文介绍了轴流风机喘振现象的形成机理、不同气温条件下喘振曲线的动态补偿方法,分析了常见的传统防喘振控制工艺中存在的不足,以及先进防喘振控制技术应用于高炉轴流风机的优化控制策略。 关键词:轴流鼓风机;防喘振;优化控制 引言 目前静叶可调式轴流风机在钢铁企业400~2000m3的高炉上已普遍使用。在高炉风机的控制系统中,防喘振控制系统是最核心的控制环节,必须综合考虑高炉生产、机组安全、节能降耗等多方面需求,如果在控制工艺中采用常规的简单、粗放的设计方法,不仅能耗浪费严重,也是极大的安全隐患。本文介绍的高精度防喘振控制系统,不仅可以更有效地保证机组和安全和稳定,同时也可以充份发挥机组的最大性能范围,对高炉安全性和产量的提高起到显著的促进作用。 轴流风机喘振现象的本质 为了更好地理解和设计防喘振控制系统,有必要对轴流压缩机形成发生喘振现象的本质原因加以说明。 轴流风机转子的叶片呈多级排列,每一级叶片环绕转子形成一组叶栅。空气流经过多级叶栅逐级压缩传递,最终经末级叶栅到达出口。在一定的静叶角度下,气体的流量与风机出口的压力有关,压力越高,流量越低。喘振是指风机达到出口压力极高、流量极低极限后的工况突变。

气流冲角及叶片背面表层气流脱离失速现象 气流沿轴向进入叶栅时,气流方向与风机叶片之间的夹角称为气流冲角。随着压力的增高,入口流量愈小,气流冲角也就愈大。当气流冲角增大到一定程度时,沿叶片的非工作面将发生气流脱离现象。这种现象称为脱流或失速。失速是叶轮式轴流输送设备都会遇到的一种现象,失速又叫旋转脱流,即由于气体对叶片的冲角过大而使得气流的流线脱离叶片表面,结果叶片表面处的气流变为紊流,同时可导致叶片颤振。失速区沿叶栅旋转传递和不断扩展,就会引起压缩机的工况突变,即喘振。 气流冲角增大至一定程度后,沿叶片背面形成气流脱离现象示意图 当风机发生喘振时,整个风机的管网系统气流周期性振荡现象,这时,轴流风机虽然仍在旋转,但对气体所做的功却不能提高风机的流量和压力,而是基本上转化为空气热能。风机的气动参数(流量、压力)将作大幅度的纵向脉动,且发出低沉的异常声音和震动。在轴流风机发生喘振时,纵向推力来回振荡会导致

离心式压缩机防喘振控制设计讲解

1 概述 1.1压缩机喘振及其危害 压缩机运行中一个特殊现象就是喘振。防止喘振是压缩机运行中极其重要的问题。许多事实证明,压缩机大量事故都与喘振有关。喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。喘振会造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振的出现轻则使压缩机停机,中断生产过程造成经济损失,重则造成压缩机叶片损坏,造成人员伤害;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废。 1.2喘振的工作原理及防治 压缩机在运行中,当管路系统阻力升高时,流量将随之减小,有可能降低到允许值以下。防喘振系统的任务就是在流量降到某一安全下限时,自动地将通大气的放空阀或回流到进口的旁通阀打开,增大经过空压机的流量,防止进入喘振区。取流量安全下限作为调节器的规定值。当流量测量值高于规定值时,放空阀全关:当测量值低于规定值时,调节器输出信号,将放空阀开启,使流量增加。压缩机工作效率高,在正常工况条件下运行平稳,压缩气流无脉动,对其所输送介质的压力、流量、温度变化的敏感性相对较大,容易发生喘振造成严重事故。所以应尽力防止压缩机进入喘振工况。喘振现象是完全可以得到有效控制的,如图(1)所示,根据离心压缩机在不同工况条件下的性能曲线,只要我们把压缩机的最小流量控制在工作区(控制线内),压缩机即可正常工作。喘振的标志是一最小流量点,低于这个流量即出现喘振。因此需要有一个防止压缩机发生喘振的控制系统,限制压缩机的流量不会降低到这种工况下的最低允许值。即不会使压缩机进入喘振工况区域内。

轴流风机的防喘振控制..

长岭分公司关键机组防喘振控制 长岭分公司机动处李晖 一概述 透平式压缩机是利用高速旋转的叶轮(叶片组)对气体作功,将机械能加给气体,使气体压力升高,速度增大。在叶轮后部一般设置有面积逐渐扩大的扩压元件(扩压器),高速气体从叶轮流出后再流经扩压器,使气体的流速降低,将气体的速度能(动能)部分转变为压力能,压力继续提高。透平式压缩机气体的吸入、压缩和流出均是在连续流动的状况下进行的。 透平式压缩机按气流运动方向可分为三类: 离心式—气体在压缩机内沿离心方向流动 轴流式—气体在压缩机内沿与转轴平行方向流动 混流式—气体在压缩机内的流动方向介于离心式和轴流式之间 长岭分公司的关键机组分二种:离心式压缩机和轴流式压缩机,它们的原动机有三种:电动机,烟气轮机和蒸汽轮机,压缩机的主要作用是压缩空气和富气等工艺介质,使之达到工艺所需的流量、压力。关键机组是生产中的关键设备,它们的运行工况对压缩机安全、稳定、经济地运行和生产装置的正常运行十分重要,而在关键机组的诸多自控回路中,其防喘振控制是一项重要的安全保护措施。 二防喘振控制系统 喘振是透平压缩机的一种固有特性。 1.喘振的产生

压缩机的运行工况任何时候都可以用性能曲线来表示,通过性能曲线可以反映压缩机各种运行参数之间的关系并确定其性能,如图1所示的是反映压缩机出口压力与入口流量之间关系的性能曲线(入口温度、压力和转速不变)。当压缩机的流量沿着性能曲线减少流量达到其驼峰点流量(喘振点)时,在排出管内出现时大时小、时正时负的不稳定工况,在叶轮及扩压器的某一通道内还会发生时出现时消失的边界脱离涡流区,并且依次传给相邻的管道,产生一种低频率、高振幅的气流脉动,从而引起严重的振动和吼叫声,严重时可能引起压缩机和管道系统遭到破坏。 2. 喘振的机理 由于叶轮与叶片扩压器的形状及安装位置不可能完全对称及气流的不均匀性,当进气流量减小到某一个值时,进入叶栅的气流发生分离,这种分离首先发生在一个或几个叶片的流道中,影响进入相邻的流道的气流方向,由于进气冲角的变化及气流的分离区沿叶轮逆流旋转,以比叶轮旋转速度小的相对速度移动,在绝对运动中分离区沿叶轮旋转方向并以比叶轮旋转速度小的速度进行,即产生旋转分离。当旋转分离扩散到整个管道,压缩机出口压力突然下降,后面管路(或容器)中的气流倒流至压缩机内,瞬时弥补了压缩机流量的不足,恢复机组的正常工作,把倒流至压缩机内的气体压出处,又使压缩机流量减小, 入口流量 出口压力 1 图1 压缩机性能曲线图

CCC 压缩机防喘振控制技术

CCC 压缩机防喘振控制技术 作者:https://www.sodocs.net/doc/3b5739793.html, 来源:本站发表时间:2010-6-5 17:27:55 点击:68 CCC 压缩机防喘振控制技术 1. 喘振现象 喘振是涡轮压缩机特有的现象,我们可以从下图的简单模型来解释这一特性,从图中可以看出,当容器中压力达到一定值时,压缩机运行点由D 沿性能曲线上升,到喘振点A ,流量减小压力升高,这一过程中流量减小压力升高,由A 点开始到B 点压缩机出现负流量即出现倒流,倒流到一定程度压缩机出口压力下降(B-C),又恢复到正向流动(C-D ),这样,气流在压缩机中来回流动就是喘振,伴随喘振而来的是压缩机振动剧烈上升,类似哮喘病人的巨大异常响声等,如果不能有效控制会给压缩机造成严重的损伤,喘振工况的发展非常快速,一般来讲在1-2 秒内就以发生,因而需要精确的控制算法和快速的控制算法才能实现有效的控制。 2. 喘振控制

通常压缩机都会有一系列的性能曲线图(如下图所示),其坐标是多变压头-入口流量,由于压缩机入口条件的不同(如温度、压力、分子量等)其喘振曲线是分散的多条曲线,给喘振的控制带来困难,CCC 根据压缩机的设计理论、喘振理论和自己的经验,开发出了一套计算方法和软件,可以将多变的入口条件的喘振曲线转化成与入口条件无关的曲线(如下图),这样就可以方便地确定喘振点,而一般来讲压缩机制造厂商提供的性能曲线,是计算值,会有一定偏差,特别是旧机组的性能会发生变化,或者没有性能曲线,为了精确控制,需要对喘振曲线做现场测试,传统的测试方法需要由经验丰富的测试工程师来进行测试,人为地判断压缩机是否到达喘振点,这样做带来了巨大的风险,因为人的判断无法保证100%的准确。而且由于到喘振点时,需要人来手动控制打开防喘振阀,往往会动作滞后或过早打开,难以避免给机组造成损伤或无法实现准确测量,CCC 的喘振算法和控制算法能够在自动状态下测量喘振曲线,从而避免了人为测量的风险,并能准确测量记录线,这一功能是CCC 的专利技术而且是世界独一无二的。

陕鼓轴流压缩机控制系统

轴流压缩机自控系统 第一部分轴流压缩机概述 一、轴流压缩机 1.离心风机与轴流风机的区别 离心风机——轴向进气,径向排气。即:气流流动方向垂直轴线。 轴流风机——轴向进气,轴向排气。即:气流流动方向平行于轴线。

2、轴流压缩机产品型号含义 A 40——9 动叶级数 轮毂直径cm 静叶不可调轴流压缩机 A V 56——13 动叶级数 轮毂直径cm 全静叶可调轴流压缩机 3、轴流压缩机结构 AV型轴流压缩机主要件名称 机壳、静叶承缸、调节缸、主轴、动叶片、静叶片、轴承箱、支承轴承、止推轴承、进口圈、扩压器、液压伺服马达(或电动调节机构)、密封。

4、轴流压缩机机组配置形式1)汽轮机拖动

2)电机拖动 二、机组控制系统 1、分类 1)按作用分 ☆第二种配置形式:汽轮机拖动的两机组,由汽轮机+风机构成。 风机 汽机 低压端 高压端 进汽端 排汽端 控制系统 压缩机组监控保护 生产工艺调节

透平机组控制系统按其服务对象一般分为生产工艺调节和机组运行状态的监控及保护。 生产工艺调节主要是指为满足生产工艺需要,机组控制系统完成对机组运行参数的调整,它是生产的需要,是机组所服务的装置的工艺需要。 机组运行状态的监控及保护,是指为机组操作人员提供了解机组运行状况的界面同时提供保证机组能正常、安全、可靠地运行的监控与安全自保功能。工艺调节功能主要是对压缩介质的流量、压力的调整。调整的手段主要有:调整静叶(或进口导叶、进口节流门)角度、改变机组转速等。机组运行状态的监控及保护功能主要完成对机组运行过程中的各种运行参数的采集、显示、记录以及完成各种逻辑联锁与保护功能。 2)按专业分 2、自控系统组成

离心式压缩机的防喘振控制

编订:__________________ 审核:__________________ 单位:__________________ 离心式压缩机的防喘振控 制 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5913-30 离心式压缩机的防喘振控制 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的“喘振”。 喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二

PLC 在压缩机防喘振控制系统中的应用

PLC在压缩机防喘振控制系统中的应用 前言 抚顺乙烯化工有限公司空分装置空压机防喘振控制系统原来采用FOXBORO盘前二次表来实现,并采用继电器实现其相关联锁逻辑功能,实现手段不仅落后,维护工作量大,而且还经常出现原因不明的意外停车,防喘振控制系统运行也不理想。该装置原控制系统发生爆炸事故之后,现在采用美国GE-Fanuc公司的90-30双机热备型PLC来实现空压机的防喘振功能和机组联锁保护,使用日本Digital公司的GP-470触摸屏来实现监视和操作功能。现在不仅操作直观方便、停车原因明确,也使空压机的防喘振系统设计更加完善,机组运行更加平稳。 空压机工艺简介 抚顺乙烯空分装置采用法国空气液化公司的专利,该装置以空气为原料,经过过滤、压缩、净化、精馏、蒸发等工序,最后分离出产品氧气和产品氮气。吸入的原料空气经过滤后除去灰尘和杂质,过滤后的空气由空气压缩机K601进行压缩,加压后送往下游净化岗位。空压机K601系离心式压缩机,由电机带动,分两级压缩,两级分置于电机两侧即K601A和K601B。空压机K601设计流量为31500 Nm3/h,功率为3200kw,转速为1450rpm,由法国苏尔寿(SULZER)公司制造。 喘振现象的产生 压缩机在工作过程中,当入叶轮的气体流量小于机组该工况下的最小流量(即喘振流量)限时,管网气体会倒流至压缩机,当压缩机的出口压力大于管网压力时,压缩机又开始排出气体,气流会在系统中产生周期性的振荡,具体体现在机组连同它的外围管道一起会作周期性大幅度的振动,这种现象工程上称之为喘振。 喘振是离心式压缩机的固有特性,当发生喘振时需采取措施降低出口压力或增大入口流量,尽量降低喘振时间。为了确保压缩机稳定可靠地工作,防止用量波动发生喘振,该装置设计了防喘振放空阀,当下游工艺设备空气用量减少或压缩机出现喘振时,可由放空阀减量放空来平衡。 防喘振方案的实施 防喘振控制系统描述 1.系统结构 本系统采用GE Fanuc 90-30 PLC 作数据采集和控制,为了保证系统的可靠性,控制部分采用双机热备结构,电源、CPU、通讯模块和通讯总线、以太网通讯模块等都是冗余的,通过

陕西鼓风机厂轴流压缩机培训教材

目录 一、轴流压缩机的发展概况 二、轴流压缩机的基本工作原理 三、机组的自动调节及保安系统 四、轴流压缩机选型 五、轴流压缩机与管网联合工作 六、轴流压缩机配套辅机设备 七、其他

一、轴流压缩机的发展概况 在十九世纪,轴流式鼓风机已应用于矿山通风和冶金工业的鼓风。但限 于当时的理论研究和工业水平还比较落后,这种风机的全压只有10~30mmH2,O效率仅达15~25%。 1853 年都纳尔(Tournaire )向法国科学院提出了多级轴流式压缩机的 概念。1884 年英国 C.A. 帕森斯(Parsons)将多级反动式透平反向旋转, 得出了第一台实验用轴流式压缩机,但效率很低。二十世纪初期,帕森斯 制造了第一台轴流式压缩机,19 级,流量85m3/min,压力12.1kPa·G,转速4000r/min ,效率约60%。由于效率低,故轴流式压缩机未能成功地推广应用。 从二十世纪三十年代开始,由于航空事业发展的需要,对航空燃气轮机 进行了大量的理论和试验研究,特别是对轴流式压缩机的气体动力学的理 论研究和平面叶栅吹风的实验研究,使轴流压缩机的理论和设计方法不断 完善,效率提高到80~85%。从四十年代开始,轴流式压缩机已广泛应用于航空燃气轮机中,迄今仍占有很重要的地位。现代轴流式压缩机的效率可 高达89~91%,甚至更高。 瑞士苏尔寿(SULZER)公司是世界上轴流压缩机设计制造技术的先进代表。1932 年苏尔寿公司制造了世界上第一台增压锅炉使用的工业轴流压缩机,1945 年苏尔寿公司制造了第一台轴流式高炉鼓风机,其流量为1200~1800m3/min,压力为78775~142179Pa(G),转速为5200r/min ,功率为3900kW,由电动机驱动。此后轴流式高炉鼓风机逐渐被采用,多为固定静

ccc压缩机防喘振控制技术

CCC压缩机防喘振控制技术(Antisurge Control) 1. 喘振现象 喘振是涡轮压缩机特有的现象从图中可以看出压缩机运行点由D沿性能曲线上升流量减小压力升高由A点开始到B点压缩机出现负流量即出现 倒流B-C C-D这样 伴随喘振而来的是压缩机振动剧烈上升 如果不能有效控制会给压缩机造成严重的损伤 一般来讲在1-2秒内就以发生 2. 喘振控制 2.1 喘振线的确定 通常压缩机都会有一系列的性能曲线图由于压缩机入口条件的不同压力其喘振曲线是分散的多条曲线 CCC根据压缩机的设计理论 可以将多变的入口条件的喘振曲线转化成与入口条件无关的曲线 而一般来讲压缩机制造厂商提供的性能曲线是计算值特别是旧机组的性能会发生变化或者没有性能曲线 传统的测试方法需要由经验丰富的测试工程师来进行测试 这样做带来了巨大的风险

确往往会动作滞后或过早打开 CCC的喘振算法和控制算法能够在自动状态下测量喘振曲线这一功能是CCC的专利技术而且是世界独一无二的       2.2 喘振控制算法 在传统的防喘振控制算法中用运行点的流量与喘振点的流量比较放空阀这样做会造成大量的回流能量和造成工艺的扰动甚至中断

2,1)(op r s q hr f S = 2,1)(SLL r q hr f = 喘振线上的点1)(2,1==op r s q hr f S 因而 Ss <1的区域为安全区域 从而实现控制 各种控制线及其相互之间的关系 (1) Surge Limit Line, SLL 压缩机在不同的工况下有不同的性能曲线所有这些 点构成了一条喘振极限线SLL CCC 防喘振控制算法在喘振极限线SLL 右边设置了一个可变的安全裕量 b ???ó?1???úμ?á÷á? è?1?2ù×÷μ?3?1y?a?????T RTL 位于SCL 与SLL 之间 如果操作点超过这个极限 安 全保险响应将增加喘振控制线的裕度(总b 值)SOL 线在喘振极限线的左 边   (5) Tight Shut-off Line, TSL TSL 定义最小的SCL 的偏差 二者之间的距离为d 1

离心式压缩机的防喘振控制(正式版)

文件编号:TP-AR-L6485 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 离心式压缩机的防喘振 控制(正式版)

离心式压缩机的防喘振控制(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的

“喘振”。 喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。 因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。 对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。连接离心式压缩机不同转速下的特性曲线的最高点,所得曲线称喘振极限线,其左侧部分称为喘振区,如图6—20中

基于防喘振控制系统的防喘振控制方法与制作流程

本技术公开基于防喘振控制系统的控制方法,包括监测风机出口压力,并将监测到的压力信号传送至第一控制模块;监测风机入口温度,并将监测到的温度信号传送至第二控制模块;根据监测的压力在规定时间内跳跃的次数判断机组是否发生喘振,并在判断发生喘振时,并控制第一定位器、第二定位器、入口导叶电动执行机构及防喘振阀进行防喘振控制;根据监测的温度在规定时间内上升的度数判断是否发生喘振,并在判断发生喘振时,并控制第一定位器、第二定位器、入口导叶电动执行机构及防喘振阀进行防喘振控制;本技术通过对风机出口压力的监测及控制,及对风机入口的温度的监测及控制,从而精确及有效进行了防喘振控制,减少了故障点。 权利要求书 1.一种基于防喘振控制系统的防喘振控制方法,该防喘振控制系统是 污水处理厂用GM鼓风机无流量计的防喘振控制系统,所述防喘振控制系 统包括风机入口温度监测模块、风机出口压力监测模块、防喘振阀、第一 控制模块、第二控制模块、第一定位器、第二定位器、入口导叶电动执行

机构;其特征在于,所述方法包括: 通过所述风机出口压力监测模块监测风机出口压力,并将监测到的压 力信号传送至第一控制模块; 通过所述风机入口温度监测模块监测风机入口温度,并将监测到的温 度信号传送至第二控制模块; 通过所述第一控制模块根据所述监测的压力在规定时间内跳跃的次数 判断机组是否发生喘振,并在判断发生喘振时,并通过所述第一控制模块控制第一定位器、第二定位器、入口导叶电动执行机构及防喘振阀进行防喘振控制; 通过所述第二控制模块根据所述监测的温度在规定时间内上升的度数 判断是否发生喘振,并在判断发生喘振时,并通过所述第二控制模块控制第一定位器、第二定位器、入口导叶电动执行机构及防喘振阀进行防喘振控制。 2.根据权利要求1所述的方法,其特征在于,所述通过所述第一控制 模块根据所述监测的压力在规定时间内跳跃的次数判断机组是否发生喘振,并在判断发生喘振时,并通过所述第一控制模块控制第一定位器、第二定位器、入口导叶电动执行机构及防喘振阀进行防喘振控制包括: 设定判断机组喘振的计次周期时间t3;

离心式压缩机的防喘振控制详细版

文件编号:GD/FS-4241 (安全管理范本系列) 离心式压缩机的防喘振控 制详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

离心式压缩机的防喘振控制详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的“喘振”。

喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。 因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。 对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。连接离心式压缩机不同转速下的特性曲线的最高点,所得曲线称喘振极限线,其左侧部分称为喘振区,如图6—20中阴影部分。喘振情况与管网特性有关。管网容量越

离心压缩机防喘振控制

离心压缩机防喘振控制 4.2.1 离心压缩机的喘振 1.离心压缩机喘振现象及原因 离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。此时可看到气体出口压力表、流量表的指示大幅波动。随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。如不及时 采取措施,将使压缩机遭到严重破坏。例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。 下面以图 4.2-1 所示为离心压缩机的特性曲线 来说明喘振现象的原因。离心压缩机的特性曲线显 示压缩机压缩比与进口容积流量间的关系。当转速 n 一定时,曲线上点c 有最大压缩比,对应流量设 为P Q ,该点称为喘振点。如果工作点为B 点,要 求压缩机流量继续下降,则压缩机吸入流量 P Q Q < ,工作点从C 点突跳到D 点,压缩机出口 压力C P 从突然下降到D P ,而出口管网压力仍为 C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到 D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。 2.喘振线方程 喘振是离心压缩机的固有特性。离心压缩机的喘振点与被压缩机介质的特性、转速等有关。将不同转速下的喘振点连接,组成该压缩机的喘振线。实际应用时,需要考虑安全余量。 喘振线方程可近似用抛物线方程描述为: θ 2 121Q b a p p += (4.2-1) 式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流 量和温度;b a 、是压缩机系数,由压缩机厂商提供。喘振线可用图4.2-2 表示。当一台离心压缩机用于压缩不同介质 气体时,压缩机系数会不同。管网容量大时,喘振频率低,喘 振的振幅大;反之,管网容量小时,喘振频率高,喘振的振幅 小。 图4.2-2 离心压缩机的喘振线

相关主题