搜档网
当前位置:搜档网 › 三角函数图像变换顺序详解(全面).

三角函数图像变换顺序详解(全面).

三角函数图像变换顺序详解(全面).
三角函数图像变换顺序详解(全面).

《图象变换的顺序寻根》

题根研究

一、图象变换的四种类型

从函数y = f (x)到函数y = A f ()+m,其间经过4种变换:

1.纵向平移——m 变换

2.纵向伸缩——A变换

3.横向平移——变换

4.横向伸缩——变换

一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样.

以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题.

【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到?

【解法1】第1步,横向平移:

将y = sin x向右平移,得

第2步,横向伸缩:

将的横坐标缩短倍,得

第3步:纵向伸缩:

将的纵坐标扩大3倍,得

第4步:纵向平移:

将向上平移1,得

【解法2】第1步,横向伸缩:

将y = sin x的横坐标缩短倍,得y = sin 2x

第2步,横向平移:

将y = sin 2x向右平移,得

第3步,纵向平移:

将向上平移,得

第4步,纵向伸缩:

将的纵坐标扩大3倍,得

【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变

换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大.

【质疑】对以上变换,提出如下疑问:

(1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变?

(2)在横向平移和纵向平移中,为什么它们增减方向相反——

如当<0时对应右移(增方向),而m < 0时对应下移(减方向)?

(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——

如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”?

【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式

(y+) = f (),则x、y在形式上就“地位平等”了.

如将例1中的变成

它们的变换“方向”就“统一”了.

对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的.

故先平移(x→)对后伸缩(→)没有影响;

但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

就是为什么(在例1的解法2中)后平移时,有的原因.

【说明】为了使得4种变换量与4个参数(A,,,m)对应,降低“解题风险”,在由sin x变到A sin () (> 0) 的途中,采用如下顺序:

(1)横向平移:x→

(2)横向伸缩:x+→

(3)纵向伸缩:sin () →A sin ()

(4)纵向平移:A sin () →A sin () + m

这正是例1中解法1的顺序.

二、正向变换与逆向变换

如果把由sin x 到A sin ()+m的变换称作正向变换,那么反过来,由A sin ()+m到sin x变换则称逆向变换.显然,逆向变换的“顺序”是正向变换的“逆”.

因为正向变换的一般顺序是:

(1)横向平移,(2)横向伸缩,(3)纵向伸缩,(4)纵向平移.

所以逆向变换的一般顺序则是:

(1)纵向平移,(2)纵向伸缩,(3)横向伸缩,(4)横向平移.

如将函数y= 2sin (2-) +1的图像下移1个单位得y=2sin (2x-),再将纵坐标缩小一半

得y= sin(2 x-),再将横坐标扩大2倍得y= sin(x-),最后将图象左移得函数y= sin x.

【例2】将y = f (x)·cos x的图象向右平移, 再向上平移1, 所得的函数为y=2sin2 x. 试求f (x)的表达式.

【分析】这是图象变换的逆变换问题:已知函数的变换结果,求“原函数”. 我们考虑将“正向变换”的过程倒逆回去而得“逆向变换”的顺序.

【解析】将y = 2sin2 x下移1个单位(与正向变换上移1个单位相反),

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

求三角函数解析式的方法

求三角函数解析式常用的方法 三角函数是高中数学的一个重点,而三角函数图象与性质又是其中的难点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。现就几道例题谈谈常用的求解方法。 1 利用五点法,逆求函数解析式 例1.右图所示的曲线是)sin(?ω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. 解:由22y -≤≤,得A=2 已知第二个点(,2)12π和第五个点5(,0)6π 35346124T πππ=-= T π∴= 2ω= 把(,2)12π代入,2122ππφ?+=得3π?= 所以y=)3 2sin(2π+x 点评:由图像确定解析式,观察图像的特征,形助数寻找“五点法”中的整体点,从而确定初相?。 2 利用图像平移,选准变换过程切入求解 例2下列函数中,图象的一部分如右图所示的是 ( ) A .sin 6y x π??=+ ??? B.sin 26y x π??=- ?? ? C.cos 43y x π??=- ??? D.cos 26y x π??=- ?? ? 解:从图象看出,41T =1264πππ+=,所以函数的最小正周期为π,函数应为y=sin 2x 向左平移了6 π个单位,即sin 2()6y x π=+=sin(2)cos(2)cos(2)3236x x x ππππ+=-++=-,故选择答案D 。 点评:数形结合,由图像确定周期和初相位后,选准图像平移变换过程切入, 如本题y=sin 2x 向左平移了6 π个单位进行验证化简是求解的关键。对于利用图象的变换来求解函数的解析式,一定要清楚每一种变换对,,A ω?的影响,注重整体变量观念的应用。 3 特殊化赋值法求解

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

三角函数图像求解析式

: 已知sin()cos()y A x B y A x B ω?ω?=++=++或图像求解析式 1. 利用最值求A ,B . 当 A>0时 =最大值=A+B 最小值-A+B 当 A<0时 =最大值=-A+B 最小值A+B 2. 利用最高点、最低点、零点中的两个点的横坐标之差求出周期,再利用2|| T π ω= 求ω。 3. 利用五个特殊点求?,或代入y 轴上的点求?. 例1、如图,直线 2230x y +-=经过函数 si ()()n f x x ω?=+(0ω>,||?π<)图象的最高点 M 和最低点 N ,则( ) A 、2 π ω= ,4 π ω= B 、ωπ=, 0?= C 、2 π ω=,4 π ?=- D 、ωπ=, 2 π ?= 例2、 1.【2015新课标1】8、函数()cos()f x x ω?=+的部分图像如图 所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ- +∈ (B )13 (2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13 (2,2),44 k k k Z -+∈ 2.(2016·全国卷2文)3函数y=Asin (ωx+φ)的部分图象如图所示,则 ( ) A.y=2sin π2x 6? ?- ??? B.y=2sin π2x 3?? - ?? ? C.y=2sin πx+6?? ?? ? D.y=2sin πx+3 ?? ?? ? 3.(2013 年高考大纲卷(文))若函数 ()()sin 0=y x ω?ωω=+>的部分图像如图,则 ( ) A .5 B .4 C .3 D .2 4. (2015·陕西高考理科·T3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(x+φ)+k,据此函数可知,这段时间水深(单位:m)的最大值为( ) A.5 B.6 C.8 D.10 5.已知函数 ()()() 2sin 0,f x x ω?ω?π=+><的部分图象如图所示, 已知点 ( A , ,06B π?? ? ??,若将它的图象向右平移6 π个单位长度,得到函数 () g x 的图象,则函数()g x 的图象的一条对称轴方程为 ( )

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读 变T 数倒系数议,变A 伸压 y 无疑, 变φ 要把系数提,正φ 左进负右移. 周期变换是通过改变x 的系数来实现的,即周期T 的变化只与ω有关而与φ无关.这是因为ω π 2=T ,故要使周期扩大或缩小m (m >0) 倍,则须用 x m 1去代原式中的x (纵坐标不 变),故有“变T 数倒系数议”之说. 相位φ变换实质上就是将函数的图像向左或向右平移.当先作周期变换后作相位变换时,须提出系数ω,这是因为周期变化时改变了x 的值,此时其初相位(非0初相)同时也改变相应得到改变,且改变的倍数相同.当先作相位变换后作周期变换,由于此时x 的系数为1,系数提不提无影响,为了统一记忆我们也视为提出系数“1”.因而有“变φ要把系数提”之说. 三角函数图像的周期﹑振幅﹑相位等变换的问题是历年高考中常考查的内容.对此类命题的求解,无论三种变换怎样摆设,先要弄清哪是原函数的图像,哪是新函数的图像,再据本歌诀所述,很快就可得到解决. 例1 为了得到 y =) 62sin(π-x 的图像,可以将函数 y = cos2x 的图像 (2004年高考) ( ) (A)向右平移6 π 个单位长度 (B)向右平移3 π 个单位长度 (C)向左平移 6 π 个单位长度 (D) 向左平移 3 π 个单位长度 解法1 ∵ y = cos2x =) 4 (2sin )2 2sin(π π + =+ x x , 而 y =] 3 )4 [(2sin )6 2sin(π π π - + =- x x , 由此可得 只须将函数y = cos2x 的图像向右平移3 π 个单位长度即可.故选(B). 解法2 ∵ y =)62sin(π - x ) 6 22 cos( ππ x + -=,即y ) 3(2cos π - = x , 而已知的函数为y = cos2x , 由此可得,须将函数y = cos2x 的图像向右平3 π 个单位即可.故选(B). 点评 由于当ω ?- =x 时, 相位0 =+?ω x .因而,我们可称此时的相位为零相位.由此可 见,在作相位变换时,其平移的数值与方向是由两个0相位对应的x 值的差来决定的.对于本题而言,由于两个0相位对应的x 的值分别为12 π与4 π - ,故所作的平移就是要将已知函数 的0相位对应的点) 0 ,4(π - 移到点)0 12 ( ,π 处.易知要平移的数值是: 3 )4 (12 π π π = - -,方向是向 右的.显然这一方法就是“五点作图法”中的第一零点判断法. 例2 已知函数 f (x ) =) 5 sin( 2π + x (x ∈R ) 的图像为C, 函数 y = ) 5 2sin(π - x (x ∈R ) 的图 像为C 1, 为了得到C 1,只需把C 上所有的点先向右平移 ,再将 . ( ) (A) 5 2π个单位,横、纵坐标都缩短到原来的2 1 (B) 5 2π个单位,横、纵坐标都伸

由三角函数图象求解析式

已知函数()f x =Acos(x ω?+)的图象如图所示,2 ()2 3 f π =- ,则(0)f =( ) (A )23- (B) 23 (C)- 12 (D) 1 2 2π 3,于是f(0)【解析】选B.由图象可得最小正周期为 =f(2π3),注意到2π3与π2关于7π12对称, 所以f(2π3 ) =-f(π2)=23. 如果函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称,那么||?的最小值 为( ) (A ) 6π (B )4π (C )3π (D) 2 π 【解析】选A. 函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称w.w.w.k.s.5.u.c.o.m 4232k ππφπ∴? +=+13()6k k Z πφπ∴=-∈由此易得min ||6 π φ=. 已知函数y=sin (ωx+?)(ω>0, -π≤?<π)的图像如图所示,则 ?=________________ 【解析】由图可知, ()544,,2,1255T x πωπ??? = ∴=+ ??? 把代入y=sin 有: 89,510ππ???? +∴= ??? 1=sin 已知函数()2sin()f x x ωφ=+的图像如图所示,则712 f π ?? = ??? 。

【解析】由图象知最小正周期T = 32(445ππ-)= 32π=ωπ2,故ω=3,又x =4 π时,f (x )=0,即2φπ +? 4 3sin()=0,可得4 π φ= ,所以,712f π ?? = ? ?? 2)41273sin(ππ+?=0。 )已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的图象与x 轴的 交点中,相邻两个交点之间的距离为2 π ,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式; (Ⅱ)当[ ,]122 x ππ ∈,求()f x 的值域. 【解析】(1)由最低点为2(,2)3 M π -得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2 π ,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上得242sin(2)2,)133ππ ???+=-+=-即sin( 故42,32k k Z ππ?π+=-∈ 1126 k π?π∴=- 又(0, ),,()2sin(2)266f x x π ππ ??∈∴= =+故 (2)7[,],2[,]122636x x πππππ ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266 x ππ+= 即2 x π =时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4 π )的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( ) A.向右平移 4π B.向左平移4 π

三角函数图像变换顺序详解全面

《图象变换的顺序寻根》 题根研究? 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩:

将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移: 将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2 中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了.

三角函数图像变换顺序详解(全面).

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

三角函数图像的变换

1、函数y=sin(x+π),x∈R和y=sin(x- 6- O 3 ),x∈R的图象与y=sin x的图象有什么联系?2 个单位所得的曲线是 2 sin x的图象,试求y=f(x)的解析式。 3 )y=sin2x 3 ) 3 ) 3 ) 3 ) 3 ),x∈R的简图。 π2 3 ),x∈R 6 ),x∈R 三角函数图像的变换 题型归纳: 系? π 34 ),x∈R的图象与y=sin x的图象有什么联 - π-π 3 1y π5ππ 6 34x 2、函数y=3sin(2x+π (1)y=sin x(2)y=sin x y=sin(x+π 4、函数f(x)的横坐标伸长为原来的2倍,再向左平移 π y=1 5、函数y=Asin(ωx+φA>0,ω>0,|φ|<π) 的图象如图,求函数的表达式. y=sin(2x+π y=3sin(2x+π y=sin(2x+π y=3sin(2x+π ★☆作业:(A组) 1、画出下列函数在长度为一个周期的闭区间上的简图: 3、画出函数y=3sin(2x+π y 2x+ 3 x 3sin(2x+π) 3 (3)y=4sin(x- π (4)y=sin(2x+π 第1页共2页

6 ) ,x ∈R (2) y = 1 sin( 3 x - (1) y = 5 sin( 1 x + 4 ) ,x ∈R 6、把函数 y =cos(3x + π A.向右平移 π 4 C.向右平移 12 (3) y = 3sin(2 x - ) ,x ∈R (4) y = 2 cos( x + π ) ,x ∈R 3 ,φ =- 6 B.A =1,T= 2 3 ,φ =- 4 D.A =1,T= 3 sin(2x + 3 sin(2x + (1) y = 8sin( - ) ,x ∈[0,+∞) (2) y = 1 7 ) ,x ∈[0,+∞) 2 的图象的一部分,求这个函数的解析式。 4、(1)y =sin(x + π (2)y =sin(x - π (3)y =sin(x - π 4 )是由 y =sin(x + 4 )向 5、若将某函数的图象向右平移 π 10、设函数 y = sin (x - π A.y =sin(x + 3π B.y =sin( x + π C.y =sin(x - π D.y =sin(x + π 2、说明下列函数的图像由正弦函数或余弦函数经过了怎样的变换。 π 2 2 π 4 )的图象适当变动就可以得到 y =sin(-3x )的图象,这种变动 可以是( ) π π π 4 B.向左平移 D.向左平移 12 ★★☆☆作业( B 组): 7、如图:是函数 y =A sin(ω x +φ )+2 的图象的一部分,它 的振幅、周期、初相各是 ( ) π 1 1 6 4 A.A =3,T= 4π π 4π 3π 3 ,φ =- 4 C.A =1,T= 2π 3π 4π π 3 ,φ =- 6 8、如左下图是函数 y =A sin (ω x +φ )的图象的一段,它的 解析式为 ( ) A. y = 2 π 2 x 3 ) B. y = 3 sin( 2 + π 2 π 4 ) C. y = 3 sin(x - 3 ) D. y = 2 2π 3 ) 3、不画简图,直接 写出下列函数的振幅、周期和初相,并说明这些 函数的图象可由正弦曲 线经过怎样的变化得出(注意定义域): x π 4 8 3 cos(3x + π 4 )是由 y =sin x 向 平移 个单位得到的. 4 )是由 y =sin x 向 平移 个单位得到的. π 平移 个单位得到的. 2 以后所得到的图象的函数式是 y =sin(x + 表达式为( ) 4 ) 2 ) π 4 )- 4 4 ) π 4 ),则原来的函数

三角函数的图像和性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型 1 已知函数解析式确定函数性质 【思路提示】一般所给函数为 y =A sin( ω x +φ)或y =A cos( ω x +φ),A>0,ω>0,要根 据 y = sin x ,y = cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin (x )(0≤ < )是R 上的偶函数,则 等于( ) B . C . D . 42 A 充分不必要条件 B .必要不充分条 C .充要条件 变式 3.设f (x) sin( x ),其中 0,则 f (x)是偶函数的充要条件是( ) A. f (0) 1 B . f (0) 0 C . f '(0) 1 D . f '(0) 0 例2.设f (x) sin(2 x )(x R),则 f(x)是( ) 2 A. 最小正周期为 的奇函数 B . 最小正周期为 的偶函数 C .最小正周期为 的奇函数 D . 最小正周期为 的偶函数 22 结论: (1) 若y Asin( x )是奇函数,则 k (k Z); (2) 若 y Asin( x )是偶函数,则 k + (k 2 Z); (3) 若 y Acos(x )是奇函数,则 k 2(k Z); (4) 若 y Acos( x )是偶函数,则 k (k Z); (5) 若 y A tan(x )是奇函数,则 k 2 (k Z). 变式 1.已知 a R , 函数 f (x) sin x | a | 为奇函数, 则 a 等 于 B . 1 C . 1 D . 1 【评注】由 y sin x 是奇函数, y cosx 是偶函数可拓展得到关于三角函数奇偶性的重要 变式 2.设 R ,则 “ 0”是“f(x) cos(x )(x R)为偶函数 ” 的( ) D .无关条件

三角函数图像及其变换

高一数学第十四讲 三角函数图像及其变换 一、知识要点: ππ ππ ?ω2,2 3, ,2 , 0=+x 列表求出对应的x 的值与y 的值,用平滑曲线连结各点,即可得到其在一个周期内的图象。 3.研究函数R x x A y ∈+=),sin(?ω(其中0,0>>ωA )的单调性、对称轴、对称中心仍然是将?ω+x 看着整 体并与基本正弦函数加以对照而得出。它的最小正周期||2ωπ =T 4.图象变换 (1)振幅变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x y ∈=,s i n A

(2)周期变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或伸长所有点的横坐标缩短ω ωω1 1)(01)(R x x y ∈=,s i n ω (3)相位变换 R x x y ∈=,s i n ????????????→?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? (4)复合变换 R x x y ∈=,s i n ????????????→ ?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? ?? ????????????→?<<>倍 到原来的 或伸长所有点的横坐标缩短ω ωω11)(01)(R x x y ∈+=),sin(?ω ??????????????→ ?<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x A y ∈+=),sin(?ω 5.主要题型:求三角函数的定义域、值域、周期,判断奇偶性,求单调区间,利用单调性比较大小,图 象的平移和伸缩,图象的对称轴和对称中心,利用图象解题,根据图象求解析式,已知三角函数值求角。 二.基础练习 1. 函数1π2sin()23 y x =+的最小正周期T = . 2.函数sin 2x y =的最小正周期是 若函数tan(2)3y ax π=-的最小正周期是2π,则a=____. 3.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是 4.函数2 2cos()()363 y x x ππ π=- ≤≤的最小值是 5.将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 6.已知简谐运动ππ()2sin 32f x x ????? ?=+< ??????? 的图象经过点(01), ,则该简谐运动的最小正周期T 和初相?分别为 7.已知a=tan1,b=tan2,c=tan3,则a,b,c 的大小关系为______. 8.给出下列命题: ①存在实数x ,使sin cos 1x x =成立; ②函数5sin 22y x π?? =- ???是偶函数; ③直线8x π=是函数5sin 24y x π? ?=+ ??? 的图象的一条对称轴; ④若α和β都是第一象限角,且αβ>,则tan tan αβ>. ⑤R x x x f ∈+ =),32sin(3)(π 的图象关于点)0,6 (π - 对称; 其中结论是正确的序号是 (把你认为是真命题的序号都填上). 三、例题分析: 题型1:三角函数图像变换 例1、 变为了得到函数)62sin(π-=x y 的图象,可以将函数1 cos 2 y x =的图象怎样变换?

由三角函数的图像求解析式

由B x A y ++=)sin(?ω的图像求解析式 知识点归纳: 1. 利用“五点法”作sin()y A x ω?=+图像,设X x ω?=+,令X =30,,, ,2 2 2 π π ππ 求出相应的x 值,计算得出五点的坐标,描点后得出图象 特 征 图像上升时与x 轴的交点 图像上的“峰点” 图像下降时与x 轴的交点 图像上的“谷点” 图像上升时与x 轴的交点 x 1x 2x 3x 4x 5x ?ω+x 0 2π π 2 3π π2 sin()A x ω?+ A A - 注: 1x 、2x 、3x 、4x 、5x 分别为所给图像上的五个关键点(第一个点至第五个点),要注意x 和?ω+x 之间的对应系 2.函数B x A y ++=)sin(?ω表达式的确定:A (B )由最值确定;ω由周期确定;?由图象上的特殊点(上面的关键点)确定 ①由图像观察最高点、最低点,B A y +=max 、B A y +-=min ,解这个关于A 和B 的二元一次方程组即得A 和B ②由图像观察周期,再利用T π ω2= ,求得ω 【由图像观察周期时,常见形式有: 1x 与5x 之间是一个周期T ;1x 与3x 、2x 与4x 之间是半个周期 2T ;1x 、2x 、3x 、4x 、5x 中相邻两个之间是四分之一的周期4 T .】 ③?的确定,一般要用图像的关键点来求,但要注意该关键点是“五点法”中的第几个点,如01=+?ωx ,2 2π ?ω= +x ,π?ω=+3x ,2 34π ?ω= +x ,从而根据以上等式,解出

? 考点 确定函数解析式问题 例1.⑴若函数sin()y A x ω?=+的图像(部分)如下图所示,则ω和?的取值是( ) A 、1,3 π ω?== B 、1,3 π ω?==- C 、1,26πω?== D 、1,6 πω?==- ⑵已知函数sin(),y A x x R ω?=+∈(其中0,0A ω>>)的图像在y 轴右侧的第一个最高点(函数取最大值的点)为() 2,22M ,与x 轴在原点右侧的第一个交点为()6,0N ,则这个函数的解析式是 . ⑶若函数()2sin()f x x ω?=+,x ∈R (其中0ω>,2 ?π < )的最小正周期是π,且(0)3f =,则( ) A .126 ω?π ==, B .123 ω?π= =, C .26 ω?π ==, D .23 ω?π ==, 例2.⑴某港口水的深度y (米)是时间t (240≤≤t ,单位:时)的函数,记作()y f t =, 下面是某日水深的数据: t/h 0 3 6 9 12 15 18 21 24 y/m 经常期观察,()y f t =的曲线可以近似的看成函数b t A y +=ωsin 的图象,根据以上的数据,可得函数()y f t =的近似表达式为 . ⑵一个大风车的半径为8m ,每12min 旋转一周,最低点离地面2m ,风车翼片的一个端点P 离地面的距离()h m 与时间()min t 之间的函数关系式是()sin h A t B ω?=++,0t =时端

三角函数图像变换

三角函数图像及其变换 一、 知识梳理 1、sin y x =与cos y x =的图像与性质 2、sin y x =与sin()y A x ωφ=+ (1) 形如sin()y A x ωφ=+的函数图像的画法 (2) sin y x =与sin()y A x ωφ=+图像的关系 二、 典型例题 1、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 2 倍(纵坐标不变),得到的图象所表示的函数是 (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π =+,x R ∈ (C )sin(2)3y x π=+,x R ∈ (D )sin(2)3 2y x π =+,x R ∈ 2、为得到函数πcos 23y x ? ?=+ ???的图像,只需将函数sin 2y x =的图像( ) A .向左平移 5π 12个长度单位 B .向右平移 5π 12个长度单位 C .向左平移5π 6 个长度单位 D .向右平移5π 6 个长度单位

3、函数πsin 23y x ??=- ?? ?在区间ππ2??-???? ,的简图是( ) 4、下面有五个命题: ①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a = Z k k ∈π ,2 |. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36 )32sin(3的图象得到的图象向右平移x y x y =π π+= ⑤函数.0)2 sin(〕上是减函数,在〔ππ - =x y 其中真命题的序号是 (写出所言 ) 5、将函数3sin()y x θ=-的图象向右平移3 π 个单位得到图象F ',若F '的一条对称轴是直线4 x π =,则θ的一个可能取值是 A. π125 B. π125- C. π12 11 D. 1112π- 三、高考再现 1、已知函数2 π()sin sin 2 f x x x x ωωω?? =++ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03?????? ,上的取值范围.

根据三角函数图像求解析式经典题型分析

根据三角函数图像求解析式经典20题 1是函数π 2sin()2 y x ω???? =+< ?? ?的图象上的一段,则( ) A.10π 116ω?==, B.10π116 ω?= =-, C.π 26 ω?==, D.π 26 ω?==-, 2、若函数k x A y ++=)sin(?ω的最大值为5,最小值为-1,则函数A =____k =_______。 3、下列函数中,图像的一部分如右图所示的是( ) (A )sin()6y x π=+ (B )cos(2)6y x π=- (C )cos(4)3y x π =- (D )sin(2)6y x π=- 4、已知函数()?? ? ? ? <>+=2,0sin π?ω?ωx y 的部分图象如右上图所示,则( ) A. 6 ,1π ?ω== B. 6 ,1π ?ω- == C. 6 ,2π ?ω== D. 6 ,2π ?ω- == 5、将函数sin (0)y x ωω=>的图象向左平移 6 π 个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A .sin()6 y x π =+ B .sin()6 y x π =- C .sin(2)3y x π =+ D .sin(2)3 y x π =- .6、设函数)(x f = )2sin(?+x (0<<-?π),)(x f 图像的一条对称轴是直线8 π = x , 则? 的值为( )A .2π B .π C .2π D .4 π 7、函数)20,0,)(sin(π?ω?ω<≤>∈+=R x x y 的部分图象如图,则

A .4 ,2 π ?π ω= = B .6 ,3 π ?π ω= = C .4,4π?πω== D .4 5,4π ?πω== 8、函数),2 ,0)(sin(R x x A y ∈π ω?+ω=的部分图象如图 所示,则函数表达式为) (A ))48sin(4π+π-=x y (B ))48sin(4π -π=x y (C ))48sin(4π-π-=x y (D ))4 8sin(4π +π=x y 9、函数()?ω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。(其中 π?πω<<->>,0,0A ) 10、已知函数k x A y ++=)sin(?ω (A >0,ω>0,|?|<π)在同一周期内,当9 π =x 时取 得最大值1,当9 4π =x 时,取得最小值0,求函数的表达式。 11、已知函数)sin(?ω+=x A y (A >0,ω>0,|?|<π) 的图象的一段如图,求它的解析式。 12、已知函数)sin(?ω+=x A y (A >0,ω>0,|?|< 2 π )的图象如图,求函数的解析式。 y x π 6 - 2 3 π 3 2 y x 2 1 -1 -2 π 12 11 O

三角函数的图像和变换以及经典习题和答案

【典型例题】 [例1](1)函数3sin()226 x y π = +的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 . (1) 32; 14π;26x π+;6 π (2)函数2sin(2)3 y x π =- 的对称中心是 ;对称轴方程是 ;单调增区间是 . (2)( ,0),26k k Z ππ+∈;5,212 k x k Z ππ=+∈; ()5,1212k k k z ππππ?? -++∈???? (3) 将函数sin (0)y x ωω=>的图象按向量 ,06a π?? =- ??? 平移,平移后的图象如图所示,则平移后的图 象所对应函数的解析式是( ) A .sin()6y x π =+ B .sin()6 y x π =- C .sin(2)3y x π=+ D .sin(2)3 y x π =- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量 ,06a π?? =- ??? 平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知, 73()1262 πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),6 3sin(2π 的图像,只需把函数R x x y ∈=,sin 2的图像 上所有的点 ( ) (A )向左平移6π 个单位长度,再把所得各点的横坐标缩短到原来的3 1 倍(纵坐标不变) (B )向右平移6π 个单位长度,再把所得各点的横坐标缩短到原来的31 倍(纵坐标不变) (C )向左平移6 π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移 6 π 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移 6 π 个单位长度,得到函数2sin(),6 y x x R π =+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标 不变)得到函数R x x y ∈+=),6 3sin(2π 的图像

由图像或性质求三角函数解析式的方法

求三角函数解析式常用的方法 三角函数是高中数学的一个重点,而三角函数图象与性质又是其中的难点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。现就几道例题谈谈常用的求解方法。 1 利用五点法,逆求函数解析式 例1.右图所示的曲线是)sin(?ω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. 解:由22y -≤≤,得A=2 已知第二个点(,2)12π和第五个点5(,0)6 π 353 46124 T πππ=-= T π∴= 2ω= 把(,2)12π代入,2 122 ππφ?+=得3π?= 所以y=)3 2sin(2π +x 点评:由图像确定解析式,观察图像的 特征,形助数寻找“五点法”中的整体点,从而确定初相?。 2 利用图像平移,选准变换过程切入求解 例2下列函数中,图象的一部分如右图所示的是( ) A .sin 6y x π??=+ ??? B.sin 26y x π? ?=- ??? C.cos 43y x π??=- ??? D.cos 26y x π? ?=- ??? 解:从图象看出, 41T =1264 πππ +=,所以函数的最小正周期为π,函数应为

y=sin 2x 向左平移了 6π个单位,即 sin 2()6y x π=+=sin(2)cos(2)cos(2)3236 x x x πππ π +=-++=-,故选择答案D 。 点评:数形结合,由图像确定周期和初相位后,选准图像平移变换过程切入, 如本题y=sin 2x 向左平移了6π 个单位进行验证化简是求解的关键。对于利用图象 的变换来求解函数的解析式,一定要清楚每一种变换对,,A ω?的影响,注重整体变量观念的应用。 3 特殊化赋值法求解 例3设函数)(),0( )2sin()(x f y x x f =<<-+=?π?图像的一条对称轴是直线8 π = x 。求()y f x =的解析式。 解:对称性特殊赋值切入,8 x π = 是函数()y f x =的图像的对称轴, ()()88 f x f x ππ ∴+=- 令8x π = ,则()(0)4f f π=,即sin() =sin cos 2 π ???+=,tan 1?∴=。 0π?-<< , 34π?∴=- 故3()sin(2)4 y f x x π ===- 点评:特殊赋值这是演绎推理的具体表现,特别是利用对称性待定系数时, 更显示出它的价值 4 利用方程组求解 例4:已知函数()cos()(0,0)f x x ω?ω?π=+>≤≤是R 上的奇函数,其图象关于点)0,4 3( πM 对称,且在区间]3,0[π 上是单调函数。求函数()y f x =的解析式。 解:由图像过原点和其对称性构建方程组切入,由函数()f x 是R 上的奇函数得(0)cos 0(1)f ?== ; 由函数()f x 图象关于点)0,43( πM 对称得:33()cos()0(2)44 f ππω?=+= ; 在()f x 区间[0,]3 π 上是单调函数得:(3)342||T ππω≤= ;

三角恒等变换及三角函数图象性质

三角恒等变换及三角函数图象性质 一例题讲解 1.快速写出下列各式的值: (1)? ? ? ? -43cos 13sin 13cos 43sin (2)? ? ? ? -26cos 56sin 64cos 56cos (3)2sin15cos15??=_________; (4)2 2 cos 15sin 15?-?=_________; (5)2 2sin 151?-=_________; (6)2 2 sin 15cos 15?+?=________ (7)) 15tan(1195tan 1?? -++ (8) 2cos 6sin x x -=________ 2化简:(1)4221 2cos 2cos 22tan()sin ()44x x x x ππ-+ -+;(2)(1sin cos )(sin cos )22(0)22cos θθθθθπθ++-<<+.3 设4cos()5αβ-=-,12cos()13αβ+=,且(,)2παβπ-∈,3(,2)2 π αβπ+∈,求c o s 2α,cos 2β. 4若3cos()45x π +=,177124x ππ<<,求2sin 22sin 1tan x x x +-的值. 5已知函数()2sin (sin cos )f x x x x =+. (Ⅰ)用五点法画出函数在区间,22ππ??-???? 上的图象,长度为一个周期; (Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到. 6为得到)6 2sin(π - =x y 的图象,可以将x y 2cos =的图象向右平移____个单位长度. 7已知正弦函数sin()y A x ω?=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ; (2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; -2 2 2 x =8 x y O

已知三角函数图象求解析式方法例析

已知三角函数图象求解析式方法例析 已知函数y =Asin(ωx+φ)+k(A >0,ω>0)的部分图象,求其解析式,与用“五点法”作函数y =Asin(ωx+φ)+k的图象有着密切联系,最主要的是看图象上的“关键点”与“特殊点”.本文就一般情况例析如下. 一、A 值的确定方法:A 等于图象中最高点的纵坐标减去最低点的纵坐标所得差的一半. 二、 ω值的确定方法: 方法1.在一个周期内的五个“关键点”中,若任知其中两点的横坐标,则可先求出周期T,然后据ω=T π2求得ω 的值. 方法2:“特殊点坐标法”。特殊点包括曲线与坐标轴的交点、最高点和最低点等。在求出了A 与φ的值之后,可由特殊点的坐标来确定ω的值. 三、 φ值的确定方法: 方法1:“关键点对等法”.确定了ω的值之后,把已知图象上五个关键点之一的横坐标代人ωx+φ,它应与曲线y=sinx 上对应五点之一的横坐标相等,由此可求得φ的值.此法最主要的是找准“对等的关键点”,我们知道曲线y =sinx 在区间[0,2π]上的第一至第五个关键点的横坐标依次为0、2 π、π、2 3π、2π,若设所给图象与曲线y=sinx 上对 应五点的横坐标为x J (J =1,2,3,4,5), 则顺次有ωx 1 +φ=

0、 ωx 2 +φ=2 π、ωx 3+φ=π、ωx 4 +φ=2 3π、ωx 5 +φ= 2π,由此可求出φ的值。 方法2:“筛选选项法”,对于选择题,可根据图象的平移方向经过筛选选项来确定φ的值. 方法3:“特殊点坐标法”.(与2中的方法2类同). 四、 k 值的确定方法: K 等于图象向上或向下平移的长度,图象上移时k 为正值,下移时k 为负值. 另外A 、ω、φ的值还可以通过“解方程(组)法”来求得. 例1.图1是函数y=2sin (ωx+φ)(ω>0,φ≤2 π) 的图象,那么正确的是( ) A.ω=11 10, φ=6π B.ω=1110, φ=-6 π C.ω=2,φ=6 π D.ω=2,φ=-6 π , 解:可用“筛选选项法”. 题设图象可看作由y =2sin ωx 的图象向左平移而得到,所以φ>0 排除B 和D ,由A,C 知φ=6 π; ω值的确定可用“关键点对等法”, 图1 因点(1211π,0)是“五点法”中的第五个点, ∴ω〃12 11π+6 π=2π 解得ω=2, 故选C . 例2.图2是函数y =Asin(ωx+φ)图象上的一段, (A >0,ω>0,φ∈(0,2 π)),求该函数的解析式. 12 11π1211π x y 0 2 -2

相关主题