搜档网
当前位置:搜档网 › 计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介[1]
计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介

李志印 熊小辉 吴家鸣

(华南理工大学交通学院)

关键词 计算流体力学 数值计算

一 前 言

任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。

计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。

经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。

随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。

二 计算流体力学常用数值方法

流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

域,在其中设置有限个离散点(称为节点),将求解区域中的连续函数离散为这些节点上的函数值;通过某种数学原理,将作为控制方程的偏微分方程转化为联系节点上待求函数值之间关系的代数方程(离散方程),求解所建立起来的代表方程以获得求解函数的节点值。不同的数值方法,其主要区别在于求解区域的离散方式和控制方程的离散方式上。在流体力学数值方法中,应用比较广泛的是有限差分法、有限元法、边界元法、有限体积法和有限分析法,现简述如下。

1 有限差分法

这是最早采用的数值方法,它是将求解区域划分为矩形或正交曲线网格,在网格线交点(即节点)上,将控制方程中的每一个微商用差商来代替,从而将连续函数的微分方程离散为网格节点上定义的差分方程,每个方程中包含了本节点及其附近一些节点上的待求函数值,通过求解这些代数方程就可获得所需的数值解。

有限差分法的优点是它建立在经典的数学逼近理论的基础上,容易为人们理解和接受;有限差分法的主要缺点是对于复杂流体区域的边界形状处理不方便,处理得不好将影响计算精度。

2 有限元法

有限元法的基本原理是把适定的微分问题的解域进行离散化,将其剖分成相连结又互不重叠的具有一定规则几何形状的有限个子区域(如:在二维问题中可以划分为三角形或四边形;在三维问题中可以划分为四面体或六面体等),这些子区域称之为单元,单元之间以节点相联结。函数值被定义在节点上,在单元中选择基函数(又称插值函数),以节点函数值与基函数的乘积的线性组合成单元的近似解来逼近单元中的真解。利用古典变分方法(里兹法或伽辽金法)由单元分析建立单元的有限元方程,然后组合成总体有限元方程,考虑边界条件后进而求解。由于单元的几何形状是规则的,因此在单元上构造基函数可以遵循相同的法则,每个单元的有限元方程都具有相同的形式,可以用标准化的格式表示,其求解步骤也就变得很规范,即使是求解域剖分各单元的尺寸大小不一样,其求解步骤也不用改变,这就为利用计算机编制通用程序进行求解带来了方便。

有限元法的主要优点是对于求解区域的单元剖分没有特别的限制,因此特别适合处理具有复杂边界流场的区域。

3 边界元法

边界元法是在经典积分方程和有限元法基础上发展起来的求解微分方程的数值方法,其基本思想是:将微分方程相应的基本解作为权函数,应用加权余量法并应用格林函数导出联系解域中待求函数值与边界上的函数值与法向导数值之间关系的积分方程;令积分方程在边界上成立,获得边界积分方程,该方程表述了函数值和法向导数值在边界上的积分关系,而在这些边界值中,一部份是在边界条件中给定的,另一部份是待求的未知量,边界元法就是以边界积分方程作为求解的出发点,求出边界上的未知量;在所导出的边界积分方程基础上利用有限元的离散化思想,把边界离散化,建立边界元代数方程组,求解后可获得边界上全部节点的函数值和法向导数值;将全部边界值代入积分方程中,即可获得内点函数值的计算表达式,它可以表示成边界节点值的线性组合。

边界元法的优点是:(1)将全解域的计算化为解域边界上的计算,使求解问题的维数降低了一维,减少了计算工作量;(2)能够方便地处理无界区域问题。例如对于势流等的无限

区域问题,使用边界元法求解时由于基本解满足无穷远处边界条件,在无穷远处边界上的积分恒等于零。因此对于无限区域问题,例如具有无穷远边界的势流问题,无需确定外边界,只需在内边界上进行离散即可;(3)边界元法的精度一般高于有限元法。边界元法的主要缺点是边界元方程组的系数矩阵是不对称的满阵,该方法目前只适用于线性问题。

4 有限体积法

有限体积法又称为控制体积法,其导出离散方程的基本思路是:

(1)将计算区域划分为一系列不重复的控制体积,每一个控制体积都有一个节点作代表,将待求的守恒型微分方程在任一控制体积及一定时间间隔内对空间与时间作积分;

(2)对待求函数及其导数对时间及空间的变化型线或插值方式作出假设;

(3)对步骤1中各项按选定的型线作出积分并整理成一组关于节点上未知量的离散方程。有限体积法着重从物理观点来构造离散方程,每一个离散方程都是有限大小体积上某种物理量守恒的表示式,推导过程物理概念清晰,离散方程系数具有一定的物理意义,并可保证离散方程具有守恒特性,这是有限体积法的主要优点。

就离散方法而言,有限体积法可视作有限元法和有限差分法的中间物,该方法的主要缺点是不便对离散方程进行数学特性分析。

5 有限分析法

有限分析法在某种意义上说是在有限元法基础上发展起来的一种数值方法,其基本思想是:将求解区域划分成矩形网格,网格线的交点为计算节点,每个节点与相邻的四个网格组成一个计算单元,即一个计算单元由一个中心节点与8个相邻节点组成;在每个单元中函数的近似解不是象有限元方法那样采用单元基函数的线性组合来表达,而是以单元中未知函数的分析解来表达;为了获得单元中的分析解,单元边界条件采用插值函数来逼近,在单元中把控制方程中非线性项局部线性化(如N-S方程中的对流项中认为其流速为已知,并对单元中待求函数的组合形式作出假设,找出其系数用单元边界节点上待求函数值表达的分析解;利用单元分析解确定单元中心节点与8个相邻节点间待求函数值之间关系的一个代数方程,称为单元有限分析方程;将所有内点上的单元有限分析方程联立,就构成总体有限分析方程,通过代数方程组求解,即可获得求解区域中全部离散点的函数值。

虽然有限分析解获得的是求解区域中离散点的函数值,但是由于每个单元内部都有与其中心节点对应的分析解表达式,因此有限分析解在每一个节点的局部区域内都是连续可微的,这对于需要计算求解函数导数的计算流体力学问题具有明显的优势。该计算方法与有限元、有限差分法比较具有较高的精度。此外,有限分析法具有自动迎风特性,能准确地模拟对流项,同时不存在数值振荡失真问题。有限分析法的缺点是对复杂形状的求解区域适应性较差。

三 计算流体力学主要通用商业软件简介

计算流体力学商业软件最早出现于上世纪八十年代初,目前已经在工业和研究领域发挥积极的作用。这些软件的使用减少了计算流体力学研究和开发人员的工作量,降低了其对计算机知识的要求,从而使研究者可以把精力集中在对计算流体力学本质问题的研究和技术开发上。计算流体力学软件一般包括三个主要部份:前处理模块、解算模块和后处理模

块。现在世界上有数十种计算流体力学商业软件,各种软件的应用范围各不相同,它们又有通用软件和专用软件之分,而且各种软牛都在不断地发展变化中。在此,仅就知名度较高的几个大型通用商业软件作一概略介绍。

1 CFX软件

CFX软件的前身为CCFDS-FLOW3D,是由Computational Fluid Dynamics Services, AEA Technology于1991年推出的,后改名为CFX。CFX采用的数值方法是有限体积法,可以进行结构化正交网格、不规则分块网格和非正交曲线坐标网格划分。另外,CFX还能处理滑移网格划分功能,利用它可以模拟运动物体的边界条件,如可以模拟动力机械转动的叶片周围流动情况。使用CFX可以进行包括流体流动、传热、辐射、多相流、化学反应、燃烧等许多工程实际问题的模拟。CFX具有很强的网格生成和图像后处理功能,使得问题的定义、求解直到最后的结果输出都非常直观方便。2003年CFX加入ANSYS软件包,成为其中专门进行流体力学数值计算的一个模块。

2 FL U ET软件

该软件由美国FL U EN T Inc.,1983年推出,采用的数值方法是有限体积法。其前处理软件G AMBB IT可以生成多种网格形状,对于二维流动可以生成三角形和矩形网格,对于三维流动则可生成四面体、六面体、三角柱和金字塔网格,结合具体计算要求还可以生成混合网格,其自适应功能可以对网格进行细分和粗化。FL EN T通过CO KTEX图形后处理软件,可以得到二维和三维图像,如速度矢量图、等值线图(流线图、等压线图)、等值面图等。它还可以通过其积分功能求得力和流量等数值。FL U EN T可以计算的物理类型有定常与非定常流动、不可压缩与可压缩流动、多相流动、燃烧过程、化学反应等。

3 PHOEN ICS软件

PHOENlCS软件是英国CHAM公司的主要产品,它于1981年首次公开发行,是世界上投放市场的计算流体力学领域大型通用商业软件,也是较早在全世界各大学、研究所以及工业界得到广泛应用的计算流体力学商业软件。与CFX和FL U EN T一样,该软件采用有限体积法来实现控制方程离散化,它可以模拟单相流和多相流的流体流动、传热传质、化工反应和燃烧等现象。可能由于受到早期开发所采用的基本框架限制,该软件在人机界面上不及后来开发的软件来得灵活。

数值计算方法学习指导书内容简介

数值计算方法学习指导书内容简介 数值计算方法学习指导书内容简介《数字信号处理学习指导》是浙江省高等教育重点建设教材、应用型本科规划教材《数字信号处理》(唐向宏主编,浙江大学出版社出版,以下简称教材)的配套学习指导书,内容包括学习要求、例题分析、教材习题解答、自测练习以及计算机仿真实验等。学习指导书紧扣教材内容,通过例题讲解,分析各章节的学习重点、难点以及需要理解、掌握和灵活运用的基本概念、基本原理和基本方法。全书共有66例例题分析、121题题解、2套自测练习和6个mat1ab计算机仿真实验。 数值计算方法学习指导书目录绪论 第1章离散时间信号与系统 1.1 学习要点 1.2 例题 1.3 教材习题解答 第2章离散系统的变换域分析与系统结构 2.1 学习要点 2.2 例题 2.3 教材习题解答 第3章离散时间傅里叶变换

3.1 学习要点 3.2 例题 3.3 教材习题解答 第4章快速傅里叶变换 4.1 学习要点 4.2 例题 4.3 教材习题解答 第5章无限长单位冲激响应(iir)数字滤波器的设计5.1 学习要点 5.2 例题 5.3 教材习题解答 第6章有限长单位冲激响应(fir)数字滤波器的设计6.1 学习要点 6.2 例题 6.3 教材习题解答 第7章数字信号处理中的有限字长效应 7.1 学习要点 7.2 例题 7.3 教材习题解答 第8章自测题 8.1 自测题(1)及参考答案 8.2 自测题(2)及参考答案 第9章基于matlab的上机实验指导 9.1 常见离散信号的matlab产生和图形显示

9.2 信号的卷积、离散时间系统的响应 9.3 离散傅立叶变换 9.4 离散系统的频率响应分析和零、极点分布 9.5 iir滤波器的设计 9.6 fir滤波器的设计 数值计算方法学习指导书内容文摘第1章离散时间信号与系统 1.1 学习要点 本章主要介绍离散时间信号与离散时间系统的基本概念,着重阐述离散时间信号的表示、运算,离散时间系统的性质和表示方法以及连续时间信号的抽样等。本章内容基本上是“信号与系统”中已经建立的离散时间信号与系统概念的复习。因此,作为重点学习内容,在概念上需要明白本章在整个数字信号处理中的地位,巩固和深化有关概念,注意承前启后,加强葙关概念的联系,进一步提高运用概念解题的能力。学习本章需要解决以下一些问题: (1)信号如何分类。 (2)如何判断一个离散系统的线性、因果性和稳定性。 (3)线性时不变系统(lti)与线性卷积的关系如何。 (4)如何选择一个数字化系统的抽样频率。 (5)如何从抽样后的信号恢复原始信号。 因此,在学习本章内容时,应以离散时间信号的表示、离散时间系统及离散时间信号的产生为主线进行展开。信号的离散时间的表示主要涉及序列运算(重点是卷积和)、常用序列、如何判

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值计算方法教学大纲

《数值计算方法》教学大纲 课程编号:MI3321048 课程名称:数值计算方法英文名称:Numerical and Computational Methods 学时: 30 学分:2 课程类型:任选课程性质:任选课 适用专业:微电子学先修课程:高等数学,线性代数 集成电路设计与集成系统 开课学期:Y3开课院系:微电子学院 一、课程的教学目标与任务 目标:学习数值计算的基本理论和方法,掌握求解工程或物理中数学问题的数值计算基本方法。 任务:掌握数值计算的基本概念和基本原理,基本算法,培养数值计算能力。 二、本课程与其它课程的联系和分工 本课程以高等数学,线性代数,高级语言编程作为先修课程,为求解复杂数学方程的数值解打下良好基础。 三、课程内容及基本要求 (一) 引论(2学时) 具体内容:数值计算方法的内容和意义,误差产生的原因和误差的传播,误差的基本概念,算法的稳定性与收敛性。 1.基本要求 (1)了解算法基本概念。 (2)了解误差基本概念,了解误差分析基本意义。 2.重点、难点 重点:误差产生的原因和误差的传播。 难点:算法的稳定性与收敛性。 3.说明:使学生建立工程中和计算中的数值误差概念。 (二) 函数插值与最小二乘拟合(8学时) 具体内容:插值概念,拉格朗日插值,牛顿插值,分段插值,曲线拟合的最小二乘法。 1.基本要求 (1)了解插值概念。 (2)熟练掌握拉格朗日插值公式,会用余项估计误差。 (3)掌握牛顿插值公式。 (4)掌握分段低次插值的意义及方法。

(5)掌握曲线拟合的最小二乘法。 2.重点、难点 重点:拉格朗日插值, 余项,最小二乘法。 难点:拉格朗日插值, 余项。 3.说明:插值与拟合是数值计算中的常用方法,也是后续学习内容的基础。 (三) 第三章数值积分与微分(5学时) 具体内容:数值求积的基本思想,代数精度的概念,划分节点求积公式(梯形辛普生及其复化求积公式),高斯求积公式,数值微分。 1.基本要求 (1)了解数值求积的基本思想,代数精度的概念。 (2)熟练掌握梯形,辛普生及其复化求积公式。 (3)掌握高斯求积公式的用法。 (4)掌握几个数值微分计算公式。 2.重点、难点 重点:数值求积基本思想,等距节点求积公式,梯形法,辛普生法,数值微分。 难点:数值求积和数值微分。 3.说明:积分和微分的数值计算,是进一步的各种数值计算的基础。 (四) 常微分方程数值解法(5学时) 具体内容:尤拉法与改进尤拉法,梯形方法,龙格—库塔法,收敛性与稳定性。 1.基本要求 (1)掌握数值求解一阶方程的尤拉法,改进尤拉法,梯形法及龙格—库塔法。 (2)了解局部截断误差,方法阶等基本概念。 (3)了解收敛性与稳定性问题及其影响因素。 2.重点、难点 重点:尤拉法,龙格-库塔法,收敛性与稳定性。 难点:收敛性与稳定性问题。 3.说明:该内容是常用的几种常微分方程数值计算方法,是工程计算的重要基础。 (五) 方程求根的迭代法(4学时) 具体内容:二分法,解一元方程的迭代法,牛顿法,弦截法。 1.基本要求 (1)了解方程求根的对分法和迭代法的求解过程。 (2)熟练掌握牛顿法。 (3)掌握弦截法。 2.重点、难点 重点:迭代法,牛顿法。

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

数值计算方法教学大纲(本)

数值计算方法教学大纲(本) 本着“崇术重用、服务地方”的办学理念和我校“高素质应用型人才”的培养目标,特制定了适合我校工科专业本科生的新教学大纲。 一、课程计划 课程名称:数值计算方法Numerical Calculation Method 课程定位:数学基础课 开课单位:理学院 课程类型:专业选修课 开设学期:第七学期 讲授学时:共15周,每周4学时,共60学时 学时安排:课堂教学40学时+实验教学20学时 适用专业:计算机、电科、机械等工科专业本科生 教学方式:讲授(多媒体为主)+上机 考核方式:考试60%+上机实验30%+平时成绩10% 学分:3学分 与其它课程的联系 预修课程:线性代数、微积分、常微分方程、计算机高级语言等。 后继课程:偏微分方程数值解及其它专业课程。 二、课程介绍 数值计算方法也称为数值分析,是研究用计算机求解各种数学问题的数值方法及其理论的一门学科。随着计算科学与技术的进步和发展,科学计算已经与理论研究、科学实验并列成为进行科学活动的三大基本手段,作为一门综合性的新科学,科学计算已经成为了人们进行科学活动必不可少的科学方法和工具。 数值计算方法是科学计算的核心内容,它既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程.主要介绍插值法、函数逼近与曲线拟合、线性方程组迭代解法、数值积分与数值微分、非线性方程组解法、常微分方程数值解以及矩阵特征值与特征向量数值计算,并特别加强实验环节的训练以提高学生动手能力。通过本课程的学习,不仅能使学生初步掌握数值计算方法的基本理论知识,了解算法设计及数学建模思想,而且能使学生具备一定的科学计算能力和分析与解决问题的能力,不仅为学习后继课程打下良好的理论基础,也为将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 科学计算是21世纪高层次人才知识结构中不可缺少的一部分,它潜移默化地影响着人们的思维方式和思想方法,并提升一个人的综合素质。

数值分析常用的插值方法

数值分析 报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上 n+1 个互不相同点x 0,x 1 (x) n 处的值是f(x ),……f(x n ),要求估算f(x)在[a,b〕 中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C , C 1,……C n 的函数类Φ(C ,C 1 ,……C n )中求出满足条件P(x i )=f(x i )(i=0,1,…… n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x 0,x 1 ,……xn 称为插值结(节)点,Φ(C 0,C 1 ,……C n )称为插值函数类,上面等式称为插值条件, Φ(C 0,……C n )中满足上式的函数称为插值函数,R(x)= f(x)-P(x)称为 插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,, ,n x x x 上的函数值01,, ,n y y y ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =+++ +,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 201121112012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?+++ +=?++++=??? ?+++ +=? 其系数矩阵的行列式D 为范德萌行列式: () 200021110 2 111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏

《计算流体力学》结课作业解读

2012~2013学年第1学期 12级研究生《计算流体力学》结课作业 适用专业:供热供燃气通风及空调工程 一、结合某一具体学科,阐述纯理论方法、实验方法及数值方法在科学研究中的各自优缺点,在此基础上论述数值模拟方法的发展前景。(不少于4千字)。 流体力学是力学的一个重要分支, 是研究流体(液体和气体)的力学运动规律及其应用的学科, 主要研究在各种力的作用下,流体本身的静止状态和运动状态特征,以及流体和相邻固体界面有相对运动时的相互作用和流动规律。在人们的生活和生产活动中随时随地都可遇到流体,流体力学与人类的日常生活和生产事业密切相关。按其研究内容的侧重点不同,分为理论流体力学和工程流体力学。其中理论流体力学主要采用严密的数学推理方法,力求准确性和严密性,工程流体力学侧重于解决工程实际中出现的问题,而不追求数学上的严密性。当然由于流体力学研究的复杂性,在一定程度上,两种方法都必须借助于实验研究,得出经验或半经验的公式。 在实际工程的诸多领域流体力学都起着十分重要的作用。如气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了流体力学自身的不断发展。1950年后,计算机的发展给予流体力学以极大的推动作用。 目前,解决流体力学问题的方法主要有实验方法、理论分析方法和数值方法三种。 实验方法 同物理学、化学等学科一样,流体力学的研究离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。流体力学实验研究方法有实物实验、比拟研究和模型研究三类:实物实验是用仪器实测原型系统的流动参数,适用于较小的原型;比拟实验是利用电场和磁场来模拟流场,实施起来限制条件较多;模型研究是实验流体力学最常用的研究方法。 实验研究的一般过程是:在相似理论的指导下建立实验模型,用流体测量技术测量流动参数,处理和分析实验数据。建立实验模型要求模型与原型满足相似理论,即满足两个流场

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

计算流体力学中有限差分法、有限体积法和有限元法的区别

有限元法,有限差分法和有限体积法的区别 1. FDM 1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶

中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。(1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;(2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;(3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。 不同的组合同样构成不同的有限元计算格式。

结构动力学中的常用数值方法

第五章 结构动力学中的常用数值方法 5.1.结构动力响应的数值算法 ... . 0()(0)(0)M x c x kx F t x a x v ? ++=??=??=?? 当c 为比例阻尼、线性问题→模态叠加最常用。但当C 无法解耦,有非线性存在,有 冲击作用(激起高阶模态,此时模态叠加法中的高阶模态不可以忽略)。此时就要借助数值积分方法,在结构动力学问题中,有一类方法称为直接积分方法最为常用。所识直接是为模态叠加法相对照来说,模态叠加法在求解之前,需要对原方程进行解耦处理,而本节的方法不用作解耦的处理,直接求解。(由以力学,工程中的力学问题为主要研究对象的学者发展出来的) 中心差分法的解题步骤 1. 初始值计算 (1) 形成刚度矩阵K ,质量矩阵M 和阻尼矩阵C 。 (2) 定初始值0x ,. 0x ,.. 0x 。 (3) 选择时间步长t ?,使它满足cr t t ?

常用数值计算方法及仿真软件简介a

1.1.1 常用数值计算方法 自1864年麦克斯韦建立电磁场基本方程以来,电磁波理论与应用的发展已经过了100多年的历史。对电磁分布边值问题的求解从图解、模拟、解析到目前所采用的数值计算方法,经历了四个过程。解析方法只能解决一些经典问题,具体到复杂的实际环境,往往需要通过数值解得到具体环境中的电磁波特性。随着高速和大容量计算机技术的飞速发展,电磁数值计算已经发展成为一门新兴的重要学科,已提出多种实用有效的求解麦克斯韦方程的数值方法,主要有矩量法(MOM)、有限元法(FEM)、有限积分法(FIT)、和时域有限差分法(FDTD)等。基于这些数值计算方法开发出了许多优秀的电磁仿真软件。 一个好的数值算法可以很接近地模拟出微波器件的特性,这对于工程设计和研究而言,可以避免很多次的“cut-and-try”(试凑),节省时间从而提高了效率。 求解电磁问题的最终要求就是获得满足实际条件的Maxwell方程的解,借助于计算数学中的数值算法能够得到大多数电磁问题的近似解。数值算法的基本思想就是把连续变量函数离散化,把微分方程化为差分方程;把积分方程化为有限和的形式,从而建立起收敛的代数方程组,然后利用计算机技术进行求解。 目前常见的几种数值分析方法如表错误!文档中没有指定样式的文字。-1 电磁数值算法分类所示。针对本论文所应用到的方法,下面简要叙述常用的几种数值方法及相应的商业软件。

1.1.1.1 有限元法 基于有限元方法(FEM)计算电磁问题,其基本构想是将由偏微分方程表征的连续函数所在的封闭场域划分成有限个小区域,每个小区域用一个选定的近似函数来代替,于是整个场域上的函数被离散化,由此获得一组近似的代数方程,并联立求解,以获得该场域中函数的近似数值。 广义的来说,三维麦克斯韦方程是三维电磁问题的三维支配方程,但是,一般情况下为了方便求解和建模,大多选取由麦克斯韦方程组的前两个旋度方程导出的电场强度满足矢量亥姆赫兹方程作为支配方程。如Ansoft HFSS 软件[i]的支配方程为: 2010r r E k E εμ??????-= ??? (错误!文档中没有指定样式的文字。-1) 由变分原理,上式的泛函可以写为: ()()() 201r r F E E E k E E d εμΩ??=????????-?Ω???? (错误!文档中没有指定 样式的文字。-2) 将这一个三维问题的泛函通过多面体离散成单元小矩阵,矩形块、四面体和六面体等都可以被选用做基本的离散单元,但是,不同离散单元对于有限元运算的精度、速度和内存需求都有不同。Ansoft HFSS 软件采用四面体作为基本离散单元,如图 错误!文档中没有指定样式的文字。-1所示,并选用上一世纪80 年代以后才被应用于电磁学中的棱边元作为矢量基函数。 假设图 错误!文档中没有指定样式的文字。-1所示的四面体内的未知函数e φ能够近似为 z d y c x b a e e e e e +++=φ (错误!文档中没有指定样式的文 字。-3)

计算流体力学简介

計算流體力學主要有以下幾個主要問題大家比較關心 1.關於瞬態計算的問題 2.關於建模的問題 3.關於網格化的問題 4.關於動畫顯示的問題 5.關於交變載荷的問題 一、關於第一個問題的解答: 計算瞬態設置參數與穩態不同,主要設置的參數爲: 1.FLDATA1,SOLU,TRAN,1設置爲瞬態模式 2.FLDATA4,TIME,STEP,0.02,自定義時間步時間間隔0.02秒 3.FLDATA4,TIME,TEND,0.1,設置結束時間0。1秒 4.FLDATA4,TIME,GLOB,10,設置每個時間步多少次運算 5.fldata4a,time,appe,0.02設置記錄時間間隔 6.SET,LIST,2查看結果 7.SET,LAST設爲最後一步 8.ANDATA,0.5,,2,1,6,1,0,1動態顯示結果 以上爲瞬態和穩態不同部分的設置和操作,特別是第五步。爲了動態顯示開始到結束時間內氣流組織的情況,還是花了我們很多時間來找到這條命令。如果你是做房間空調送風計算的,這項對你來說非常好,可以觀察到從開空調機到穩定狀態的過程。 二.關於建模的問題 大家主要關心的建模問題是模型的導入和導出,及存在的一些問題。這些問題主要體現在:1.AUTOCAD建模導出後的格式與ANSYS相容的只有SAT格式。PROE可以是IGES格式或SAT格式。當然還有其他格式,本人使用的限於正版軟體,只有上述兩種格式。SAT格式可由PROE中導出爲IGES格式。ANSYS默認的導入模型爲IGES格式的圖形模型。 2.使用AUTOCAD一般繪製介面比較複雜的拉伸體非常方便。如果是不規則體,用PROE和ANSYS都比較方便,當然本人推薦用ANSYS本身的建模功能。對於PROE,因爲它的功能強大,本人推薦建立很複雜的模型如變截面不規則曲線彎管(如血管)。 3.導入過程中會出現默認選項和自定義選項,一般本人推薦使用自定義選項,以避免一些操作帶來的問題。有時出現顯示只有線而沒有面顔色的問題,可以用命令: /FACET,NORML來解決這個問題。 三.關於網格化的問題。 網格化對結果影響很大,如果網格化不合理,出現的結果會不準確,或者計算時不收斂。更甚者,網格數量太大,減慢求解速度。對計算流體力學來說,實際應用中三維問題偏多,計算量一般非常大,由於ANSYS採用的是有限元,所以同有限差分比較來說,收斂慢,記憶體需要量大。但這並不是說水平不如有限差分的流體計算軟體。ANSYS的計算結果直觀性較好,特別對渦流的處理很形象很準確(其他軟體往往看不到該有的渦流,給人的感覺太粗糙)。當然對於稍大的模型,就有點力不從心的感覺。

计算流体力学基础

一、计算流体力学的基本介绍 一、什么是计算流体力学(CFD)? 计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。但遗憾的是,常见的流动控制方程如纳维一斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。因此,采用CFD方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD软件本质上就是一些求解流动控制方程的计算机程序。 二、计算流体力学的控制方程 计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。式(1)一(3)是未经任何简化的流动守恒微分方程,即纳维一斯托克斯方程( N-S方程)。 N-S方程可以表示成许多不同形式,上面的N-S方程是所谓的守恒形式,

计算数学简介

计算数学简介 一、什么是计算数学 现代的科学技术发展十分迅速,他们有一个共同的特点,就是都有大量的数据问题。比如,发射一颗探测宇宙奥秘的卫星,从卫星试制开始到发射、回收为止,科学家和工程技术人员、工人就要对卫星的总体、部件进行全面的设计和生产,要对选用的火箭进行设计和生产,这里面就有许许多多的数据要进行准确的计算。发射和回收的时候,又有关于发射角度、轨道、遥控、回收下落角度等等需要进行精确的计算。又如,在高能加速器里进行高能物理试验,研究具有很高能量的基本粒子的性质、它们之间的相互作用和转化规律,这里面也有大量的数据计算问题。 计算问题可以说是现代社会各个领域普遍存在的共同问题,工业、农业、交通运输、医疗卫生、文化教育等等,那一行那一业都有许多数据需要计算,通过数据分析,以便掌握事物发展的规律。 研究计算问题的解决方法和有关数学理论问题的一门学科就叫做计算数学(computational mathematics)。随着计算机的问世到当前状况,计算数学已经从数值分析(numerical analysis)、科学与工程计算(scientific and engineering computing)发展到二十一世纪的计算科学(computational sciences)阶段。 计算数学属于应用数学的范畴,它主要研究有关的数学和逻辑问题怎样由计算机加以有效地解决。科学计算的兴起是20世纪后半叶最重要的科技进步之一。计算与理论及实验相并列,已经成为当今世界科学活动的第三种手段。 二、计算数学的内容 计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性、收敛性和误差分析等理论问题。 我们知道五次及五次以上的代数方程不存在求根公式,因此,要求出五次以上的高次代数方程的解,一般只能求它的近似解,求近似解的方法就是数值分析的方法。对于一般的超越方程,如对数方程、三角方程等等也只能采用数值分析的办法。怎样找出比较简洁、误差比较小、花费时间比较少的计算方法是数值分析的主要课题。 在求解方程的办法中,常用的办法之一是迭代法,也叫做逐次逼近法。迭代法的计算是比较简单的,是比较容易进行的。迭代法还可以用来求解线性方程组的解。求方程组的近似解也要选择适当的迭代公式,使得收敛速度快,近似误差小。在线性代数方程组的解法中,常用的有塞德尔迭代法、共轭斜量法、超松弛迭代法等等。此外,一些比较古老的普通消去法,如高斯法、追赶法等等,在利用计算机的条件下也可以得到广泛的应用。 在计算方法中,数值逼近也是常用的基本方法。数值逼近也叫近似代替,就是用简单的函数去代替比较复杂的函数,或者代替不能用解析表达式表示的函数。数值逼近的基本方法是插值法。初等数学里的三角函数表,对数表中的修正值,就是根据插值法制成的。 在遇到求微分和积分的时候,如何利用简单的函数去近似代替所给的函数,以便容易求到和求积分,也是计算方法的一个主要内容。微分方程的数值解法也是近似解法。常微分方程的数值解法由欧拉法、预测校正法等。偏微分方程的初值问题或边值问题,目前常用的是有限差分法、有限元素法等。 有限差分法的基本思想是用离散的、只含有限个未知数的差分方程去代替连续变量的微分方程和定解条件。求出差分方程的解法作为求偏微分方程的近似解。有限元素法是近代才发展起来的,它是以变分原理和区域剖分插值作为基础的方法。在解决椭圆型方程边值问题

数值计算方法与算法第三版答案 数值计算方法学习指导书

数值计算方法与算法第三版答案数值计算方法学习指导书 数值计算方法学习指导书是怎么样的?以下是小编分享给大家的数值计算方法学习指导书简介的资料,希望可以帮到你! 数值计算方法学习指导书内容简介 《数字信号处理学习指导》是浙江省高等教育重点建设教材、应用型本科规划教材《数字信号处理》(唐向宏主编,浙江大学出版社出版,以下简称教材)的配套学习指导书,内容包括学习要求、例题分析、教材习题解答、自测练习以及计算机仿真实验等。学习指导书紧扣教材内容,通过例题讲解,分析各章节的学习重点、难点以及需要理解、掌握和灵活运用的基本概念、基本原理和基本方法。全书共有66例例题分析、121题题解、2套自测练习和6个MAT1AB计算机仿真实验。 数值计算方法学习指导书目录 绪论 第1章离散时间信号与系统 1.1 学习要点 1.2 例题 1.3 教材习题解答 第2章离散系统的变换域分析与系统结构

2.1 学习要点 2.2 例题 2.3 教材习题解答 第3章离散时间傅里叶变换 3.1 学习要点 3.2 例题 3.3 教材习题解答 第4章快速傅里叶变换 4.1 学习要点 4.2 例题 4.3 教材习题解答 第5章无限长单位冲激响应(IIR)数字滤波器的设计5.1 学习要点 5.2 例题

5.3 教材习题解答 第6章有限长单位冲激响应(FIR)数字滤波器的设计6.1 学习要点 6.2 例题 6.3 教材习题解答 第7章数字信号处理中的有限字长效应 7.1 学习要点 7.2 例题 7.3 教材习题解答 第8章自测题 8.1 自测题(1)及参考答案 8.2 自测题(2)及参考答案 第9章基于MATLAB的上机实验指导 9.1 常见离散信号的MATLAB产生和图形显示 9.2 信号的卷积、离散时间系统的响应

数值分析第一章绪论习题答案

第一章绪论 1设x 0, x的相对误差为「.,求In x的误差。 * * e* x * _x 解:近似值x*的相对误差为:.=e* x* x* 1 而In x 的误差为e In x* =lnx*「lnx e* x* 进而有;(ln x*)::. 2?设x的相对误差为2%求x n的相对误差。 解:设f(x—,则函数的条件数为Cp^胡1 n A. x nx . 又7 f '(x)= nx n」C p |=n n 又;;r((x*) n) : C p ;,x*) 且e r (x*)为2 .;r((x*)n) 0.02 n 3 ?下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:X; h.1021 , x;=0.031 , x3 =385.6 x;=56.430, x5 =7 1.0. 解:x;=1.1021是五位有效数字; X2 =0.031是二位有效数字; X3 =385.6是四位有效数字; x4 = 56.430是五位有效数字; x5 -7 1.0.是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:⑴ 为+X2+X4,(2) x-i x2x3,(3) x2/ x4. * * * * 其中X1,X2,X3,x4均为第3题所给的数。

解:

* 1 4 ;(x-| ) 10 2 * 1 3 ;(x 2) 10 2 * 1 1 ;(x 3) 10 * 1 3 ;(x 4) 10 2 * 1 1 ;(x 5) 10 2 (1);(为 X 2 X 4) =;(为)亠:(x 2)亠:(x 4) =1 10 4 1 10 J 丄 10^ 2 2 2 = 1.05 10” * * * (2)(X 1X 2X 3) * * * ** * ** * X 1X 2 8(X 3) + X 2X 3 g(xj + X 1X 3 名(X 2) 1 1 0.031 汉 385.6 汉?汉10鼻 + 1.1021 域 385.6 汉?汉10 (3) XX 2/X 4) X 4 0.031 1 10” 56.430 丄 10’ 2 2 56.430 56.430 =10° 5计算球体积要使相对误差限为 1,问度量半径R 时允许的相对误差限是多少? 4 3 解:球体体积为V R 3 则何种函数的条件数为 =1.1021汉 0.031 汉 * 汉 10」+ 0.215

相关主题