搜档网
当前位置:搜档网 › 脱硫系统的结垢、堵塞与解决办法

脱硫系统的结垢、堵塞与解决办法

脱硫系统的结垢、堵塞与解决办法
脱硫系统的结垢、堵塞与解决办法

石灰石-石膏湿法脱硫技术问题及脱硫效率探讨

田斌

摘要:阐述了石灰石-石膏湿法脱硫工艺原理及存在的技术问题和处理方法,并对影响脱硫效率的主要因素进行了探讨。

关键词:湿法脱硫;技术问题;脱硫效率

当前脱硫技术在新建、扩建、或改建的大型燃煤工矿企业,特别是燃煤电厂正得到广泛的推广应用,而石灰石-石膏湿法脱硫是技术最成熟、适合我国国情且国内应用最多的高效脱硫工艺,但在实际应用中如果不能针对具体情况正确处理结垢、堵塞、腐蚀等的技术问题,将达不到预期的脱硫效果。本文就该法的工艺原理、实践中存在的技术问题、处理方法及影响脱硫效率的主要因素做如下简要探讨。

1. 石灰石-石膏湿法脱硫工艺及脱硫原理

从电除尘器出来的烟气通过增压风机BUF进入换热器GGH,烟气被冷却后进入吸收塔Abs,并与石灰石浆液相混合。浆液中的部分水份蒸发掉,烟气进一步冷却。烟气经循环石灰石稀浆的洗涤,可将烟气中95%以上的硫脱除。同时还能将烟气中近100%的氯化氢除去。在吸收器的顶部,烟道气穿过除雾器Me,除去悬浮水滴。

离开吸收塔以后,在进入烟囱之前,烟气再次穿过换热器,进行升温。吸收塔出口温度一般为50-70℃,这主要取决于燃烧的燃料类型。烟囱的最低气体温度常常按国家排放标准规定下来。在我国,有GGH 的脱硫,烟囱的最低气温一般是80℃,无GGH 的脱硫,其温度在50℃左右。大部分脱硫烟道都配备有旁路挡板(正常情况下处于关闭状态)。在紧急情况下或启动时,旁路挡板打开,以使烟道气绕过二氧化硫脱除装置,直接排入烟囱。

石灰石—石膏稀浆从吸收塔沉淀槽中泵入安装在塔顶部的喷嘴集管中。在石灰石—石膏稀浆沿喷雾塔下落过程中它与上升的烟气接触。烟气中的SO

溶入水

2

溶液中,并被其中的碱性物质中和,从而使烟气中的硫脱除。石灰石中的碳酸钙与二氧化硫和氧(空气中的氧)发生反应,并最终生成石膏,这些石膏在沉淀槽中从溶液中析出。石膏稀浆由吸收塔沉淀槽中抽出,经浓缩、脱水和洗涤后先储存起来,然后再从当地运走。

2.脱硫系统的结垢、堵塞与解决办法

2. 1结垢、堵塞机理

1)石膏终产物浓度超过了浆液的吸收极限,石膏就会以晶体的形式开始沉积,当相对饱和浓度达到一定值时,石膏晶体将在悬浮液中已有的石膏晶体表面进行生长,当饱和度达到更高值时,就会形成晶核,同时,晶体也会在其它各种物体表面上生长,导致吸收塔内壁结垢。

2)在系统的氧化程度低下,甚至无氧化发生的条件下,可生成一种反应物为

)0.21/2H2O,称为 CSS-软垢,使系统发生结垢,甚至堵塞。

Ca(SO3)0.8(SO

4

3)吸收液pH值的剧烈变化,低pH值时,亚硫酸盐溶解度急剧上升,硫酸盐溶解度略有下降,会有石膏在很短时间内大量产生并析出,产生硬垢。而高pH 值亚硫酸盐溶解度降低,会引起亚硫酸盐析出,产生软垢。在碱性pH值运行会产生碳酸钙硬垢。

2.2 解决办法

1)采用强制氧化工艺,使氧化反应趋于完全,控制亚硫酸钙的氧化率在95%以上,保持浆液中有足够密度的石膏晶种。

2)严格除尘,严防喷嘴堵塞。

3)控制吸收液中水份蒸发速度和蒸发量,运行中控制溶液中石膏过饱和度最大不超过130%。

4)控制溶液的PH值,尤其避免运行中pH值的急剧变化。

5)吸收液中加入二水硫酸钙或亚硫酸钙晶种。

6)向吸收液中加入添加剂如:镁离子、乙二酸。

7)适当的增大液气比也是系统结垢、堵塞的重要技术措施。

3.硫系统的腐蚀与防腐

3.1 腐蚀机理

、HCl、HF等酸性气体在与液体接触时,生成相应的酸液,1)烟气中的SO

2

其SO32-、Cl-、SO42-对金属有很强的腐蚀性,对防腐内衬亦有很强的扩散渗透破坏作用。

2)金属表面与水及电解质形成电化学腐蚀,在焊缝处比较明显。

3)结晶腐蚀,溶液中的硫酸盐和亚硫酸盐随溶液渗入防腐内衬及其毛细孔

内,当系统停运后,吸收塔内逐渐变干,溶液中的硫酸盐和亚硫酸盐析出并结晶,随后体积发生膨胀,使防腐内衬产生应力,产生剥离损坏。

4)环境温度的影响。由于GGH(蓄热式换热器)故障或循环液系统故障,导致塔内烟温升高,其防腐材料的许用应力随温度升高而急剧降低。

5)浆液中由于含有固态物,落下时对塔内物质有一定的冲刷作用.

3.2 防腐技术

1)合理控制浆液的pH值。

2)选择合理的FGD(脱硫设备)烟气入口温度,并选择与之相配套的防腐内衬,选择与入口烟温,塔内设计温度不相匹配的内衬材料是致命的错误。

3)严把防腐内衬的施工质量。

4)吸收塔现场制作过程中保证焊口满焊,焊缝光滑平整无缺陷,内支撑件及框架不能用角钢、槽钢、工字钢,应用圆钢、方钢为主,外接管不能用焊接,要用法兰连接。

5)选择合理的防腐材料。

4. 影响脱硫效率的因素分析

4.1 吸收液的pH值

烟气中SO2与吸收塔浆液接触后发生如下一些化学反应:

SO2+H2O=HSO3-+H+

CaCO3+H+=HCO3-+Ca2+

HSO3-+1/2O2=SO42-+H+

SO42-+Ca2++2H2O=CaSO4·2H2O

从以上反应历程不难发现,高pH的浆液环境有利于SO2的吸收,而低pH则有助于Ca2+的析出,二者互相对立。

pH值=6时,二氧化硫吸收效果最佳,但此时易发生结垢,堵塞现象。而低的pH值有利于亚硫酸钙的氧化,石灰石溶解度增加,却使二氧化硫的吸收受到抑制,脱硫效率大大降低,当pH=4时,二氧化硫的吸收几乎无法进行,且吸收液呈酸性,对设备也有腐蚀。具体最合适的pH值应在调试后得出,但一般pH在4—6之间。

4.2液气比及浆液循环量

液气比增大,代表气液接触机率增加,脱硫率增大。但二氧化硫与吸收液有一个气液平衡,液气比超过一定值后,脱硫率将不在增加。新鲜的石灰石浆液喷淋下来后与烟气接触后,SO2等气体与石灰石的反应并不完全,需要不断地循环反应,增加浆液的循环量,也就加大了CaCO3与SO2的接触反应机会,从而提高了SO2的去除率。

4.3烟气与脱硫剂接触时间

烟气自气-气加热器进入吸收塔后,自下而上流动,与喷淋而下的石灰石浆液雾滴接触反应,接触时间越长,反应进行得越完全。因此长期投运对应高位喷淋盘的循环泵,有利于烟气和脱硫剂充分反应,相应的脱硫率也高。

4.4石灰石粒度及纯度

石灰石颗粒越细,其表面积越大,反应越充分,吸收速率越快,石灰石的利用率越高。一般要求为:90%通过325目筛或250目筛,石灰石纯度一般要求为大于90%。

4.5 氧化空气量

O2参与烟气脱硫的化学过程,使4HSO3-氧化为SO42-,随着烟气中O2含量的增加,CaSO4·2H2O的形成加快,脱硫率也呈上升趋势。多投运氧化风机可提高脱硫率。

4.6 烟尘

原烟气中的飞灰在一定程度上阻碍了SO2与脱硫剂的接触,降低了石灰石中Ca2+的溶

解速率,同时飞灰中不断溶出的一些重金属会抑制Ca2+与HSO3-的反应。烟气中粉尘含量持续超过设计允许量,将使脱硫率大为下降,喷头堵塞。一般要求FGD入口粉尘含量小于200mg/m3

4. 7烟气温度

进入吸收塔烟气温度越低,越利于SO2气体溶于浆液,形成HSO3-,即:低温有利于

吸收,高温有利于解吸。通常,将烟气冷却到60。

C左右再进行吸收操作最为适宜,较高的

吸收操作温度,会使SO2的吸收效率降低。

4.8Cl-含量

氯在系统中主要以氯化钙形式存在,去除困难,影响脱硫效率,后续处理工艺复杂,在运行中应严格控制系统中Cl--含量(一般控制在20000 ppm以内),确保其在设计(一般设计在40000 ppm左右)允许范围内。

5. 结束语

通过以上方法可基本解决实践中的脱硫技术问题,使脱硫效率达到设计要求,确保我国在发展经济的同时有效地保护好生存环境、确保人民生活水平的全面提高!

参考文献:[1]. 《环境工程》,成都科技大学出版社

[2]. 《工业脱硫技术》化学工业出版社

[3]. 《洁净煤发电技术》,中国电力出版社

[4]. 《燃煤烟气脱硫脱硝技术及工程实例》环境科学与工程出版社

作者简介:田斌男工程师从事多年大型火电厂除尘、脱硫、脱硝等环保工程建设工作。E-mail: tb6171@https://www.sodocs.net/doc/3c9847183.html,

影响燃煤电厂湿法烟气脱硫效率的主要因素 李钧

影响燃煤电厂湿法烟气脱硫效率的主要因素李钧 发表时间:2019-07-16T13:51:49.263Z 来源:《电力设备》2019年第6期作者:李钧 [导读] 摘要:科学技术的快速发展使我国各行业发展迅速。 (国电宁夏石嘴山发电有限责任公司宁夏回族自治区石嘴山市 753202) 摘要:科学技术的快速发展使我国各行业发展迅速。石灰石-石膏湿法烟气脱硫技术是目前世界上应用最为广泛、工艺最为成熟、适应能力最强的火力发电机组烟气脱硫技术。 关键词:燃煤电厂;湿法烟气脱硫效率;主要因素 引言 我国经济建设的快速发展离不开各行业的大力支持。我国是世界上最大的煤炭生产国和消费国,煤炭资源在能源结构中始终占据着主导地位。煤炭作为一次能源,最大的缺点在于燃烧过程中排放出的二氧化硫(SO2)、NOx及粉尘等污染物,给人类健康、社会生产、生态环境等造成了巨大的危害。 1燃煤电厂湿法烟气脱硫现状 在这个阶段,人们逐渐增强对生态环境的保护意识。国家逐渐开始强调对于保护环境的重要性。因为新兴技术的发展,烟气脱硫技术得到了快速发展,并且普遍的使用到各种电站企业。经过不完全的调查统计分析,只有百分之十的电站企业在开发过程中不使用烟气脱硫技术。在电站烟气脱硫技术应用中,大多数电站锅炉技术人员通过相关方案的测试,可以满足烟气脱硫的基本要求。我国的烟气脱硫技术处于迷茫的阶段,可以借鉴外国先进的烟气脱硫的经验和技术,并且与我国传统的技术相结合,以达到技术创新的目标。 2影响脱硫效率的主要因素 2.1吸收塔浆液pH值对脱硫效率的影响 吸收塔内浆液pH值的控制是提高脱硫效率,掌控石膏品质的关键环节。浆液pH值在实际运行中对于吸收塔内传质性能有着一定影响,具体表现在以下方面:首先,吸收浆液的pH较高,液相主体传质系数增大,有利于SO2的吸收,对SO2脱除有利,可减少石灰石浆液对设备的腐蚀作用;其次,当pH值越小时,会有利于石灰石的溶解,钙离子的析出,但不利于SO2的反应。随着SO2的吸收,浆液的pH值继续下降,酸度增加,CaCO3的析出量增加。CaCO3细本颗粒表面被析出的CaCO3包围,阻碍了CaCO3的继续分解,继而使pH值继续降低,反而会抑制SO2吸收反应的进行。所以在实际生产作业过程中,一般情况下,石灰石浆液的pH值控制在5.0-5.8比较合适的控制范围。 2.2锅炉投油 目前,脱硫系统取消烟气旁路后,脱硫系统都要在锅炉点火前启动运行,锅炉在开停机和投油稳燃时都将造成大量未完全燃烧的柴油在脱硫系统被吸收沉积,柴油和浆液混合后起到表面活性剂的作用,容易在吸收塔内产生泡沫,妨碍石膏结晶和晶体长大。吸收塔起泡严重时,石膏排出泵入口浆液泡沫增加,泵出口压力降低或压力不稳,无法正常控制石膏流量,浆液流量不稳定,最终导致浆液密度逐渐上升,吸收塔液位难以控制。 2.3入口烟气温度对脱硫效率的影响 燃煤电厂常规FGD入口的温度约为100-160度左右,这个与燃用煤质、锅炉燃烧情况有关。这与SO2的吸收过程是一个放热的过程有关联,若FGD入口温度过高,会造成吸收塔内液面SO2平衡分压上升,导致二氧化硫溶解度下降,脱硫率降低。另外,过高的烟气温度还会降低了吸收塔内某些特种材质的使用寿命。SO2的吸收速率随着温度的升髙而降低,温度的升高还不利于反应向生成石膏过程移动。所以在实际的FGD装置中,通常高温原烟气会经过烟气换热器(GGH)来降低进入吸收塔的原烟气温度或在吸收塔前布置降温装置来降低吸收塔入口温度,提高了脱硫系统的效率。 2.4工艺水水质 根据燃煤电厂典型设计情况,石灰石-石膏湿法脱硫系统工艺水一般来源于电厂循环水排水,而循环水中为了防止凝汽器结垢,往往是连续添加阻垢剂,抑制CaCO3的生成。根据循环水阻垢剂阻垢原理,阻垢剂能起到表面活性剂的作用,会对CaCO3进行包裹,防止晶格长大,并且阻垢剂中的特殊金属有机物会进入CaCO3晶格,使晶格发生畸变,阻止CaCO3晶体长大,而这些阻垢剂进入脱硫浆液系统后同样会抑制CaCO4晶格长大,影响石膏脱水。 2.5入口烟气含尘浓度对脱硫效率的影响 吸收塔在运行中若因除尘器故障等原因会使FGD入口烟尘增加,烟气中约75%的飞灰留在了浆液中,致使从而会降低脱硫效率。烟尘中的HF(氟化氢)进入脱硫塔与水接触,与CaCO3中Ca2+与F-发生反应生成CaF2,同时,飞灰中的铝离子溶解进脱硫塔内的浆液中,生成A1Fn多核络合物阻碍了石灰石的消溶,导致浆液pH值下降。同时灰尘中的重金属离子如Hg、Mg、Cd、Zn等会抑制Ca2+与HSO3-的反应,进而影响脱硫效率和石灰石的利用率。此外,飞灰化合成复合物,形成石灰石颗粒表面包膜,降低活性,也会影响生成石膏副产品的品质。 2.6烟气SO2浓度对传质速率的影响 采用浓度为20%的脱硫剂,在烟气流量为18m3?h-1、脱硫剂循环流量为300mL?min-1时,对SO2浓度为1860~6440mg?m-3的烟气进行了实验探究。将测得的系统出口烟气SO2浓度代入模型,并将计算得出的传质速率与实验所得的传质速率进行比较。模型和实验结果同时表明,传质速率与烟气SO2浓度呈正相关性。传质速率对烟气SO2浓度的变化较为敏感,随着烟气SO2浓度的升高而急剧提高。这可能是由于,烟气SO2浓度的提高增加了一定时间内参与反应的SO2气体的量,增加了反应接触面积的同时,提高了传质的浓度推动力,从而导致了传质速率的提高。 2.7石灰石品质对脱硫效率的影响 石灰石作为吸收剂,品质的优劣影响着脱硫FGD系统的性能、可靠性以及脱硫效率。石灰石纯度低,供应量就大,影响了脱硫反应的速率,增加了吸收塔的负荷,使吸收塔的浆液密度不易控制,生成石膏的纯度下降。石灰石的粒度越细,溶解性就越好,与SO2的反应速度就越快、越充分,石灰石的利用率就越高,脱硫效率就越好。为了确保烟气脱硫效果,通常情况下要求石灰石中CaCO3的质量分数不小于90%,杂质要少,越纯越好,一般石灰石细度在325目,过筛率90%以上最佳,粒径在40-60μm。在整个脱硫SO2吸收及氧化的反应过程

脱硫系统防垢

石灰石/石灰湿法烟气脱硫系统的结垢问题 1垢的形成机理 1.1“湿——干”结垢的形成 在吸收塔烟气入口处至第一层喷嘴之问,以及最后一层嘴与烟气出口之问的塔壁面,属于“湿一千”交界区,这部分最容易结垢,属于“湿一干”结垢。由于浆液中含有CaSO4、CaSO3、CaCO3及飞灰中含有硅、铁、铝等物质,这些物质具有较大的粘度,当浆液碰撞到塔壁时,它们中的部分便会粘附于塔壁而沉降下来。同时,由于烟气具有较高温度,加快沉积层水分的蒸发,使沉积层逐渐形成结构致密,类似于水泥的硬垢。 气水分离器的结垢类型也属于“湿一干”结垢,它足由雾滴所携带的浆液碰到折板而形成的 另外,湿法脱硫装置中强制氧化系统的氧化空气管内也可能出现“湿一干”结垢。氧化风机运行时,其出口风温可高达l00℃,这使得由于氧化空气的冲击而附着在氧化风管内壁的石膏浆液很快脱水结块,随着运行时间的增加,也就逐渐形成了氧化空气管的大面积堵塞。 I.2结晶成垢 I.2.I硬垢的形成 对于有石膏生成的浆液,当石膏终产物超过悬浮液的吸收极限,石膏就会以晶体的形式开始沉积。当相对饱和浓度达到一定值时,石膏将按异相成核作用在悬浮液中已有的晶体表面上生长。当饱和度达到更高值,即大于引起均相成核作用的临界饱和度时,就会在浆液中形成新的晶核,此时,微小晶核也会在塔内表面上生成并逐步成长结成坚硬垢淀,从而析出作为石膏结晶的垢捌。石膏产生均相成核作用的临界相对饱和度为140%【7】。 对于石灰石/石灰湿法脱硫系统,无论是采用自然氧化,还是采用强制氧化,都有石膏产生,在吸收塔脱硫浆液吸收SO2而产生的亚硫酸钙经氧化会生成硫酸钙。电厂烟气中的 氧量一般为6%左右,可氧化部分的亚硫酸钙,这种烟气自身含氧发生的氧化称为自然氧化。自然氧化因锅炉和脱硫系统设计运行参数不同而程度各异【1】。某一系统在操作时,因自然氧化浆液回路中浆液的氧化比例(CaSO4/CaSO4+CaSO4摩尔比)小于l5%,亚硫酸钙在结晶沉淀的过程中会由于表面吸附作用吸附硫酸钙而引起共沉淀,使得脱硫浆液能始终使硫酸钙(石膏)低于或保持在饱和状态。氧化比例超过这一水平,浆液回路会产生多于共沉淀而减少的硫酸钙。这就使硫酸盐浓度增加.使系统处于过饱和状态.从而使得硫酸钙构晶离子的水平有可能大于临界饱和度。对于湿法脱硫系统,也可在浆液槽内鼓入空气而将浆液中的亚硫酸钙氧化成石膏,这种由于外界鼓入空气面发生的氧化为强制氧化。某一系统采用强制氧化、固含物一定时,如果系统浆液的氧化比例达不到95%时,由于石膏品种不够,浆液中石膏晶粒的异相成核作用将不能全部消耗掉所产生的硫酸钙,从而使得硫酸盐浓度超过临界饱和度。 如上所述,某一系统当浆液的氧化比例处于l5%~95%之间时,硫酸钙构晶离子水平有可能大于临界饱和度,从而使得系统结垢。对于湿法脱硫系统,产生石膏垢淀的临界氧化比例随系统浆液的固含量、系统运行参数的变化而改变。 1.2.2软垢的形成 CaSO3·1/2H2O在水中的溶解度只有0.0043g/100gH2O(18℃)。湿法脱硫装置在较高的pH值下运行时,由于吸收塔内吸收的SO2在浆液中所存在SⅣ离子主要以SO32-形式存在,极易使亚硫酸钙的饱和度达到并超过其形成均相成核作用所需的临界饱和度,而在塔壁和部件表面上结晶,随着晶核长大,形成很厚的垢层,很快就会造成设备堵塞而无法运行下去。这种垢物呈叶状,柔软,形状易变,称为软垢。美国EPA和TVA的中试结果表明,对于利用石灰石作为脱硫剂的湿式脱硫系统,当 pH>6.2时,仍会发生软垢堵塞。在大多数实际的石灰石脱硫系统中,气液接触后的PH值很少超过6.0,故石灰石脱硫系统比较少发生软垢堵塞 2.3石灰系统中的再碳酸化问题 在石灰系统中,较高pH值下烟气中的CO2的再碳酸化,使得CaCO3过饱和,生成石灰石沉积物,总反应式为: 一般烟气中,CO2的浓度达lO%以上,是SO2浓度的5O~l00倍。美国EPA和TVA的实验证明,当进口浆液的PH≥9时,CO2的再碳酸化作用是显著的。所以,无论从生成软垢的角度还是从CO2的再碳酸化作用的角度,石灰系统浆液的进口pH>~9时一定会结垢。

湿法脱硫对烟气温度影响)

湿法烟气脱硫后烟温变化对烟囱运行的影响 火电厂加装湿法烟气脱硫装置后,会使烟气温度降低,造成烟囱运行条件偏离设计工况,可能对烟囱产生不良影响。对此,以某发电厂125 Mw 机组湿法烟气脱硫装置为例,分析脱硫后烟温变化可能对烟囱安全性和运行造成的影响。 1 烟囱内温度分布的计算 某发电厂2 台125 MW 机组共用1 座烟囱,烟囱高度为180m 3y6|+Q!]8z:G7i&https://www.sodocs.net/doc/3c9847183.html,,脱硫前满负荷时烟囱入口烟气量为1 230000m3/h(标准状态),温度150℃ ,脱硫后满负荷时烟囱进口烟气量为1 306209m3/h (标准状态), 温度80℃ 。 .A&a+]7s+a-_9a+H9D能源环保论坛对脱硫装置安装前后满负荷、80%负荷、65%负 荷和50%负荷共8个工况进行分析。 根据能量守恒原理,可计算出烟囱沿高度方向的一维温度分布。由于沿高度方向烟囱直径是变化的,且烟囱较高,所以采用分段计算,并考虑了沿高度位能的变化。将烟囱分为13 段,在计算段内,根据能量守恒可得: 由上式得到脱硫装置安装前后各个工况的温度分布结果见图1 、图2 。

由图1 和图2 可知,脱硫装置安装前后烟囱内进出口烟温降低都不大,但由于脱硫装置安装后烟囱进口烟气温度低,使烟气和烟囱外环境的温差减小,因而烟囱进出口的烟温较未脱硫时小。由于烟气脱硫装置安装后烟囱内烟温低于80℃ ,平均比未脱硫时低70℃ ,因此对于烟气脱硫装置安装后的烟囱必须考虑烟温变化带来的影响。 2 烟气脱硫装置安装前后烟囱内烟气温度分布变化对烟囱的影响 烟囱内烟气温度的变化可能对烟囱带来的影响主要有:(l)由于烟气温度的降低出现酸结露现象,造成烟囱内部腐蚀;(2)由于烟气温度的变化使烟囱的热应力发生改变;(3)由 于烟温降低影响烟气抬升高度, (烟气排出烟囱口之后,由于排出速度和热浮力的作用,上升一段高度后再慢慢扩散,这段高度称为抬升高度。烟气自烟囱排出,即与周围大气发生强烈的能量和热量交换,交换到一定程度,烟气的速度、温度和周围大气十分接近,此时烟气就随着大气运动而浮沉和扩散,烟气浓度逐渐降低,最后和大气融为一体完成整个扩散过程。)从而影响烟气的排放;(4)由于烟温的降低,造成正压区范围扩大。 2.1 烟囱的腐蚀情况 烟气脱硫装置安装后可能使烟气温度低于酸露点,造成对烟囱内衬材料以及钢筋混凝土筒

石灰石/石灰湿法烟气脱硫系统的结垢问题1

第20卷第5期电站系统工程V ol.20 No.5 2004年9月Power System Engineering Sep., 2004 文章编号:1005-006X(2004)05-0041-03 石灰石/石灰湿法烟气脱硫系统的结垢问题 哈尔滨工业大学杜 谦 吴少华 朱群益 秦裕琨  摘要:结垢是影响石灰石/石灰湿法烟气脱硫系统运行安全性的主要问题之一。分析了湿法烟气脱系统中各类垢体的形成机理,并阐述了系统结垢的主要防治方法。 关键词:石灰石;石灰;湿法烟气脱硫;结垢 中图分类号:X511文献标识码:A Scaling Problem of Wet Limestone/Lime Flue Gas Desulfurization DU Qian, WU Shao-hua, ZHU Qun-yi, QIN Yu-kun Abstract:Scaling is one of the main problems which relate the operation reliability of wet limestone/lime FGD. The mechanisms of scale formation of different types are analyzed, and the main methods of anti-scaling and scale removing are introduced. Key words:limestone; lime; wet FGD; scaling 石灰石/石灰湿法烟气脱硫系统中各工艺过程均采用浆状物料,脱硫系统特别是脱硫塔易结垢而影响系统的运行。美国20世纪80年代中期以前建设的湿式石灰石脱硫系统中,许多在吸收塔内部、除雾器和浆液管路内出现了不同程度的结垢,高硫煤电厂尤其严重[1]。80年代后,通过对结垢问题的研究,采用了一系列的措施,结垢问题得到一定的解决,但仍是影响脱硫系统的安全性和稳定性的重要因素。 脱硫系统结垢会给系统的运行带来一系列危害。垢体影响脱硫系统的物理过程和化学过程,造成系统阻力增加、脱硫效率下降,甚至还会影响脱硫产物中脱硫剂的含量及系统的氧化效果;垢层达到一定厚度后,可能脱落,砸伤喷嘴和防腐内衬;而结垢现象严重时甚至造成设备堵塞、系统停运。 本文对湿法脱硫系统结垢的原因进行了分析,并对具体的防垢措施进行了综述。 1 垢的形成机理 1.1 “湿-干”结垢的形成 在吸收塔烟气入口处至第一层喷嘴之间,以及最后一层喷嘴与烟气出口之间的塔壁面,属于“湿-干”交界区,这些部分最容易结垢,属于“湿-干”结垢。由于浆液中含有CaSO4、CaSO3、CaCO3及飞灰中含有硅、铁、铝等物质,这些物质具有较大的粘度,当浆液碰撞到塔壁时,它们中的部分便会粘附于塔壁而沉降下来。同时,由于烟气具有较高的温度,加快沉积层水分的蒸发,使沉积层逐渐形成结构致密,类似于水泥的硬垢。连州电厂[3]的吸收塔“干-湿”界面区域严重的洗涤液富集、积垢现象,属于此类垢体。 气水分离器的结垢类型也属于“湿-干”结垢,它是由于雾滴所携带的浆液碰到折板而形成的[2]。香港南丫电厂除雾器出现过堵塞现象[4]。 收稿日期: 2004-01-16 杜谦(1973-),男,博士生。能源科学与工程学院,150001 另外,湿法脱硫装置中强制氧化系统的氧化空气管内也可能出现“湿-干”结垢。氧化风机运行时,其出口风温可高达100 ℃,这使得由于氧化空气的冲击而附着在氧化风管内壁的石膏浆液很快脱水结块,随着运行时间的增加,也就逐渐形成了氧化空气管的大面积堵塞。香港南丫电厂[4]和重庆电厂[5]湿法脱硫装置的氧化风机出口喷嘴都有被石膏堵住的现象。 1.2 结晶成垢 1.2.1 硬垢的形成 对于有石膏生成的浆液,当石膏终产物超过悬浮液的吸收极限,石膏就会以晶体的形式开始沉积。当相对饱和浓度达到一定值时,石膏将按异相成核作用在悬浮液中已有的晶体表面上生长。当饱和度达到更高值,即大于引起均相成核作用的临界饱和度时,就会在浆液中形成新的晶核,此时,微小晶核也会在塔内表面上生成并逐步成长结成坚硬垢淀,从而析出作为石膏结晶的垢[6]。石膏产生均相成核作用的临界相对饱和度为140%[7]。 对于石灰石/石灰湿法脱硫系统,无论是采用自然氧化,还是采用强制氧化,都有石膏产生,在吸收塔脱硫浆液吸收SO2而产生的亚硫酸钙经氧化会生成硫酸钙。电厂烟气中的氧量一般为6%左右,可氧化部分的亚硫酸钙,这种烟气自身含氧发生的氧化称为自然氧化。自然氧化因锅炉和脱硫系统设计运行参数不同而程度各异[1]。某一系统在操作时,因自然氧化浆液回路中浆液的氧化比例(CaSO4/CaSO4+CaSO3摩尔比)小于15%,亚硫酸钙在结晶沉淀的过程中会由于表面吸附作用吸附硫酸钙而引起共沉淀,使得脱硫浆液能始终使硫酸钙(石膏)低于或保持在饱和状态。氧化比例超过这一水平,浆液回路会产生多于共沉淀而减少的硫酸钙。这就使硫酸盐浓度增加,使系统处于过饱和状态,从而使得硫酸钙构晶离子的水平有可能大于临界饱和度。对于湿法脱硫系统,也可在浆液槽内鼓入空气而将浆液中的亚硫酸钙氧化成

探讨影响石灰石-石膏湿法脱硫效率的主要因素

探讨影响石灰石-石膏湿法脱硫效率的主要因素 发表时间:2017-10-24T17:05:53.313Z 来源:《电力设备》2017年第16期作者:孟祥辉 [导读] 应用最为广泛,但是,在实际的操作过程中,因为在经验和认识上的缺乏,很多工业企业利用湿法脱硫工艺进行脱硫处理的时候存在着很多问题,进而导致脱硫效率受到很大影响,所以对石灰石-石膏湿法脱硫效率影响因素的探析是有必要的,(华能长春热电厂吉林省长春市 130216) 摘要:燃煤过程中的二氧化硫排放造成严重的大气污染,控制电力行业二氧化硫排放是实现全国二氧化硫削减目标的关键。目前,在众多火力发电厂的脱硫工艺中,石灰石-石膏湿法烟气脱硫技术发展较为成熟,应用最为广泛,但是,在实际的操作过程中,因为在经验和认识上的缺乏,很多工业企业利用湿法脱硫工艺进行脱硫处理的时候存在着很多问题,进而导致脱硫效率受到很大影响,所以对石灰石-石膏湿法脱硫效率影响因素的探析是有必要的,也是非常具有实际价值的。 关键词:二氧化硫;石灰石-石膏湿法脱硫效率;影响因素 1石灰石-石膏湿法烟气脱硫流程及原理 1.1石灰石-石膏湿法烟气脱硫流程 某油田热电厂采用石灰石-石膏湿法烟气脱硫工艺(FGD)。从锅炉来的烟气经过电除尘器除尘后,经吸风机引入FDG系统,烟气进入吸收塔内自下而上流动,且被从上向下流动的石灰石浆液以逆流方式洗涤除去烟气中的SO2、SO3、HCL和HF等气体,同时生成石膏(CaSO4?2H2O)。用作补给而添加的石灰石浆液进入吸收塔循环泵人口,与吸收塔内的石膏浆液混合,通过循环泵将混合浆液向上输送到吸收塔顶部,再通过喷嘴进行雾化,可使气体和液体得到充分接触,经脱硫净化处理的烟气流经除雾器除去净烟气所携带的浆液微小液滴,直至最后净烟气通过烟道进人210m的烟囱排入大气。石灰石-石膏湿法烟气脱硫系统流程见图1所示。 1.2石灰石-石膏湿法烟气脱硫原理 烟气流经增压风机,通过GGH换热器冷却之后进入吸收塔,并与石灰石浆液相混合并发生反应。同时浆液中的部分水份蒸发,烟气得到进一步冷却,之后穿过吸收塔顶部的除雾器,除去烟气中的悬浮水滴,离开吸收塔。烟气再次经GGH换热器升温后,进入烟囱排向大气。吸收塔内,烟气从吸收塔下侧进入,浆液由喷淋层通过喷嘴雾化与烟气逆流接触,洗涤烟气中的SO2、HCL和HF等,首先SO2与CaCO3浆液反应生成Ca(HSO3)2,然后与氧化空气氧化结晶生成CaSO4?2H2O,得到脱硫副产品二水石膏。石灰石-石膏湿法脱硫工艺技术成熟,设备运行可靠性高,脱硫效率可达95%以上,单塔处理烟气量大,适应不同含硫量的煤种,吸收剂资源丰富,脱硫副产物便于利用,目前广泛应用于世界各地。但该工艺投资费用高,设备占地面积大,运行费用较高,且设备易腐蚀。 2影响脱硫效率的主要因素分析 2.1烟气 (1)烟气温度。依据二氧化硫吸收的化学反应原理,温度比较低的情况下,吸收更加有利;温度较高的情况下,则更有利于解析。所以,如果吸收塔内的烟气处于较低温度的时候,将会对二氧化硫的吸收非常有益,进而提升脱硫的效率。(2)烟气流速。如果在脱硫的过程中,其他方面的参数恒定,只考虑到要烟气流速的话,如果烟气流速变大,烟气与石灰石浆液的吸收将会受到影响,直接减薄烟气和吸收液之间的膜厚度,增强气液的传质。(3)二氧化硫浓度。保持其他工况的恒定,随着吸收塔吸收二氧化硫的质量浓度增高,脱硫效率将会逐渐下降。 2.2脱硫浆液 脱硫浆液品质恶化将严重影响脱硫吸收反应,并造成石膏脱水困难。脱硫浆液密度控制在1080~1150kg/m3,过高会增加浆液对设备的磨损,过低则使晶体不容易长大,增加结垢概率,运行中当浆液含固量达到15%~18%时,需要启动石膏外排系统。控制浆液中硫酸盐质量分数>90%,碳酸盐<3%,防止过量CaCO3降低其利用效率,不利于结晶过程,影响石膏脱水。控制亚硫酸盐含量<1%,因为CaSO3?1/2H2O会形成不易长大的致密针状晶体,导致石膏浓缩液中颗粒非常致密,在真空皮带机中难以脱水,并可能造成亚硫酸盐沉积

脱硫系统问题分析及处理方式

脱硫系统问题分析及处理方式 脱硫效率低 1.脱硫效率低的原因分析: (1)设计因素 设计是基础,包括L/G、烟气流速、浆液停留时间、氧化空气量、喷淋层设计等。应该说,目前国内脱硫设计已经非常成熟,而且都是程序化,各家脱硫公司设计大同小异。 (2)烟气因素 其次考虑烟气方面,包括烟气量、入口SO2浓度、入口烟尘含量、烟气含氧量、烟气中的其他成分等。是否超出设计值。 (3)脱硫吸收剂 石灰石的纯度、活性等,石灰石中的其他成分,包括SiO2、镁、铝、铁等。特别是白云石等惰性物质。 (4)运行控制因素 运行中吸收塔浆液的控制,起到关键因素。包括吸收塔PH值控制、吸收塔浆液浓度、吸收塔浆液过饱和度、循环浆液量、Ca/S、氧化风量、废水排放量、杂质等。 (5)水 水的因素相对较小,主要是水的来源以及成分。 (7)其他因素 包括旁路状态、GGH泄露等。 2.改进措施及运行控制要点 从上面的分析看出,影响FGD系统脱硫率的因素很多,这些因素叉相互关联,以下提出了改进FGD系统脱硫效率的一些原则措施,供参考。 (1)FGD系统的设计是关键。

根据具体工程来选定合适的设计和运行参数是每个FGD系统供应商在工程系统设计初期所必须面对的重要课题。特别是设计煤种的问题。太高造价大,低了风险大。 特别是目前国内煤炭品质不一,供需矛盾突出,造成很多电厂燃烧煤种严重超出设计值,脱硫系统无法长期稳定运行,同时对脱硫系统造成严重的危害。(2)控制好锅炉的燃烧和电除尘器的运行,使进入FGD系统的烟气参数在设计范围内。必须从脱硫的源头着手,方能解决问题。 (3)选择高品位、活性好的石灰石作为吸收剂。 (4)保证FGD工艺水水质。 (5)合理使用添加剂。 (6)根据具体情况,调整好FGD各系统的运行控制参数。特别是PH值、浆液浓度、CL/Mg离子等。 (7)做好FGD系统的运行维护、检修、管理等工作。 除雾器结垢堵塞 1.除雾器结垢堵塞的原因分析 经过脱硫后的净烟气中含有大量的固体物质,在经过除雾器时多数以浆液的形式被捕捉下来,粘结在除雾器表面上,如果得不到及时的冲洗,会迅速沉积下来,逐渐失去水分而成为石膏垢。由于除雾器材料多数为PP,强度一般较小,在粘结的石膏垢达到其承受极限的时候,就会造成除雾器坍塌事故。 沉积在除雾器表面的浆液中所含的物质是引起结垢的原因。如果这些污垢不能得到及时的冲洗,就会在除雾器叶片上沉积,进而造成除雾器堵塞。 结垢主要分为两种类型: (1)湿-干垢: 多数除雾器结垢都是这种类型。因烟气携带浆液的雾滴被除雾器折板捕捉后,在环境温度,粘性力和重力的作用下,固体物质与水分逐渐分离,堆积形成结垢。这类垢较为松软,通过简单的机械清理以及水冲洗方式即可得到清除。(2)结晶垢:

影响脱硫效率的因素

影响湿法烟气脱硫效率的因素分析 摘要:通过对湿法烟气脱硫工艺过程的分析和系统调试结果,总结出原烟气 中氧量、粉尘、温度等参数的变化和工艺过程控制、设备运行方式的改变对烟气脱硫效率的影响规律,对运行实践有一定的指导意义。 关键词:烟气脱硫;二氧化硫;脱硫率;影响因素 1前言 湿式石灰石-石膏烟气脱硫(以下简称FGD)是目前世界上技术最成熟、实用业绩最多、运行状况最稳定的脱硫工艺,脱硫效率在90%以上,副产品石膏可回收利用。杭州半山发电有限公司采用德国斯泰米勒公司石灰石-石膏湿法工艺,处理4、5号炉2×125 MW机组的全部燃煤烟气,最大处理烟气量1.0×106m3/h(湿),脱硫率在95%以上,FGD出口SO 2 排放浓度<180 mg/m3,作为烟气脱硫的副产品石膏,其纯度>90%,含水率<10%。 湿法烟气脱硫工艺涉及到一系列的化学和物理过程,脱硫效率取决于多种因素。在原料方面,工艺水品质、石灰石粉的纯度和颗粒细度等直接影响脱硫化学反应活性;在工艺控制方面,石灰石粉的制浆浓度、石膏旋流站排出的废水流量设定等都与脱硫率有关,而FGD关键设备的运行和控制方式将决定脱硫效果和终 产物石膏的品质;机组原烟气参数如温度、SO 2 浓度、氧量、粉尘浓度等也不同程度地影响脱硫反应进程。本文旨在探讨原烟气与脱硫剂的接触反应时间、原烟气参数的变动、吸收塔浆液pH值、石膏浆液密度等因素对烟气脱硫效率的影响规律,为优化系统运行、提高脱硫效率提供参考。 2湿法脱硫工艺过程分析 FGD包括增压风机、气-气加热器、吸收塔、石灰石制浆系统、石膏脱水系统和废水处理等部分,其中吸收塔是烟气脱硫反应的关键部分,见图1所示。湿法烟气脱硫工艺的主要原理是以石灰石浆液作为脱硫剂,在吸收塔(洗涤塔)内 对含有SO 2的烟气进行喷淋洗涤,使SO 2 与浆液中的碱性物质发生化学反应生成 CaSO 3和CaSO 4 而将SO 2 去除,其化学反应如下: 气相部分:SO 2+H 2 O+1/2O 2 →H 2 SO 4 液相部分:H 2SO 4 +CaCO 3 +H 2 O→CaSO 4 ·2H 2 O +CO 2 ↑ 吸收塔由两层搅拌器(上、下各3台)、浆液喷淋盘(4层,交错排列)、两级除雾器组成,在添加新鲜石灰石浆液的情况下,石灰石、石膏和水的混合物通过4台循环泵至喷淋盘,浆液经喷嘴雾化成雾滴,从上部向下喷洒。烟气分别从4、5号炉烟道引出,经增压风机至气-气加热器,烟温从135℃降至100℃左右,然 后进入吸收塔下部,在塔内上升过程中与雾滴充分接触,大部分SO 2、SO 3 、HCl

石灰石湿法脱硫系统堵塞、结垢、腐蚀.doc

石灰石-石膏湿法脱硫系统堵塞、结垢、腐蚀浅谈 摘要:阐述了石灰石-石膏湿法脱硫工艺简要工艺流程,附属设备结垢、腐蚀应对措施。 关键词:湿法脱硫;结垢;腐蚀;堵塞。 石灰石湿法脱硫技术在燃煤电厂正得到广泛的推广应用,技术成熟、适合我国国情且国内应用最多的高效脱硫工艺,但在实际应用中如果不能针对具体情况正确处理结垢、堵塞、腐蚀等的技术问题,将达不到预期的脱硫效果。本文就该法的工艺原理、实践中存在结垢、堵塞、腐蚀等问题防范处理方法做如下简要探讨。 一:石灰石-石膏湿法脱硫工艺简要流程 我厂共设计8台300MW锅炉,针对一厂1、2、3、4号锅炉分别对应脱硫5号吸收塔、1-2号吸收塔、3-4号吸收塔、6号吸收塔。锅炉尾部烟道排出烟气经除灰电除尘器除尘,通过增压风机升压后进入吸收塔,并与石灰石浆液相混合。浆液中的部分水份蒸发掉。烟气经循环石灰石稀浆的洗涤,烟气得到冷却,并将烟气中95%以上的硫脱除。同时还能将烟气中近100%的氯化氢除去。在吸收塔的顶部,除雾器将烟气中携带的浆体液滴除去。离开吸收塔以后,在进入烟囱之前,无GGH(烟气换热器)的脱硫,其排烟温度在50℃左右。 吸收塔底部未反应完全的石灰石石膏浆液由吸收塔浆液再循环泵,循环进入吸收塔上部向下喷洒与上升的烟气接触。烟气中的SO2溶入水溶液中,并被其中的碱性物质中和,从而使烟气中的硫脱除。石灰石中的碳酸钙与二氧化硫和氧(空气中的氧)发生反应,并最终生成石膏,这些石膏在沉淀槽中从溶液中析出。石膏稀浆由吸收塔沉淀槽中抽出,经浓缩、脱水和洗涤后先储存起来,然后运走。 二:脱硫系统的结垢、堵塞与解决办法 1、结垢、堵塞机理 (1)吸收塔底部浆池中石膏终产物浓度超过了浆液的吸收极限,石膏就会以晶体的形式开始沉积,当相对饱和浓度达到一定值时,石膏晶体将在悬浮液中已有的石膏晶体表面进行生长,当饱和度达到更高值时,就会形成晶束,进而形成晶种、晶体,同时,晶体也会在其它各种物体表面上生长,导致吸收塔内壁结垢。石膏结晶是一个动态平衡过程,新晶种的形成和晶体长大同时进行,只有结晶到一定程度才被允许排出,因此石膏浆液在吸收塔内应有足够的停留时间,即保持石膏的过饱和状态。实践经验表明,如果相对过饱和度过高(>1.4),就易形成晶核或层状、针状晶体,晶核会在其它物质的表面上生长,就易发生吸收塔结垢、沉积现象。经验表明比较理想的石膏相对过饱和度应控制在1.25~1.30。 (2)在系统的氧化程度低下,甚至无氧化发生的条件下,可生成一种反应物为Ca(SO3)0.8(SO4)0.21/2H2O,称为CSS-软垢,使系统发生结垢,甚至堵塞。 (3)吸收液pH值的剧烈变化,低pH值时,亚硫酸盐溶解度急剧上升,硫酸盐溶解度略有下降,会有石膏在很短时间内大量产生并析出,产生硬垢。而高pH值亚硫酸盐溶解度降低,会引起亚硫酸盐析出,产生软垢。在碱性pH值运行会产生碳酸钙硬垢。吸收塔浆液中有HSO3-、SO32-、CO32-、SO42-、Ca2+、Mg2+、Cl-等离子,pH值对它们相互之间的反应影响很大。高pH值的浆液有利于SO2的吸收,然而当pH>5.9时,石灰石中Ca2+的溶出就减慢,SO32-的氧化也受到抑制,浆液中CaSO3·1/2H2O就会增加,易发生管道结垢现象。在碱性pH值环境下运行会产生碳酸钙硬垢。反之,如果浆液pH值降低,石灰石中Ca2+的溶出就容易,而且对SO32ˉ的氧化非常有利,保证了石膏的品质,但亚硫酸盐溶解度急剧上升,硫酸盐溶解度略有下降,在很短时间内,会有石膏大量产生并析出,产生硬垢。pH值较低会使SO2的吸收受到抑制,脱硫效率将大大降低。 (4)脱硫停运设备冲洗不充分,长期停运至投运时间长,设备及管道结垢、堵塞。 2,解决办法

影响湿法脱硫石膏脱水效率的因素研究

影响湿法脱硫石膏脱水效 率的因素研究 This model paper was revised by the Standardization Office on December 10, 2020

影响湿法脱硫石膏脱水效率的因素研究 更新时间:2011-11-28 10:49来源:江西萍钢实业股份有限公司作者: 方婷,官民鹏阅读:4004网友评论0条 1前言 二氧化硫是“十二五”期间,国家明确的主要污染物减排指标之一,钢铁企业烧结机烟气脱硫势在必行。湿法脱硫工艺作为烧结烟气脱硫的办法之一,已经在一些企业实施。该工艺的副产物脱硫石膏因可以回收利用,具有一定的经济价值。正常情况工艺设计要求脱硫石膏经脱水后含水率低于15%,压滤后成形较好,成干态。但实际工程应用中脱硫石膏的脱水效果偶尔会出现不理想的状况,其含水率远大于设计要求,呈稀泥浆状,对脱硫石膏的排放及拖运造成很大的影响,甚至于直接影响脱硫石膏的外售。 2石膏脱水原理概述 吸收SO2后的脱硫浆液在脱硫塔内经氧化形成石膏浆液,当浆液达到一定密度后,被送入过滤系统进行脱水。石膏过滤系统主要设备包括水力旋流器和真空带式压滤机,二者分别承担了石膏的一级脱水和二级脱水的任务。经水力旋流器离心浓缩后的石膏浆液一般含水量为50%,通过真空带式压滤机作用石膏含水率才可能降低到15%以下。 真空压滤机是二级脱水系统的核心,其脱水原理是通过真空泵抽真空,在石膏表面形成负压力,强制分离石膏与水分。当含水的石膏均匀排放到真空皮带机的滤布上,随着滤布的运转在真空泵的吸力及重力作用下,脱硫石膏中的水分会被逐渐吸出。脱水后的石膏经滤布输送到皮带尾端后,经过滤分离系统,石膏从滤布上剥离,落入石膏仓内,同时石膏中抽出的废水可以循环利用送回洗涤系统再次使用。 3石膏脱水效率的影响因素 脱硫石膏脱水效果不好,影响因素是多方面的,主要包括:石膏结晶体粒径的影响、石膏浆液性质的影响、脱硫塔及运行控制的影响等。 石膏结晶体粒径的影响

脱硫系统的结垢、堵塞与解决办法

石灰石-石膏湿法脱硫技术问题及脱硫效率探讨 田斌 摘要:阐述了石灰石-石膏湿法脱硫工艺原理及存在的技术问题和处理方法,并对影响脱硫效率的主要因素进行了探讨。 关键词:湿法脱硫;技术问题;脱硫效率 当前脱硫技术在新建、扩建、或改建的大型燃煤工矿企业,特别是燃煤电厂正得到广泛的推广应用,而石灰石-石膏湿法脱硫是技术最成熟、适合我国国情且国内应用最多的高效脱硫工艺,但在实际应用中如果不能针对具体情况正确处理结垢、堵塞、腐蚀等的技术问题,将达不到预期的脱硫效果。本文就该法的工艺原理、实践中存在的技术问题、处理方法及影响脱硫效率的主要因素做如下简要探讨。 1. 石灰石-石膏湿法脱硫工艺及脱硫原理 从电除尘器出来的烟气通过增压风机BUF进入换热器GGH,烟气被冷却后进入吸收塔Abs,并与石灰石浆液相混合。浆液中的部分水份蒸发掉,烟气进一步冷却。烟气经循环石灰石稀浆的洗涤,可将烟气中95%以上的硫脱除。同时还能将烟气中近100%的氯化氢除去。在吸收器的顶部,烟道气穿过除雾器Me,除去悬浮水滴。 离开吸收塔以后,在进入烟囱之前,烟气再次穿过换热器,进行升温。吸收塔出口温度一般为50-70℃,这主要取决于燃烧的燃料类型。烟囱的最低气体温度常常按国家排放标准规定下来。在我国,有GGH 的脱硫,烟囱的最低气温一般是80℃,无GGH 的脱硫,其温度在50℃左右。大部分脱硫烟道都配备有旁路挡板(正常情况下处于关闭状态)。在紧急情况下或启动时,旁路挡板打开,以使烟道气绕过二氧化硫脱除装置,直接排入烟囱。 石灰石—石膏稀浆从吸收塔沉淀槽中泵入安装在塔顶部的喷嘴集管中。在石灰石—石膏稀浆沿喷雾塔下落过程中它与上升的烟气接触。烟气中的SO 溶入水 2 溶液中,并被其中的碱性物质中和,从而使烟气中的硫脱除。石灰石中的碳酸钙与二氧化硫和氧(空气中的氧)发生反应,并最终生成石膏,这些石膏在沉淀槽中从溶液中析出。石膏稀浆由吸收塔沉淀槽中抽出,经浓缩、脱水和洗涤后先储存起来,然后再从当地运走。

影响脱硫效率的因素(2020年整理).doc

浅析影响脱硫效率的因素 近年来,大气质量变差,随着人们对良好环境的渴望,国家对环保的要求越来越严格。许多火电厂已建和正建脱硫装置(FGD),进一步净化烟气,使其达到排放标准。国内大部分采用了石灰石-石膏湿法脱硫。对2×50MW机组烟气脱硫(FGD)装置脱硫效率的几项参数进行研究分析,查找出影响土力学的几个主要因素,并提出解决措施,使之达到最优的脱硫效率。 石灰石-石膏湿法脱硫的基本原理:烟气经过电除尘后由增压风机送入吸收塔内。烟气中的SO2与吸收塔喷淋层喷下的石灰石浆液发生反应生成HSO3-,反应如下:SO2+H2O→H2SO3,H2SO3→H++HSO3-。其中部分HSO3-在喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化,反应如下:HSO3- +1 O2→HSO4-,HSO4-→H++SO42-。吸收塔内浆液被 2 引入吸收塔内中和氢离子,使浆液保持一定的PH值。中和后的浆液在吸收塔内循环。反应如下:Ca2++CO32-+2H++SO42-+H2O→CaSO4·2H2O+CO2↑,2H++CO32-→H2O+CO2↑。脱硫后的烟气经吸收塔顶部的除雾器去除水分后,被净化的烟气经烟囱排向大气中,生成的石膏副产品留作他用。从此可以看出,浆液的PH值、烟气的性质、吸收剂的质量、液气比、等是影响脱硫效率的主要因素。

○1吸收塔浆液的PH值。PH值是影响脱硫效率、脱硫产物成分的关键参数。PH值太高,说明脱硫剂用量大于反应所需量,造成脱硫剂的利用率降低。当PH值>6时,虽然SO2的吸收好,但是Ca2+浓度减小,影响Ca2+析出,同时也容易使设备堵塞和结垢。而PH值太低,则影响脱硫效率,不能使烟气中SO2的含量达到预期的效果。当PH值<4时,几乎就不吸收SO2。所以必须在运行中监测好PH值,及时加减脱硫剂,保证脱硫效率的同时,也提高脱硫剂的利用率和脱硫产物的品质。一般PH值控制在5~6之间。 ○2烟气性质的影响。进入脱硫塔的烟气,其浓度、含尘量、流速都对脱硫效率有一定的影响。相同条件下,烟气中的SO2浓度越高,脱硫效率越低,相反,若SO2浓度越低,脱硫效率越高。在其他条件相同时,烟气温度越高,脱硫效率下降。烟气含尘量越高,SO2吸收效果越差。原烟气中的飞灰在一定程度上阻碍了Ca2+和脱硫剂的接触,飞灰中的一些重金属抑制Ca2+与HSO3-反应,降低了脱硫效率。脱硫塔内烟气流动速度影响了烟气和脱硫浆液的接触时间,流速越快,接触时间短。在相同条件下,脱硫效率就可能低,同时,烟气流速也影响烟气中携带的水含量,烟气流速越高,烟气中携带的浆滴越多。 ○3脱硫剂的细度和纯度。脱硫剂越细其表面积越小,越有利于脱硫效率的提高,石灰石粒度要求90%通过325目筛。

影响湿法脱硫装置脱硫效率的主要原因及措施应对

影响湿法脱硫装置脱硫效率的主要原因及措施应对 王祖涛 华电国际邹县发电厂,山东邹城273522; Main Influencing Factors of Desulphurization Effects by Wet Desulphurization and Solutions Wang Zutao Huadian International Zouxian Power Plant ZouCheng in Shandong post code:273522 ABSTRACT:It summerizes the technics of limestone-gypsum wet desulphurization technology in large coal fuel electric https://www.sodocs.net/doc/3c9847183.html,bining with the operating situation of fuel gas desulfurization by 2×1000 MW in Zouxian Power Plant in Shandong ,and analyzing the parameters of the influencing factors of fuel gas desulfurization (FGD), it fidns out the main influencing factors and the relevant solutions in order to reach the optimalizing desulphurization effects.KEY WORD:influencing; wet desulphurization; desulphurization effects; factors; solutions 摘要:概述大型燃煤火力发电厂石灰石-石膏湿法脱硫技术的工艺原理。结合山东省邹县电厂2×1000 MW机组烟气脱硫系统的运行实际,对影响湿法烟气脱硫(FGD)装置脱硫效率的几项参数进行研究分析,查找出造成脱硫效率过低的主要原因,并提出解决的措施,使之达到最优的脱硫效率。 关键词:影响;湿法脱硫;脱硫效率;原因;措施 1湿法脱硫原理及工艺流程 1.1脱硫原理 湿法烟气脱硫的基本原理主要是利用SO2在水中有中等的溶解度,溶于水后生成H2SO3,然后与碱性物质(石灰石粉)发生反应,在一定条件下生成稳定的盐,从而脱去烟气中的SO2。主要反应主要有如下几个过程: SO2+H2O=HSO3-+H+ CaCO3+H+=HCO3-+Ca2+ HSO3-+1/2O2=SO42-+H+ SO42-+Ca2++2H2O=CaSO4?2H2O 经过上述反应后,烟气中的硫分被去除,随喷淋浆液落入吸收塔底部的沉淀池内;净化后的烟气经烟囱排入大气。 1.2 湿法脱硫工艺流程 从电除尘器出来的烟气通过增压风机(BUF)加压后进入烟气换热器(GGH),烟气被冷却后进入吸收塔内部(Abs),并与喷淋而下的石灰石浆液相混合。浆液中的部分水份被烟气加热后蒸发带走,烟气进一步冷却。烟气经循环石灰石浆液的洗涤,可将烟气中95%以上的硫脱除,同时还能将烟气中近100%的氯化氢除去。在吸收器的顶部,通常设置2~3级除雾器,并采用工艺水进行定期冲洗,反应后的净烟气穿过除雾器Me,除去悬浮水滴。 脱硫后的烟气离开吸收塔以后,在进入烟囱之前,再次穿过GGH换热器,进行升温。吸收塔出口温度一般为50-70℃,这主要取决于燃烧的燃料类型。烟囱的最低气体温度常常按国家排放标准规定下来。在我国,有GGH的脱硫,烟囱的最低气温一般是80℃,无GGH 的脱硫,其温度在50℃左右。大部分脱硫烟道都配备有旁路挡板

石灰石-石膏湿法脱硫系统除雾器结垢技术分析

石灰石-石膏湿法脱硫系统除雾器结垢技术分析 脱硫系统除雾器结垢是众多电力企业脱硫装置较为常见和突出的疑难问题。首先了解其原理和运行工况。 石灰石-石膏湿法脱硫技术是世界范围内烟气脱硫的主流技术之一,具有脱硫效率较高,投资成本较低,运行可靠性较好,非常适合于大中型锅炉的烟气脱硫。除雾器通常布置于吸收塔内顶部,含硫烟气经过反应区时与石灰石浆液进行中和反应后形成雾滴,雾滴随烟气上升至除雾器区域,被除雾器捕集除去,防止下游设备的结垢及腐蚀。脱硫除雾器是烟气脱硫系统中非常重要的装置,除雾器除雾效率的高低和压降的大小直接影响到脱硫后烟气的“干净”程度和系统的运行效率,其性能直接影响到湿法洗涤烟气脱硫系统能否连续可靠运行。除雾器故障不仅会造成脱硫系统的停运,甚至可能导致整个机组(系统) 停机。**电厂脱硫系统2010年正式投入运行。采用常见的石灰石-石膏法,设计脱硫效率85%以上。脱硫系统除雾器采用折板式除雾器,分两级布置,当含有雾滴的烟气流经除雾器通道时,雾滴的撞击作用、惯性作用、转向离心力及其与波形板的摩擦作用、吸附作用等使得雾滴被捕集,除雾器波形板的多折向结构增加了雾滴被捕集的机会,从而大大提高了除雾效率。除雾器叶片为之字形叶片;除雾器冲洗水为脱硫系统工艺水,设计冲洗压力0.4MPa ,冲洗水喷淋重叠率140%。投产以来在多次停机检查时均发现有除雾器堵塞现象,除雾器前后差压由初通烟气时的0Pa增加至400Pa左右,对脱硫系统的安全、稳定运行构成了很大威胁。 一、除雾器堵塞情况 脱硫系统一级、二级除雾器堵塞情况:除雾器表面及内部都有严重的结垢现象,结垢面遍布整个除雾器,西北侧结构较为严重,二级除雾器表面结垢厚度达0.5cm左右,颜色为褐色, 一级除雾器表面之字形

相关主题