搜档网
当前位置:搜档网 › 明胶-异丙基丙烯酰胺水凝胶的溶胀性

明胶-异丙基丙烯酰胺水凝胶的溶胀性

明胶-异丙基丙烯酰胺水凝胶的溶胀性
明胶-异丙基丙烯酰胺水凝胶的溶胀性

明胶-异丙基丙烯酰胺水凝胶的溶胀性

吉静,黄明智(北京化工大学材料科学与工程学院,北京100029)

高分子凝胶是由具有网状结构的聚合物和溶剂组成的。交联高聚物的溶胀过程实际上是两种相反趋势的平衡过程,溶剂试图渗透到网络内部,使体积溶胀导致三维分子网络的伸展,交联点之间的分子链的伸展降低了它的构象熵值,分子网络的弹性收缩力,力图使网络收缩。当两种相反的倾向互相抵消时,达到溶胀平衡。高分子凝胶的溶胀特性与溶质和溶剂的性质、温度及网络交联结构有关。它们的定量关系可用Flory-Huggins渗透压说明。带电的PNIPAM微凝胶因其在LCST上下分散状态的不同,可用于石油储罐中的原油回收[1]。将PNIPAM与明胶(geltin)结合制成的水凝胶不仅具有温度敏感性,明胶的两性带电,使其更具有pH敏感性[2],有望应用在更复杂的环境中。水凝胶的一个重要性质是平衡溶胀度,如分散状态、可控的释药方式可以通过水凝胶的溶胀度控制。因此,可借助高分子网络凝胶结构、形态的微观控制,来影响其宏观的溶胀度。由于水凝胶在生物医药、分离工程、石油化工等多项领域的应用[6~8],与其溶胀度的大小、变化有密切的关系,而影响水凝胶溶胀度的因素是多方面的,了解这些因素对水凝胶溶胀度的影响,可为更好地应用水凝胶提供理论指导。尽管有关PNIPAM的研究很多[3~5],但还未见这一领域结合天然高分子明胶的研究。因此,本实验的主要目的是研究影响明胶-PNIPAM水凝胶平衡溶胀度的因素。

1实验部分

1 .1材料

N-异丙基丙烯酰胺(NIPAM),化学纯;明胶,K-911216,开平明胶厂;过硫酸铵(APS),AR级,北京化学试剂三厂;N,N,N,N-四甲基乙二胺(TEMED),CP级,北京化学试剂三厂;N,N-亚甲基双丙烯酰胺(BIS),AR级,北京化学试剂公司;戊二醛溶液(GLA,质量分数25%),CP级,北京华博源科技开发中心。

1.2水凝胶的制备

将明胶、N-异丙基丙烯酰胺、TEMED、BIS溶解于去离子水中,待完全溶解后,加入APS,同时通入氮气;再加入GLA,或BIS,或BIS和GLA,并快速搅拌均匀,室温下静置2h,分别制成geltinx-PNIPAM,geltin-PNIPAMx,geltinx-PNIPAMx3种交联结构的水凝胶。将以上制备的水凝胶,置于去离子水中浸泡48h后取出,再放入40℃的去离子水中浸泡,浸泡过程不断换水,将此过程反复数次。将已处理好的水凝胶切成大小约0.7cm×0.7cm×0 25cm的小块,放入真空干燥箱中,干燥至恒重,称取干胶质量,留做溶胀实验。

1. 3溶胀度的测定

将上述制备的试样放入规定pH值、规定温度的缓冲溶液中,达溶胀平衡后取出称量湿胶质量。按下列公式计算溶胀度: 溶胀度=(mW-md)/md

式中,mW为达溶胀平衡后的湿胶质量,g;md为干胶质量,g。

2结果与讨论

2. 1明胶/PNIPAM配比对水凝胶溶胀度的影响

水凝胶是由明胶和PNIPAM大分子组成的互穿网络结构,温度对这两种大分子在水中溶胀的影响作用不同。对于明胶大分子来说,温度升高,破坏了明胶的氢键,利于明胶的溶胀。但温度达到32℃(PNIPAM的LCST值)以上时,由于PNIPAM大分子转向疏水性,导致分子收缩。所以,对于明胶-PNIPAM水凝胶而言,明胶/PNIPAM配比对水凝胶的平衡溶胀度有明显的影响且这种影响与温度有关。首先,为了排除离子对溶胀度的影响,在去离子水中,于不同的温度条件下,研究水凝胶中明胶质量分数对溶胀度的影响,见图1(交联剂加入量以各组分为基准,质量分数分别为2%)。

从图1可见,当温度为37℃时,水凝胶的溶胀度随明胶含量的增加而增加。这说明,水凝胶的溶胀度主要由明胶决定,与温度为15℃、28℃相比,37℃更利于明胶的溶胀。当温度低于LCST值(15℃、28℃)时,溶胀度与配比的关系相近,除了纯态水凝胶(纯明胶、纯态PNIPAM)外,溶胀度随明胶含量的增加而增加,当明胶的质量分数为0 .5时,溶胀度最大,随后明胶含量的进一步增加,导致溶胀度降低。这一结果说明:当水凝胶的互穿网络结构越均匀,溶胀度越大;而配比相差越大,互穿网络结构越不均匀,溶胀度越小。另外,水凝胶的交联剂加入量是以两种组分质量为基准,即交联剂占其组分质量分数的2%,则当明胶或PNIPAM含量相对于另一组分提高时,其交联剂的浓度加大,导致交联密度的加大,所以,明胶/PNIPAM配比为1/9或9/1时,溶胀度较低。以上结果说明,当温度高于LCST值,水凝胶的溶胀度随明胶含量的增加而增加;温度小于LCST值,溶胀度取决于水凝胶的交联密度。若将不同配比的水凝胶放入温度分别为37℃、16℃的pH不同的缓冲溶液里,并不影响这一结果,见图2、图3。

2. 2改变交联剂浓度后明胶质量分数对水凝胶溶胀度的影响

当加入的交联剂用量以整个反应体系的质量为基准,即无论配比如何,各自的交联剂的质量分数为0 .3%,则其溶胀度无论温度在相变温度上下,其溶胀度都随明胶含量的增加而增加,见图4、图5。

2 .3离子强度对水凝胶溶胀度的影响

离子强度对geltinx-PNIPAMx(质量比1/1)溶胀度的影响见图6。溶液为去离子水,用NaCl调至所需离子强度。

由图6可见,溶胀度先随离子强度的增加而增加,当离子强度增加到0. 1mol时,溶胀度随离子强度的增加又降低,随后,当离子强度大于0 .4mol后,溶胀度又随离子强度的增加有一微小增加。可以将这种非单调性解释为:水凝胶中可离子化的基团的离子化需要凝胶外部溶液中反离子向凝胶内部迁移。在最低的离子浓度条件下,进入凝胶的这种反离子的数量少,低的反离子浓度限制了水凝胶的离子化程度,所以,在离子强度低的区域,凝胶溶胀度低。随着离子强度的增加,反离子增加,导致凝胶离子化程度提高,溶胀度提高,当离子强度达到一定时,溶胀度不再增加。这一离子强度取决于溶液的pH值。离子强度超过这一点,降低了凝胶内、溶液的离子渗透压差,所以溶胀度又下降。

图7为纯水中和0 185mol/LNaCl水溶液中水凝胶的溶胀度的变化规律。从图7看出,水凝胶在纯水中的溶胀度比在NaCl水溶液中大的多,且相变区域比在NaCl水溶液中窄。这是由于过量的钠离子、氯离子屏蔽了聚合物网络内的电荷,降低了网络内外的渗透压差,因而使溶胀能力明显降低。

3结论

水凝胶的溶胀度除了受环境条件(温度、pH值)的影响以外,还受自身结构、介质的离子强度的影响。同一的交联密度越大,溶胀度越小;对于配比不同的水凝胶而言,配比的影响取决于温度和选择交联剂用量的标准,所的用量以各组分为基准,温度大于LCST值,溶胀度随明胶含量的增加而增加,当温度小于LCST值,质量比IPAM=1/0、1/1、0/1的水凝胶有较高的溶胀度;当所加入的交联剂浓度不变时,无论温度在LCST上明胶含量的增加而增加。水凝胶的溶胀度随离子强度的增加呈现先增加后降低的现象。

参考文献

[1]SnowdenJ,VincenBConforanceControlinUndergrounrveirewithHighFormationTemperaturebyInjectingLan.Contg.ParticleswhichflocculateshrinkandHardenatrTemperature[P].GB2262117A.199305~20.

[2]吉静.[J].北京化工大学学报,2001,28(2):45~48.

[3]刘锋.[J].高分子通报,1995,(4):205~215.

[4]GwanK.[J].JApplPolymSci,1992,46:659~671.

[5]周啸.[J].高分子学报,1992,(1):75.

[6]HoffmanAS.[J].高分子通报,1995,4:246.

[7]HoffmanAS.[J].JControlRelease,1986,4(3):213~220.

[8]ChowdR.[J].Chem&Ind,1996,(7):530~534.

丙烯酰胺类聚合物合成方法研究进展_于涛

基金项目:黑龙江省自然科学基金重点项目(批准号:ZJ G0507)资助; *通讯联系人,于涛,男,教授,研究方向为驱油用聚合物和油田应用化学,E -mail :yutao915@https://www.sodocs.net/doc/3d16560000.html, ;丁伟,男,教授,研究方向为驱油用聚合物和油田应用化学,E -mail :din gwei40@https://www.sodocs.net/doc/3d16560000.html, . 丙烯酰胺类聚合物合成方法研究进展 于 涛*,李 钟,曲广淼,栾和鑫,杨 翠,童 维,丁 伟 * (大庆石油学院化学化工学院,大庆 163318) 摘要:丙烯酰胺类聚合物具有优异的增稠、絮凝、吸湿特性,是水溶性聚合物中重要的品种之一。本文从水 溶液聚合、分散聚合、反相悬浮聚合、反相微乳液聚合、胶束共聚合、双水相聚合、模板聚合、超临界CO 2中聚合、 离子液体中聚合和活性 可控自由基聚合等方面对丙烯酰胺类聚合物的合成方法研究作了全面的总结,同时简 要评述了各种合成方法的特点,认为反相微乳液聚合、离子液体中聚合及活性 可控自由基聚合等方法具备独 特的优势,并对丙烯酰胺类聚合物今后的发展前景作出了预测。 关键词:丙烯酰胺;丙烯酰胺类聚合物;聚合;合成方法 丙烯酰胺类聚合物是丙烯酰胺及其衍生物的均聚物和共聚物的统称[1]。丙烯酰胺类聚合物是一类 具有特殊功能的线形水溶性聚合物,已广泛应用于钻井驱油、水处理、造纸、纺织印染、冶金、土壤改良等诸多领域。分子量大小在很大程度上决定着产品的用途及功能,高分子量的聚丙烯酰胺(105~107)对许 多固体表面和溶解物质有着良好的粘附力,因而应用于增稠、絮凝、阻垢、采油及生物医学材料等领域;中等分子量的可用作造纸行业的纸张干燥剂;低分子量的则用作油墨分散剂。目前,超高分子量聚丙烯酰胺应用于三次采油时,可有效地提高原油采收率(E OR ),这已成为国内外许多油田保持高产稳产的重大技术措施之一[2]。目前,国内外在丙烯酰胺功能性单体、合成方法、引发方式等方面研究较多,本文详细综述了近年来丙烯酰胺类聚合物合成上的一些进展。 1 水溶液聚合(aqueous solution polymerization ) 水溶液聚合[3]是聚丙烯酰胺(PAM )生产历史最久的方法,该方法既安全又经济合理,是聚丙烯酰胺的主要生产技术。但水溶液聚合的产物固含量仅在8%~25%,且容易发生酰亚胺化反应,生成凝胶,产物的相对分子质量较小,在制成干粉过程中,高温烘干和剪切作用又易使高分子链降解和交联,使粉剂产品的溶解性、絮凝性等变差。为解决这些问题,研究人员对水溶液聚合进行了不断深入地研究,诸如引发 剂体系、介质pH 值、添加剂种类及用量、溶剂和聚合温度等对聚合反应特性及产品性能的影响等[4],开发 出了过渡金属化合物引发体系的水溶液聚合、双官能度引发体系的水溶液聚合、辐射聚合、沉淀聚合、等离子体引发的水溶液聚合等。 程杰成等[5] 经分子设计合成出一种双官能度引发剂,用于AM 聚合,得到分子量2600万左右的超高 相对分子质量的PAM 。据国外文献报道[6,7],以等离子体技术聚合的聚丙烯酰胺不但相对分子质量高(> 1000万),且无交联,得到的是高纯线型聚合物;国内的张卫华等[8]通过研究放电时间、放电功率、单体的初始浓度及溶液pH 值等对聚合反应的影响,制备了一系列高聚物,并且研究了等离子体引发丙烯酰胺水溶液聚合工业化的可行性。2 分散聚合(dispersion polymerization ) 分散聚合最初是由英国ICI 公司在20世纪70年代提出来的一种新聚合方法 [9],与其它聚合方法相·68·高 分 子 通 报2009年6月 DOI :10.14028/j .cn ki .1003-3726.2009.06.006

丙烯酰胺丙烯酸钠共聚物最新价格

丙烯酰胺丙烯酸钠共聚物最新价格。随着科技水平的发展,丙烯酰胺丙烯酸钠共聚物生产厂家也是多种多样,不同的生产厂家具有不同的生产技术、不同的质量,使得产品的价格也参差不齐。小编建议选择性价比高的产品,而非仅仅价格便宜的产品。 高分子化合物(又称高聚物)的分子比低分子有机化合物的分子大得多。一般有机化合物的相对分子质量不超过1000,而高分子化合物的相对分子质量可高达104~106万。由于高分子化合物的相对分子质量很大,所以在物理、化学和力学性能上与低分子化合物有很大差异。 高分子化合物的相对分子质量虽然很大,但组成并不复杂,它们的分子往往都是由特定的结构单元通过共价键多次重复连接而成。 同一种高分子化合物的分子链所含的链节数并不相同,所以高分子化合物实质上是由许多链节结构相同。

而聚合度不同的化合物所组成的混合物,其相对分子质量与聚合度都是平均值。 高分子化合物几乎无挥发性,常温下常以固态或液态存在。固态高聚物按其结构形态可分为晶态和非晶态。前者分子排列规整有序;而后者分子排列无规则。同一种高分子化合物可以兼具晶态和非晶态两种结构。大多数的合成树脂都是非晶态结构。 组成高分子链的原子之间是以共价键相结合的,高分子链一般具有链型和体型两种不同的形状。 当今世界上作为材料使用的大量高分子化合物,是以煤、石油、天然气等为起始原料制得低分子有机化合物,再经聚合反应而制成的。这些低分子化合物称为“单体”,由它们经聚合反应而生成的高分子化合物又称为高聚物。通常将聚合反应分为加成聚合和缩合聚合两类,简称加聚和缩聚。

台前县恒大化工有限公司位于河南省濮阳市台前县产业集聚工业园区,京九铁路濮台公路东邻,交通便利,位置优越。始创于1998年。目前我厂总资产逾5千万元人民币,占地45000平方米,厂房面积25000平方米,绿地面积6000平方米,员工200余人,其中高级工程师8名,中级职称人员20名。 本厂拥有先进的检测仪器和完整的化验室。拥有国内专业技术的自动化生产线五条(聚丙烯酰胺生产线一条、磺化酚醛树脂、褐煤树脂生产线一条、无荧光液体润滑剂生产线一条、水处理剂系列产品生产线一条、混凝土减水剂一条)配备了专业的计量物理化检验机构,技术力量雄厚,工艺设备先进、检测手段完善。 长期的市场调研使企业具有对市场变化的快速反应能力,并拥有一支高素质的员工队伍,率先导入TQM(全面质量管理)体系,使产品质量达到国际水平,目前公司已经通过了ISO9001国际质量体系认证。 公司主打产品:聚丙烯酰胺、磺化酚醛树脂、无荧光液体润滑剂、磺化沥青粉等钻井泥浆助剂系列产品,水处理剂系列产品有缓蚀阻垢剂、杀菌剂等。产品畅销全国各地,已与全国几大油田钻井企业建立长期合作关系,并以其质量及信誉远销伊拉克、吉尔吉斯斯坦等国家,深得用户好评。 同类型的产品比质量,同质量的产品比价格,同样的价格比服务。台前县恒大化工有限公司为您提供出厂的价格,高质量的产品,让您买的放心、用的安心。欢迎新老客户来电详询。 出师表 两汉:诸葛亮

聚N-异丙基丙烯酰胺的性质及其在药物控释系统中的应用

聚N-异丙基丙烯酰胺的性质及其在药物控释系统中的应用聚N-异丙基丙烯酰胺(PNIPAAm)线型聚合物在水溶液中具有独特的热行为,到某一温度时会发生相分离而产生沉淀,但降低温度时,它又可逆性地恢复到原来在低温下的状态。这一相变温度我们称之为最低临界溶解温度[或称为低相变温度——Low Critical Solution Temperature(LCST)]。 对PolyNIPAAm的研究始于1956年[ 1 ], 但当时这种聚合物并未引起太多的注意。自从Scarpa[ 2 ]于1967 年首次报道了PNIPAAm 水溶液在31 ℃具有LCST , PNIPAAm 才开始受到了广泛的关注。自Tanaka 等发现聚N-异丙基丙烯酰胺水凝胶PNIPAAm 水凝胶具有热敏现象并提出凝胶体积相变理论[ 3 ]以后,这种温敏水凝胶引起了人们极大的研究兴趣。 早期研究者的兴趣主要集中在LCST 转变的理论分析上, 20 世纪80 年代以后转向了PNIPAAm 的应用。智能型的水凝胶、微球、乳液、薄膜、分离膜、涂料等材料相继被制备出来, 且有关化学的、物理的、生物学上的特性得到了研究。利用PNIPAAm 分子链在L CS T 附近可逆性地伸展和卷曲的特点, PNIPAAm 可以设计成分子开关, 制成水凝胶膜或接枝于多孔膜上;利用其分子链亲水性疏水性的反转的性质, 可对溶质进行吸附、脱附, 用于酶、蛋白质等的富集和分离。 本文主要对PNIPAAm的相转变、性质及其在药物控释系统中的应用进行了综述。 1PNIPAAm 的LCST转变的理论分析 凝胶的膨胀度与凝胶的网络结构和溶剂的性质有关。凝胶的膨胀行为由下面几个因素决定: (1) 凝胶体系的混合自由能, (2) 高分子链的弹性压力, (3) 低分子离子产生的膨胀压力, (4)凝胶体系中特殊的相互作用力。当这些因素达到平衡时, 凝胶的膨胀呈平衡状态。一般说来,凝胶体积的变化与溶液的热力学性质成比例。可是在一定的条件下, 凝胶会因溶液性质的微小变化而引起极大的体积变化, 即所谓的凝胶的体积相变。根据Flory-Huggins 的理论, Tanaka 研究小组[ 4 ]推导了凝胶的膨胀平衡公式, 并给出了理论曲线, 如Fig. 1 所示。f 是每条高分子链带有的电荷数, 当高分子链不带电荷或只带少量电荷时, 凝胶的体积随着归一化温度S的变化作连续的变化。但高分子链上带有的电荷数增大时, 凝胶的体积随着归一化温度S的变化作不连续的变化, 发生了体积相变。1987 年

丙烯酰胺(AM)共聚物研究进展

丙烯酰胺(AM)共聚物研究进展 丙烯酰胺(AM)单体的均聚物或共聚物是一类重要的水溶性聚合物,因其具有絮凝、增稠和表面活性等性能,可广泛用于造纸、纺织、印染、水处理、选矿、油田化学等领域。尤其是通过引入具有特殊结构的AMPS单体,使聚合物的应用性能得到了进一步的提高,从而使水溶性聚合物的研究迈上了一个台阶. 1、聚丙烯酰胺 聚丙烯酰胺类包括聚丙烯酰胺、部分水解聚丙烯酰胺和阳离子聚丙烯酰胺,主要用作造纸、水处理、选矿和油田化学品,其中消耗量最大的是三次采油领域,有关资料表明,我国可大规模工业化的聚合物驱油以提高原油采收率的适宜地质储量有43.6×lO5kt,按平均提高采收率8.6%计,能增加可采储量达3.8×lO5kt,需要聚合物2.24×lO3kt.日前国内有50-60家企业生产聚丙烯酰胺,规模大小不等,其中规模较大的是焦作亿生化工厂,大庆油田化学助剂厂、广州化工部聚丙烯酰胺工程技术中心、江西农科化工有限公司、河北京冀油田化学公司和胜利长安实业公司,生产能力已超过60kt/a,基本能满足国内需要,但高质量的品种尚需从国外进口,故今后应把重点放在开发用于三次采油的高质量产品上(如提高产品的相对分子质量、耐温抗盐性和溶解性等)。两性离子聚丙烯酰胺也是今后发展的方向,目前焦作亿生化工正在新建年产万吨聚丙烯酰胺生产线,在200t/a的中试装置上已经生产出高相对分子质量的产品。 2、丙烯酰胺多元共聚物 由于丙烯酰胺均聚物在使用性能上的局限性,使得丙烯酰胺多元共聚物有了大的发展,该类共聚物在油田开发中有广泛的市场,仅作为钻井液处理剂的消耗量就近60kt/a,是20世纪80年代发展起来的一类重要的钻井液处理剂,目前有20多种型号近百种产品。 2、1 钻井液用丙烯酰胺类聚合物 20世纪70年代以来,丙烯酰胺类聚合物作为钻井液的絮凝和包被剂而在钻井液中广泛应用,并逐渐发展成为一种低固相不分散钻井液体系,从而有效地控制了地层的造浆,大大地提高了井壁稳定性,在提高钻井速度方面也收到了显著的效果。这类产品从最初的水解或部分水解聚丙烯酰胺,逐渐发展到大、中、小分子量的复配,不同官能团(钙、钠、铵盐)的衍生物或接枝共聚物。 2.2驱油用丙烯酰胺类聚合物 最早开发、也是最常用的聚合物是部分水解的聚丙烯酰胺,聚丙烯酰胺虽然在大多数油田条件下可有效地用于聚合物驱油,但是只局限于较低的硬度,因为酰胺基水解后产生羧酸根,而羧酸根可与油田中存在的钙、镁离子反应,使聚丙烯酞胺沉淀。为提高聚合物的热稳定性,常添加抗氧化稳定剂,如硫脲、连二亚硫酸钠、乙酸胍、亚硫酸钠、2-巯基苯并噻唑钠等,为减少酰胺基的水解,提高

N_异丙基丙烯酰胺高分子水凝胶研究进展_史海营

N -异丙基丙烯酰胺高分子水凝胶研究进展 史海营,李瑞霞,吴大诚 (四川大学纺织研究所,四川成都610065) [摘 要]N -异丙基丙烯酰胺基高分子水凝胶的研究进展做了综述。简要介绍了该类水凝胶的合成方法,重点分析了不同共聚单体及交联剂对水凝胶溶胀性能和环境响应性的影响,尤其是快速响应水凝胶的合成方法和N -异丙基丙烯酰胺/天然大分子水凝胶的特点。本文也简单介绍了该类水凝胶在不同领域内的应用。 [关键词]N -异丙基丙烯酰胺;高分子水凝胶;快速响应;天然大分子;应用 Advance in Polymeric Hydrogels Based on N -isopropylacrylamide Shi H aiying,Li Ruix ia,Wu Dacheng (Tex tile Resear ch Institute,Sichuan Univer sity,Chengdu 610065,China) Abstract:T he adv ance in po ly meric hydrog els based on N -iso pr opylacr ylamide w as rev iewed in this paper.T he pr epar ations,the influences o f monomers and cro ss -link ag ents o n the swelling pro per ties and env ir onment sensitiv ity behaviors fo r these hydro gels wer e intro duced br iefly.Especially ,the preparations of rapid -response hy dr og els and the r esear ch o f N -isopro py lacry lamide/natura-l polymers hydr ogels wer e emphasized.T he applica -tions o f the po ly mer ic hydro gels based o n N -iso pr opylacry lamide in different fields wer e summar ized simply. Keywords:N -iso pr opylacry lamide;polymer ic hydrog el;rapid response;nat ur al polymer ;applicatio n [收稿日期]2005-11-09 [基金项目]国家自然科学基金资助项目(50473050) [作者简介]史海营(1980-),男,山东人,硕士研究生,主要研究方向:高分子材料的结构与性能。 高分子水凝胶是水溶性高分子经适度交联形成伸缩性三维交联网络与水组成的多元体系,受到环境刺激的时候随之响应,是一种智能高分子材料。根据水凝胶对环境刺激响应的不同,可分为物理刺激响应水凝胶、化学刺激响应水凝胶和多重响应水凝胶[1-3]。正是由于高分子水凝胶环境刺激响应这一智能化功能,使得其在多个领域得以广泛的研究和应用[4]。其中尤为受到关注的是N -异丙基丙烯酰胺(NI PA )为主体的高分子水凝胶。自上世纪有学者[5,6]报道了聚N -异丙基丙烯酰胺(PN IPA )水凝胶的温度响应性和临界相变以后,对这类水凝胶展开了一系列广泛的研究工作,这方面的研究报道与日俱增。本文介绍了近年来国内外这一领域取得的研究进展,综述了合成方法,组分和结构与性能的关系,以及在不同领域内的应用。 1 合成方法的研究 有关PN IP A 高分子水凝胶的合成方法很多学者做了研究,也有相关的综述报道[7,8]。水凝胶的合成主要有传统的自由基聚合、互穿聚合物网络(IP N)等方法;以及制备快速响应水凝胶的改进方法。 1.1自由基聚合法 自由基聚合成N IPA 水凝胶是比较常用的方法,可选择不同的方法引发自由基聚合,主要有引发剂引发和射线辐射引发。引发剂按照分解方式主要分为氧化还原分解和热分解两类[9]。氧化还原引发是通过引入氧化还原反应来引发体系的聚合和交联。最常用的氧化还原引发剂是过硫酸钾(AP S) 和四甲基乙二胺(T EM ED),也有学者用A PS 与亚硫酸氢钠(SBS)做为氧化还原引发剂[10-13]。用作合成N IPA 共聚水凝胶的热分解引发剂主要是偶氮二异丁腈(A IBN )[14-17]。 引发剂引发自由基聚合虽然简便易行,但水凝胶中残存的引发剂和交联剂会影响水凝胶的性质和应用。而且引发剂反应产生的热量对NI PA 水凝胶的聚合也有较大的影响[18]。为了消除这种影响,可以采用C -射线辐射引发聚合的方法合成P NI PA 水凝胶[19-21]。辐射引发聚合的方法可以通过改变辐射剂量控制交联度,易于操作;不需要引发剂和交联剂,不污染产品;合成的凝胶更均匀。这些优点有利于水凝胶在要求较高的药物控释、生物分离技术及生物医学领域的应用。 1.2IPN 法 IPN 是指将两个化学组成不同的组分分别形成各自独立的 # 8# 广 东 化 工w w w.g https://www.sodocs.net/doc/3d16560000.html, 2006年第1期 第33卷总第153期

热敏性聚(N-异丙基丙烯酰胺)类材料的研究

热敏性聚(N-异丙基丙烯酰胺)类材料的研究 热敏性聚(N-异丙基丙烯酰胺)(PNIPAAm)类高分子材料属于智能高分子材料。1967年Scarpa首次报道了PNIPAAm水溶液在31℃具有最低临界溶液温度(LCST)后,PNIPAAm引起了科学工作者的广泛关注。PNIPAAm的大分子链上同时具有亲水性的酰氨基和疏水性的异丙基,使线型PNIPAAm的水溶液,以及交联后的PNIPAAm水凝胶都呈现出温度敏感特性。当溶液体系的温度升高到30℃-35℃之间时,溶液发生相分离,表现出最低临界溶液温度(LCST)。利用PNIPAAm在LCST附近发生可逆相转变的特性,可以将PNIPAAm设计成分子开关,制备多种智能高分子材料。这些高分子材料在生物医学、免疫分析、催化、分离提纯等领域都有广泛的应用。 4.1生物医学工程中的应用 近年来,国内外的研究学者对PNIPAAm聚合物及其水凝胶,在生物医学工程领域中的应用做了许多研究工作,并发现了PNIPAAm许多新的性质[76-78]。4.1.1药物控制释放 利用PNIPAAm的热敏性进行药物控制释放,研究的热点主要是PNIPAAm水凝胶和PNIPAAm纳米粒子体系。国内著名学者卓仁禧教授对PNIPAAm热敏性水凝胶的相转变理论和应用都做了许多研究工作[79-82]。 PNIPAAm对药物进行控制释放有下面三种情况:①在PNIPAAm水凝胶体系中,当体系温度在LCST以上时,水凝胶的表面会发生收缩,导致表面的水化层收缩,形成薄的致密皮层。这种致密的皮层阻止了PNIPAAm水凝胶内水分和药物向外释放;体系温度低于LCST时,水凝胶表面皮层溶胀,此时药物可以从体系中释放。②在以PNIPAAm分子链接枝的聚合物微球体系中,当体系温度在LCST以下时,PNIPAAm的接枝链会在水中伸展,彼此之间交叉覆盖,导致微球孔洞的阻塞,包裹在微球内的药物扩散释放受阻;体系温度在LCST以上时,接枝的大分子链会进行自身收缩,微球表面的孔洞会显现出来,药物可以顺利的扩散到水中,达到控制释放目的。③在低温条件下,将制得的PNIPAAm水凝胶溶于药物溶液中,通过凝胶溶胀吸附药物。高温条件下,凝胶体系发生体积收缩,药物会以向外排出的方式控制药物释放。

N-异丙基丙烯酰胺丙烯酸胆甾醇酯共聚物地地研究

N-异丙基丙烯酰胺/丙烯酸胆甾醇酯共聚物研究 曾宏波李耀邦张昊宇王晓工 (清华大学材料科学与工程研究院化工系高分子研究所北京100084) 两亲性聚合物在同一分子链中包含亲水和亲脂结构单元,具有独特的水溶液行为,在很多领域得到了广泛应用.两亲性聚合物通过水溶液的选择性溶解效应,一定条件下可以聚集成具有较窄粒径分布的聚合物胶束.胶束的典型特征是其核壳结构,亲脂单元由于疏水作用在水溶液中自组装成胶束的内核,亲水链段则包围在内核的周围形成一个较为舒展的壳层[1].由于两亲性聚合物胶束内核有较高的药物包埋能力,胶束在体内选择性分布的特点,近年来其在靶向药物传递和药物缓释领域的应用备受关注[1].携带药物的聚合物胶束在体内分布主要是由其胶束尺寸和表面(壳层)性质决定的,而受到包埋在胶束内核的药物性质的影响较少.因此,胶束壳层性质和胶束尺寸设计是聚合物胶束药物传递体系实现有效控制的关键因素.溶液中聚合物胶束内核形成的直接动力是包括疏水聚集作用,金属络合、电荷作用,及氢键作用等相互作用也会有一定的影响[2].一般而言,疏水性内核应具有生物降解性.一些非生物降解性的聚合物(如聚甲基丙烯酸甲酯[3]、聚苯乙烯[4,5])目前也用于此领域的应用研究,但这些聚合物必须无毒,其分子量较低,能够被体内正常代谢排出.聚合物胶束的壳层一般不要求生物降解性,但要具有生物相容性,如聚氧化乙烯等.近年来,具有热敏性或者pH敏感性的聚合物如聚(N异丙基丙烯酰胺)(PNIPAM)[6~8]和聚丙烯酸[9]等也被用来制备刺激响应性的壳层结构.PNIPAM在其大分子链上同时具有亲水的酰胺基团和疏水的异丙基,使得PNIPAM呈现出温度敏感性.在常温下,PNIPAM溶于水中形成均匀的溶液,当温度升高至32℃左右时,溶液发生相分离.相变点的温度定义为最低临界溶液温度(LCST).PNIPAM在LCST附近的相转变是一种温度敏感的可逆变化,所以可以利用此温度敏感效应来控制包埋在胶束内部的药物释放.胆甾醇是一种具有生物相容性但很疏水的化合物,胆甾醇类化合物在血液中主要是以载脂蛋白(Lipoprotein)的形式存在,血液中的载脂蛋白可以简单地看成由胆甾醇、胆甾醇羧酸酯、甘油三酯以及蛋白质等多种有机分子的“共聚集体”,胆甾醇和胆甾醇羧酸酯在各种载脂蛋白中的迁移、运动等行为和疏水亲脂作用密切相关[10].因此胆甾醇酯类是一种理想的聚合物胶束药物载体核层材料. 关于丙烯酸胆甾醇酯疏水化修饰聚异丙基丙烯酰胺已有文献提及[11],但只报道了在一种投料比下合成的P(NIPAMcoCHA)共聚物,未对聚合物结构(如共聚物组成比等)、聚合物性能和溶液行为等进行系统表征和深入研究.本文以N异丙基丙烯酰胺(NIPAM)为温敏结构单元,丙烯酸胆甾醇酯(CHA)为疏水结构单元,合成了一系列不同PNIPAMCHA摩尔组成比的无规两亲性共聚物.利用浊度法、荧光探针法、表面张力法等对上述两亲性共聚物的最低临界溶解温度(LCST)和胶束形成能力等进行了系统的研究,并探索这类温度敏感性聚合物胶束在药物控制释放中应用的可能性. 1 实验部分 1.1 主要原料及仪器表征 胆甾醇,天津市化学试剂公司,生物试剂.N异丙基丙烯酰胺,自制.1,4 二氧六环,北京化工厂,分析纯,减压蒸馏提纯.四氢呋喃,北京化工厂,分析纯.偶氮二异丁腈(AIBN),无水乙醇重结晶提纯.石油醚,北京化工厂,分析纯.红外光谱分析采用Nicolet560 IR傅立叶红外光谱仪;浊度分析采用PerkinElmerLambdaBio40紫外可见光谱仪;1HNMR测定采用BrukerAM500核磁共振仪;胶束和分布测定采用激光粒度分析仪Zetasizer3000HS(MalvernInstrumentsLtd,UK);溶液表面张力测定采用OCA20视频光学接触角测量仪(DataphysicsInstrumentsLtd,Germany).荧光探针分析采用F4500荧光光谱仪(HitachiHghTechnologiesCorporation,Tokyo,Japan);共聚物的分子量的测定是采用Waters150C型凝胶渗透色谱仪,以窄分布的聚苯乙烯试样为标准,四氢呋喃为淋洗液. 1.2 单体和聚合物的合成 1.2.1 丙烯酸胆甾醇酯 将12.12g(0 0314mol)胆甾醇和8mL丙烯酰氯(过量)溶解在50mL无水苯中,加入少量对苯二酚作阻聚剂,加热回流反应7h.将反应液溶于70mL乙醚,依次用饱和Na2CO3溶液,10%HCl溶液,饱和NaCl溶液洗涤;分液收集有机相,无水MgSO4干燥过夜.旋转蒸发大部分溶剂,将浓缩后的溶液再溶于一定量的无水乙醚中,加入大量无水乙醇沉淀,得白色粉末状固体,收率为78.2%.产物经过红外光谱和核磁共振测定,证实其结构符合丙烯酸胆甾醇酯[12]. 1.2.2 NIPAMCHA共聚物

N-异丙基丙烯酰胺合成的改进

N-异丙基丙烯酰胺合成的改进 吴恒1,杨慧2,李毅3,丁洪4,任科5 (四川大学华西药学院,成都,610041) 摘要:合成热敏性水凝胶聚N-异丙基丙烯酰胺(PNIPAAM)的重要单体---N- 异丙基丙烯酰胺(NIPAAM),并测定其物理性质,合成产率 以丙烯酸计为79.9% 关键词:N-异丙基丙烯酰胺合成改进 ABSTRACT: This paper describes the synthesis of N -isopropylacrylamide (NIPAAm), which is an important monomer of the thermosensitive hydrogel ---poly(N-isopropyl acrylamide) (PNIPAAm). The important monomer was identified by its physic property.And a79.9%yield of NIPAAm(from isopropylacryl acid) was obtained. KEY WORD:N–isopropylacrylamide, synthesis,improvement 1 前言 作为单体, N取代丙烯酰胺在高分子聚合与其他化工行业中发挥着重要的作用,特别是近年来发现N异丙基丙烯酰胺的聚合物所表现出的

温度敏感性,即LCST(lower critical solution temperature) 现象[1],更是引人注目。对于线性聚异丙基丙烯酰胺,其临界温度为32 ℃,当温度低于该值时,聚合物溶于水呈透明态,而温度升高到该值时,聚合物发生迅速相变,溶液呈浑浊状。同样,对于凝胶型该聚合物,也存在一转变温度,当温度低于该值时凝胶在水中呈溶胀态,而温度到达其临界温度时凝胶迅速收缩。这种LCST 现象在其他聚合物中也有发生[2],但最经典的仍是异丙基丙烯酰胺的聚合物体系,与此有关的研究非常丰富[3]。另一方面,温度敏感型聚合物因其独特的行为,被认为在许多领域有很好的应用前景,如利用其凝胶的低温溶胀与收缩的可逆行为,可分离与浓缩生物活性物质(蛋白质等) [4],利用其临界温度的透明与浑浊可逆行为来制造温敏薄膜、玻璃或显示器件[5]等。另外在生物、医药、环保等领域都有广泛的应用前景[6]。故而寻求 合适的方法来合成该聚合物的单体是一项同样重要的工作。近几年来关于NIPAAm的均(共)聚物和水凝胶的研究越来越多,对这种热敏性的应用也越来越广,可用于制作温度敏感性能的功能膜、温度控制凝胶的渗透色谱、液相色谱的填料、合成模拟生物活性的纤维蛋白胶原、易用冷水除去的皮肤粘附带、细胞培养支持材料、伤口贴、温度敏感的增稠剂、防染剂、电阻墨水、电泳母体、化妆品、用作涂层、包装和生物医用材料等。 正是由于这些广泛的用途,降低合成NIPAAm的成本的意义就尤为重要了。据文献报道,常用于合成N取代丙烯酰胺的方法大体有以下4 种: (1) 不饱和酸与胺反应或不饱和酰氯与胺反应[7]; ( 2 ) Beckmann

明胶-异丙基丙烯酰胺水凝胶的溶胀性

明胶-异丙基丙烯酰胺水凝胶的溶胀性 吉静,黄明智(北京化工大学材料科学与工程学院,北京100029) 高分子凝胶是由具有网状结构的聚合物和溶剂组成的。交联高聚物的溶胀过程实际上是两种相反趋势的平衡过程,溶剂试图渗透到网络内部,使体积溶胀导致三维分子网络的伸展,交联点之间的分子链的伸展降低了它的构象熵值,分子网络的弹性收缩力,力图使网络收缩。当两种相反的倾向互相抵消时,达到溶胀平衡。高分子凝胶的溶胀特性与溶质和溶剂的性质、温度及网络交联结构有关。它们的定量关系可用Flory-Huggins渗透压说明。带电的PNIPAM微凝胶因其在LCST上下分散状态的不同,可用于石油储罐中的原油回收[1]。将PNIPAM与明胶(geltin)结合制成的水凝胶不仅具有温度敏感性,明胶的两性带电,使其更具有pH敏感性[2],有望应用在更复杂的环境中。水凝胶的一个重要性质是平衡溶胀度,如分散状态、可控的释药方式可以通过水凝胶的溶胀度控制。因此,可借助高分子网络凝胶结构、形态的微观控制,来影响其宏观的溶胀度。由于水凝胶在生物医药、分离工程、石油化工等多项领域的应用[6~8],与其溶胀度的大小、变化有密切的关系,而影响水凝胶溶胀度的因素是多方面的,了解这些因素对水凝胶溶胀度的影响,可为更好地应用水凝胶提供理论指导。尽管有关PNIPAM的研究很多[3~5],但还未见这一领域结合天然高分子明胶的研究。因此,本实验的主要目的是研究影响明胶-PNIPAM水凝胶平衡溶胀度的因素。 1实验部分 1 .1材料 N-异丙基丙烯酰胺(NIPAM),化学纯;明胶,K-911216,开平明胶厂;过硫酸铵(APS),AR级,北京化学试剂三厂;N,N,N,N-四甲基乙二胺(TEMED),CP级,北京化学试剂三厂;N,N-亚甲基双丙烯酰胺(BIS),AR级,北京化学试剂公司;戊二醛溶液(GLA,质量分数25%),CP级,北京华博源科技开发中心。 1.2水凝胶的制备 将明胶、N-异丙基丙烯酰胺、TEMED、BIS溶解于去离子水中,待完全溶解后,加入APS,同时通入氮气;再加入GLA,或BIS,或BIS和GLA,并快速搅拌均匀,室温下静置2h,分别制成geltinx-PNIPAM,geltin-PNIPAMx,geltinx-PNIPAMx3种交联结构的水凝胶。将以上制备的水凝胶,置于去离子水中浸泡48h后取出,再放入40℃的去离子水中浸泡,浸泡过程不断换水,将此过程反复数次。将已处理好的水凝胶切成大小约0.7cm×0.7cm×0 25cm的小块,放入真空干燥箱中,干燥至恒重,称取干胶质量,留做溶胀实验。 1. 3溶胀度的测定 将上述制备的试样放入规定pH值、规定温度的缓冲溶液中,达溶胀平衡后取出称量湿胶质量。按下列公式计算溶胀度: 溶胀度=(mW-md)/md 式中,mW为达溶胀平衡后的湿胶质量,g;md为干胶质量,g。 2结果与讨论 2. 1明胶/PNIPAM配比对水凝胶溶胀度的影响 水凝胶是由明胶和PNIPAM大分子组成的互穿网络结构,温度对这两种大分子在水中溶胀的影响作用不同。对于明胶大分子来说,温度升高,破坏了明胶的氢键,利于明胶的溶胀。但温度达到32℃(PNIPAM的LCST值)以上时,由于PNIPAM大分子转向疏水性,导致分子收缩。所以,对于明胶-PNIPAM水凝胶而言,明胶/PNIPAM配比对水凝胶的平衡溶胀度有明显的影响且这种影响与温度有关。首先,为了排除离子对溶胀度的影响,在去离子水中,于不同的温度条件下,研究水凝胶中明胶质量分数对溶胀度的影响,见图1(交联剂加入量以各组分为基准,质量分数分别为2%)。

相关主题