搜档网
当前位置:搜档网 › 防止引风机失速控制措施(修订)

防止引风机失速控制措施(修订)

防止引风机失速控制措施(修订)
防止引风机失速控制措施(修订)

防止引风机失速的控制措施(修订)

1、机组升负荷至550MW以上过程中,提前汇报值长同意,设置升负荷率不大于5MW/min,尽可能提前设大总风量负偏置,以控制因风量的大幅度增加而导致引风机入口负压的进一步增大。

2、当引风机入口负压超过-6.0Kpa时解除引风自动,手动调节控制炉膛负压。如果不能保持炉膛负压,则先暂时停止增加负荷,减小总风量和一次风量。

3、负荷在600MW及以上时控制省煤器出口氧量在1.5-2%左右,保持低氧量运行,在确保引风机入口负压不超过-6.4Kpa时,再适当增加风量。

4、控制一次风母管压力在7.5—8.0Kpa,调节磨煤机出口一次风温在110℃(F磨可控制在100℃),减少冷一次风量。在保证磨煤机出力的前提下,控制一次风速,以尽量减小一次风量。

5、控制两台引风机出力偏差不超过50A。

6、严格执行锅炉吹灰管理制度,机组负荷580MW以上停止炉膛吹灰,避免高负荷引起炉膛负压波动。(吹灰工作可顺延至下个班)

7、控制引风机电流不得超过580A,以避免风机运行点进入气流高脉动区。附:造成引风机失速的原因、现象及处理

一、失速的过程

1、失速产生的机理

风机处于正常工况时,冲角很小(气流方向与叶片叶弦的夹角即为冲角),气流绕过机翼型叶片而保持流线状态,如图1(a)所示。当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1(b)所示。冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。

图1

风机的叶片在加工及安装过程中由于各种原因使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。如图2中,u是对应叶片上某点的周向速度,w是气流对叶片的相对速度,α为冲角。假设叶片2和3间的叶道23首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道12和34,从而改变了原来的气流方向,使流入叶道12的气流冲角减小,而流入叶道34的冲角增大。可见,分流结果使叶道12绕流情况有所改善,失速的可能性减小,甚至消失;而叶道34内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。这种现象继续进行下去,使失速所造成的堵塞区沿着与叶轮旋转相反的方向推进,即产生所谓的“旋转失速”现象。风机进入到不稳定工况区运行,叶轮内将产生一个到数个旋转失速区。叶片每经过一次失速区就会受到一次激振力的作

用,从而可使叶片产生共振。此时,叶片的动应力增加,致使叶片断裂,造成重大设备损坏事故。

图2

2、影响冲角大小的因素

由于风机一般是定转速运行的,即叶片周向速度u是一定值,这样影响叶片冲角大小的因素就是气流速度与叶片开度角。如图2所示,可以看出:当叶片开度角β一定时,如果气流速度c越小时,冲角α就越大,产生失速的可能性也就越大。从图2还可以看出,当流速C一定时,如果叶片角度β减小,则冲角α也减小;当流速C很小时,只要叶片角度β很小,则冲角α也很小。因此,当风机刚启动或低负荷运行时,风机失速的可能性大大减小甚至消失。对于动叶可调风机,当风机发生失速时,关小失速风机的动叶,可以减小气流的冲角,从而使风机逐步摆脱失速状态。

二、引风机发生失速的现象

1、发生失速时引风机进口压力出现大幅波动

2、炉膛压力波动加剧;

3、在自动投入的情况下,引风机动叶开度会自动增加;

4、发生失速的引风机动叶开度增加而电流下降,未失速引风机动叶开度和电流同时增加;

5、发生失速的引风机振动上升;

6、就地检查失速引风机有异常声音,外壳温度上升,振动加剧。

三、引风机失速的原因

1、两台并列运行的引风机调节特性相差过大,在一些负荷段导致两台引风机出力不平衡。

2、引风机进口烟气通道阻力发生变化,引风机入口负压过大,导致烟气流量、流速与动叶开度不对应,冲角发生较大变化。

3、引风机进出口挡板突然关闭或部分关闭,烟气流动特性发生较大改变。

四、预防与处理

1、正常运行中,尽量保持两台引风机电流和风量平衡,发现偏差变大后及时调整。

2、严密监视炉膛至引风机入口各压力的变化,通过压差判断锅炉尾部烟道、脱硝反应器、空预器、电袋除尘器积灰堵塞,进行针对性的增加吹灰。

3、若引风机失速发生在高负荷时,应降低机组负荷。

4、降低升负荷速率,减缓风量的大幅度变化而引起的烟气量变化。

5、发生失速时,应立即降低失速引风机的出力至失速消失。

一次风机失速现象原因分析及处理措施

一次风机失速现象原因分析及处理措施 [摘要]本文对轴流式风机失速的机理进行了较为详细的探讨,阐述了实际运行中产生失速的原因,介绍了河北大唐王滩发电厂#1、#2机组锅炉一次风机的失速特性、失速原因,并从运行管理的角度提出了失速的相关预防措施和紧急处理方案。 [关键词]冲角;失速特性;现象;处理措施 风机的失速现象主要发生于轴流式风机。而一般情况下,大型火电机组锅炉的三大风机均为轴流式风机,失速时常常会引起振动,严重时威胁到机组的安全运行。河北大唐王滩发电厂#1、#2机组锅炉的吸风机为静叶可调轴流风机,送风机及一次风机为动叶可调式轴流风机,下面对风机在运行过程中的失速问题作简要分析。 1 失速产生的机理 1.1 失速的过程及现象 轴流风机的叶片均为机翼型叶片。风机处于正常工况时,叶片的冲角很小(气流方向与叶片叶弦的夹角即为冲角),气流绕过机翼型叶片而保持流线状态,如图1(a)所示。当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1(b)所示。冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。 风机的叶片在加工及安装过程中由于各种原因使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。如图2中,u是对应叶片上某点的周向速度,w是气流对叶片的相对速度,α为冲角。假设叶片2和3间的叶道23首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道12和34,从而改变了原来的气流方向,使流入叶道12的气流冲角减小,而流入叶道34的冲角增大。可见,分流结果使叶道12绕流情况有所改善,失速的可能性减小,甚至消失;而叶道34内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。这种现象继续进行下去,使失速所造成的堵塞区沿着与叶轮旋转相反的方向推进,即产生所谓的“旋转失速”现象。风机进入到不稳定工况区运行,叶轮内将产生一个到数个旋转失速区。叶片每经过一次失速区就会受到一次激振力的作用,从而可使叶片产生共振。此时,叶片的动应力增加,致使叶片断裂,造成重大设备损坏事故。 1.2 影响冲角大小的因素 王滩电厂的一次、送、吸风机都是定转速运行的,即叶片周向速度u是一定

引风机油站说明书

1、概述及用途 XYZD类稀油润滑设备是指与重型机械行业JB/ZQ/T4147-1991 标准规定的XYZ系列(电加热)稀油站具有相同系统原理图和功能的一类稀油润滑设备的总称,不论其结构形式如何,它们都符合本使用说明书。 XYZD类稀油站润滑设备是循环供送稀油润滑介质的设备,该设备将介质供送到设备的润滑点(具有相对运动的摩擦副),对润滑点进行润滑和冷却后,再返回到该设备的油箱进行下一个循环。该设备主要用于冶金、矿山、建材、石化等成套机械设备中,同时,也适用于其它具有类似工况的机械设备。 2、技术参数 2.1基本条件 XYZD类稀油润滑设备,当使用齿轮泵时,工作介质粘度等级为N22~N220,当使用螺杆泵时,工作介质粘度等级为N22~N680,甚至更大;冷却水温度应不超过30℃,冷却水压力0.2~0.4MPa,冷却器冷却能力是当今油温度为50℃时,润滑油的温降不小于8℃(当油品粘度大于N460时,冷却器的冷却面积要比标准选的大)。 2.2技术参数 型号公称流量 L/min 公称压力 MPa 介质温 度℃ 油箱容积L 过滤精度mm XYZ-16 16 0.4 40±5 630 0.025 出油口DN mm 回油口DN mm 进水口DN mm 出水口DN mm 冷却面积 ㎡ 冷却水耗量 m3/h 电动机 型号/KW 20C×2 50 25 25 6 1.8 Ypol-4/1.5 电加热 V/KW 220/2×3

3、设备组成及工作原理 3.1设备组成 XYZD 类稀油润滑系统主要由油箱、电加热器、两台定量油泵装置、双筒过滤器、油冷却器、回油磁(栅)网过滤装置、功能性阀门(单向阀、安全阀、开关阀门)及管道、控制元件(压力控制器、差压控制器、温度控制器、液位控制器)、显示仪表(压力表、温度表、液位计)、电控柜等组成。 3.2工作原理 工作时,一台定量泵(另一台备用)从油箱吸入油液,吸入的油液由定量泵进行增压后,经单向阀、双筒过滤器(一侧工作,一侧备用),有冷却器功能性阀门和管道被送到设备的润滑点,油液对润滑点进行润滑和冷却后,沿着系统的回油总管进入油箱,油液在邮箱内经回油磁(栅)网过滤装置过滤后进行下一次循环。 3.3元件功能 3.3.1油箱 油箱主要功能是蓄油,还兼做散热和沉淀油液中的杂质 3.3.2加热器 加热器的功能是对油箱中的油液进行加热,当油箱中油液的温度低于下限设定值时,电加热器自动进行加热,当油箱中油液的温度达到正常设定值时,电加热器自动停止。 3.3.3两台油泵装置 稀油润滑设备具有两台油泵装置(互为备用),一台工作、一台备用,当系统压力低于下限设定值时,备用油泵自动投入工作,当达到正常设定值时,备用

防止交通事故控制措施

防止交通事故控制措施 为有效预防各类交通事故的发生,保证车辆的正常使用,特制定防止交通事故控制措施。 一、驾驶员的管理 1、驾驶员必须是持有公安部门颁发的有效机动车辆驾驶证件,且在公司车辆管理人员登记注册并获批准的专职和兼职驾驶员。 2、驾驶员要牢固树立“安全第一”的思想,自觉遵章守纪,遵守各项交通法规,坚持文明开车。 4、驾驶人员必须持有公司准驾证,并服从生产用车安排。 5、禁止饮酒,禁止酒后驾车,车上全部人员必须系安全带,确保行车安全。 6、驾驶员在夜间、山路及雨、雾、雪等各种复杂气象条件下行驶,要做好相应安全措施和事故预想。 7、对驾驶员违反交通管理规定,造成交通事故,除依照省、市有关法规处罚外,同时按本企业制度严肃处理。 8、驾驶员酒后驾驶机动车辆的、把机动车交给无证人员驾驶或未经领导批准擅自外借他人驾驶的,外聘人员立即辞退,公司内部人员视情节给予行政处分,并处以相应经济处罚。 9、由于工作需要,兼职驾驶员需超越准驾区域驾驶部门车辆的,须经部门主任同意,公司主管理领导批准后,方可驾驶公司车辆。 10、对于未经批准,擅自超越准驾区域驾驶公司车辆的兼职驾驶员,公司将取消其“准驾证”资格,并考核其月奖500元/次,且公司不承担由此所产生的一切后果。 二、机动车辆的管理与保养 1、加强对车辆状况的检查,并做好记录,发现问题及时处理。 2、保持车容整洁,各种车辆应在指定地点停放。车辆驶回后应停放在风电场指定场所,并将车门锁好。 3、驾驶人员应爱惜风电场车辆,平时要注意车辆的保养,经常检查车辆的主要机件。每月至少用半天时间对自己所开车辆进行检修,确保车辆正常行驶。 4、驾驶人员应每天抽适当时间擦洗自己所开车辆,以保持车辆的清洁(包括车内、车外和引擎的清洁)。

1000MW机组引风机失速原因分析及防范措施

1000MW机组引风机失速原因分析及防范措施 发表时间:2019-04-11T16:40:11.970Z 来源:《电力设备》2018年第30期作者:吴鹏刘敏 [导读] 摘要:电厂1000MW机组引风机发生失速现象、事故处理过程及原因,查找风机重要参数曲线,提出事故预想防范措施,提出保障机组风机安全运行的合理建议。 (国电浙能宁东发电有限公司宁夏银川市 753000) 摘要:电厂1000MW机组引风机发生失速现象、事故处理过程及原因,查找风机重要参数曲线,提出事故预想防范措施,提出保障机组风机安全运行的合理建议。 关键词:引风机;失速;事故处理;防范措施 某电厂3号机组2台引风机为成都电力机械厂的AP系列动叶可调轴流式通风机(HU27448-222G),针对该厂3号机组引风机A失速异常现象,通过查找引风机重要参数曲线,对事故处理过程及原因进行分析,对保障机组风机安全运行提出了防范措施,对国内同类型 1000MW机组引风机异常处理具有良好的借鉴意义。 1事故经过 2018年1月7日0∶18∶38,3号机升负荷至998MW,之后3号机组处于满负荷稳定过程,引风机动叶处于自动调节,炉膛负压约为-92Pa,此时A动叶开至最大为93%,电流为761.52A,B动叶开至90%,电流为796.6A,相差最大约为35A,且A动叶执行机构开至最大为93%。 1∶32∶18,引风机A动叶开至最大93%,电流为755.88A,B动叶开至93%,电流为839.56A,电流相差最大约为75A,且还有电流偏差增大的趋势。 1∶38∶23,引风机A失速报警发出。运行监盘人员发现引风机A电流由757.24A突降至541.39A,最大幅度达到210A。引风机B电流由846.12A突降至823.25A,电流仅降25A。送风机A从166.74A升至167.85A(最大升幅为1.1A),送风机B从161.49A升至162.37A(最大升幅为1.1A),送风机电流几乎无异常波动。 2引风机失速原因 2.1轴流风机失速 轴流风机性能曲线的左半部有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现不正常的空气动力工况则是旋转脱流或称旋转失速。这两种不正常工况是不同的,但是它们又有一定的关系。在其它因素都不变的情况下,轴流风机叶片前后的压差大小决定于动叶冲角的大小,在临界冲角值以内,上述压差大致与叶片的冲角成正比,不同的叶片叶型有不同的临界冲角值。翼型的冲角超过临界值时,气流会离开叶片凸面发生边界层分离现象,产生大面积的涡流,此时风机的全压下降,这种情况称为“失速现象”。 2.2风机失速的危害 对风机本身而言,若在失速区域长时间运行,将导致叶片断裂,且叶轮的机械部件也可能损坏。英国HOWDEN公司有明确规定:风机在失速区内累积运行时间不能超过15h,否则要更换叶片。对机组而言,若风机发生失速,造成风机跳闸,将直接联锁单侧通风组停止,机组减负荷;间接地引起炉膛正压或负压超限,锅炉发生MFT,联锁机组跳闸。因此,轴流风机运行中必须防止其发生失速。 2.3引风机失速现象 (1)负荷低于450MW运行时,在相同静叶开度情况下,两台引风机电流基本一致,风烟系统抗干扰能力较强,引风机自动调节可以正常投运。 (2)负荷高于450MW运行时,在相同静叶开度情况下,A引风机电流略高于B引风机,负荷越高偏差越大。 (3)450MW以上高负荷工况下,当B引风机电流高于A引风机运行时,A引风机易出现失速,同时B引风机出现明显抢风现象。600MW 工况失速时,A引风机电流由约240A陡降至约170A,而B引风机电流也由约240A陡升至约275A,炉膛负压剧烈波动,引风机自动调节退出。 3引风机失速后的处理方法 (1)当风机失速时,首先解列炉膛负压自动,控制另一台风机电流、振动和炉膛负压在规定范围内。 (2)为防止炉膛压力过高或风机电流过大,必要时可适当降低机组负荷和送风量,以防止风机掉闸和锅炉灭火。 (3)根据当前烟气流量和风机出入口差压,采取降低未失速风机出力、适当抬高炉膛压力和降低引风机出口压力等措施,判断能否将风机比压能降至水平失速线下。因为水平失速线全压升约2.08kPa,因此,未失速风机入口压力在3.0kPa以下,方便直接进行2台引风机的出力调整,否则,必须通过采取加强布袋除尘器清灰、投入检修布袋通道等方法来消除烟道异常阻力以及降低烟气量。 (4)在风机失速情况下的紧急清灰过程中,应尽量维持较低的炉膛压力、较高的引风机出口压力和较低的烟气流量,以提高清灰效果,同时加强清灰设备的检查消缺工作。 (5)在进行引风机调整时,在满足炉膛压力不超过1000Pa的条件下,可将2台风机转速调整一致,然后逐步关小失速风机静叶,同时关小另一台风机静叶,保持2台风机静叶开度基本一致,以防交替失速抢风。在失速现象消除时,风机调节装置开度与相同负荷下的烟气量基本匹配,以防止炉膛负压剧烈波动。将未失速风机工作点拉至失速线以下才能使失速风机并列出风,此时炉膛压力必然显示冒正,使布袋清灰效果下降,因此,必须尽量缩短风机并列过程。 (6)风机并列后,先观察布袋差压变化情况和失速裕量是否满足提升风机出力要求。然后根据情况逐步调整炉膛负压至正常范围,若并列过程时间较长且布袋差压明显增加时,必须在增加引风机出力的同时适当增加送风量,以保证足够的失速裕量,从而防止再次发生失速抢风。 4防范措施 为解决机组运行中引风机出现的失速现象,必须使风机的实际运行工作点远离理论失速界限,为此提出相应的解决措施如下。

汽动引风机相关控制策略说明3讲义

汽动引风机相关控制策略说明 一、控制任务分工 1、炉膛负压控制系统对炉膛负压进行闭环控制,输出汽动引风机的转速指 令,或者电动引风机C静叶的开度指令。 2、汽动引风机调节系统对转速进行闭环控制,输出汽动引风机的调门开度 指令。 3、当排汽温度超过380℃,开启低温再热供汽温度调节阀_0LBC67AA101, 降低引风机小机进汽温度,维持引风机小机排汽温度不大于365℃。 4、背压机的旁路压力控制阀和减温水阀,启动前对背压机的排汽母管进行 暖管。两路的旁路宜同步开启,也可选择任一路单独开启。 5、背压机排汽到辅汽调节阀、背压机排汽到除氧器主/副调节阀,用于控制 背压机排汽母管压力。为减少系统调节互相扰动,背压机排汽到辅汽调 节阀应该保持全开。背压机排汽到除氧器回路,小流量下使用副调节阀。 6、冷再到辅汽调节阀,补充辅汽对外供热的消耗,维持辅汽压力稳定。 7、背压机排汽口的PCV阀,正常运行时控制背压机排汽压力不超限;背压机 启动阶段用于控制背压机排汽压力。 8、背压机A和B轴封回汽压力调节阀,控制轴封回汽压力。 二、控制策略及运行操作说明 1、经济运行模式:背压机排汽到辅汽调节阀保持全开,将背压机排汽与辅 汽母管单向连通;当背压机排汽流量低于辅汽用户流量,开启冷再到辅 汽调节阀;当背压机排汽流量高于辅汽用户流量,开启背压机排汽到除 氧器主/副调节阀。冷再到辅汽调节阀和背压机排汽到除氧器主/副调节 阀尽量不同时开启。 2、正常运行期间控制的压力设定值排序:背压机排汽口机械安全阀 (1.6Mpa)>背压机排汽口PCV阀(1.5MPa)>背压机排汽到除氧器主/副 调节阀(根据机组负荷升高而适当升高,以适应背压机排汽到辅汽调节 阀前后压降变化)>冷再到辅汽调节阀>>背压机排汽到辅汽调节阀。各压

一次风机失速事件分析

一次风机失速事件分析

2011年6月11日#1机组B一次风机失速异常事件一事件前运行工况: 1、#1机组负荷413MW,A、B、C、D、F磨运行。总煤量为262吨,一次风母管压力为9.37kpa,B一次风机出口压力11.827KPa ,B一次风机电流130A,动叶开度61%;A一次风机电流125.3A,动叶开度59.6%,风机出口压力11.66KPa。六台磨风量总和为477吨/小时。 2、E磨备用。E磨冷风门开度13%、热风调整门、气动门、锁紧门关闭状态,E磨通风流量8.4t/h,入口风压0.31KPa。 3、A磨为烟煤,煤量58 t/h、风量91.4t/h、入口风压8.54KPa。 B磨为褐煤,煤量50 t/h、风量93.1 t/h、入口风压8.54KPa。 C磨为褐煤,煤量为57 t/h、风量为93.4 t/h、入口风压 8.49KPa。D磨为褐煤,煤量为48 t/h、风量为94.0 t/h、 入口风压8.53KPa。F磨为褐煤,煤量为50 t/h、风量为96.6 t/h、入口风压8.59KPa。 二、事件经过: 1、10时04分,B一次风机失速 (1)机组长王虎立即汇报值长,值长刘学会令解AGC、解协调,减负荷,投入上排、中排油枪增加锅炉热负荷、稳燃; (2)主值班员石伟解除A、B一次风机自动,手动并列一次风机。2、10时05分B磨跳闸( B磨跳闸原因为:失去煤火检) (1)立即启动E磨煤机运行; (2)同时将B磨跳闸首出复位后并提升磨辊,使其具备启动条件。

9、10时16分机侧汽温降至480℃,值长刘学会令开启各蒸汽管道和气缸疏水;并派人到就地检查机侧各蒸汽管道无异常,机组振动、胀差均正常。 10、10时17分一次风机并入正常运行。 11、10时18分主汽温度降低到最低430℃。 12、10时20分主汽温度升高到460℃。 13、10时29分主汽温度升高到529℃,负荷恢复到360MW. 机组各参数逐渐恢复正常运行。 三、原因分析 1.B一次风机第一次失速的原因: (1)E磨停止运行后没有按规定通风,而E磨冷风入口又靠近B一次风机出口,所以E磨停止通风使B一次风机出口阻力增加流量降低,一次风母管压力未发生变化情况下,一次风流量由508.5吨/小时,降至497.3吨/小时(2)在风机失速前运行的磨煤机一次风流量均有不同程度的降低(风量由100t/h左右降至93t/h左右,六台磨煤机总一次风量由497.3吨/小时降至477吨/小时),磨煤机出入口压差均有不同程度的升高,通过这两点说明在风机失速前磨已有轻微堵煤现象发生,使一次风系统通风阻力增大。两项因素的共同作用,在一次风机出力随机组负荷变化而进行调整时,使B一次风机运行工况进入失速区而发生失速。 2.B一次风机第二次失速的原因: (1)在处理第一次风机失速时,没有及时解炉主控将各磨的煤量降

引风机检修作业指导书样本

XX电厂X型X号机组X级检修作业指引书 项目名称:引风机检修 所属专业:锅炉

批准:日期:审核:日期:编制:日期:

一、组织办法 1.施工总负责: 负责整个检修工作项目制定,检查工作项目实行状况,检查、考核工作中存在违章状况,指引检修中存在技术问题。 2.技术负责: 对工作过程中技术质量进行把关,并负责检修工艺工序制定和修改。 3.工作负责人: 办理工作票,对的和安全组织工作成员进行检修工作,对工作中安全、技术和质量负直接责任。 4.工作成员: 在工作负责人带领下,对的、安全、文明进行检修工作,不断提高检修质量。 5.配合人员: 熟悉此项工作质量规定,及工作中存在危险点,在工作负责人带领下作好配合工作。 二、技术办法 1、施工程序 1.1 办理工作票—揭盖检查风机叶片—液压缸调节装置检查—油管路消除漏点—油箱;滤网;电加热清理、更换润滑油—油泵检修—冷却水系统检查—油箱加油—打开风道人孔门—检查检修风门—风道检查补焊—封堵人孔门—回答所有设备—冷却风机

改造—检查风机地脚螺栓及连接螺栓—检查风机和电机同心度。 2、质量原则 2.1引风机液压油站清理;管道消除漏点;油泵检修质量原则。 引风机液压油站管路消除漏油必要认真解决,保证不复发。油泵检修重要为检查电机和对轮间弹性垫磨损状况,如磨损严重应更换弹性垫。送风机液压油站清理前必要将旧油放干净,用汽油冲洗后用面团粘净所有杂质;磁性滤网;电加热器应彻底清洗后方可安装。风机油箱清理完必要由关于人员验收合格后方可封堵。油站清理合格后应加注L—TSA46#汽轮机油,油位应加之油箱中位置; 2.2引风机叶片检查调节;风门检查检修质量原则; 引风机叶轮检查重要检查叶片有无磨损严重现象,叶片有无受冲击损伤现象,此外检查叶片磨损及锈蚀限度。叶片如有缺陷应上报电厂更换。检查叶片轴承游隙应符合原则规定,否则应及时更换。风道风门检修;应调节风门实际开度与标示相符;偏差不不不大于0.50-10。风门所有螺栓应所有紧固一次,并用电焊进行电焊防松。检查风道内、进气箱、扩压器内焊缝与否有漏焊和裂纹现象,如有应进行补焊打磨。风道;风机机壳封人孔门之前应经电厂人员验收合格。叶片间隙测量时,将叶片调到最打开度,测量叶片与机壳之间间距应为3.9+1.5mm。检查围带与否有风化现象,如有必要进行更换。

交通事故预防要求措施

交通事故预防措施 1、坚持“安全第一,预防为主”的方针,开展全员安全培 训,增强搞好安全生责任感,提高安全意识。 2、搞了安全宣传,经常进行事故和典型案例剖析,教育司 乘人员克服麻痹和侥幸心理,做到安全警钟常鸣。 3、严格驾驶员的选聘关。坚持选用三年以上驾龄、5万公 里安全资历和持有客运营运资格证的驾驶员,坚持公司 对被聘用驾驶员驾驶技能的实践考核。 4、坚持周五安全活动日制度。 5、坚持开展好驾驶员对车辆例行保养检查,按例保检验单 报班和强制二级维护保持车辆经常于完好状况。 6、不准将车交给无证人或暂扣、吊销驾驶证的人驾驶。 7、不得酒后开车,更不能醉酒后驾车。 8、坚持中速行驶,坚持“礼让三先”,严禁强超抢会,车 辆行驶在陡坡、弯道、涵洞等危险地段,要提高警惕,谨慎驾驶。 9、行车中不得饮食、闲谈和打手机,集中精力,谨慎行驶。 10、保持行车间距,防止发生追尾事故。 11、配合车站做好安全防范,杜绝“三危”物品上车。 12、春夏季节注意提醒驾驶员劳逸结合,保持足够的睡眠和 休息时间,保持充沛的精力。 13、定期检查车上配备的灭火器,经常保持其使用性能良

好。 14、冬季随车携带防滑链等器材。 15、司乘车辆都要按规定险种和标的到指定保险单位办理 有关人、车保险。 16、安技人员要坚持每天在上路安全管理,做好安全生产检 查、监督。 17、坚持节假日和24小时领导速写放和搞好行车事故处 理。凡发生事故的车主和驾驶员,安技科要逐个进行谈 话,帮助其他析事故原因,总结教训,提出防范措施和 办法。 驾史员操作规程标准 1、携带驾驶证、行驶证、营运手续等证件。 2、检查报修项目是否修好。 3、做好出车的“十检”工作。 4、严格遵守交通法规,认真执行安全驾驶操作规程,不违 章、不斗气、不超速行驶、不强行超车、不酒后开车、不让非驾驶员开车。 5、次势端正、精力集中、不闲谈、不吸烟、不吃东西、不 转移视线、双手不同时离开方向盘。 6、中途行驶,安全礼让,行驶时要保持前后车的安全距离,

600MW机组引风机失速、喘振异常的分析与探讨

600MW机组引风机失速、喘振异常的分析与探讨 发表时间:2018-01-10T11:10:17.063Z 来源:《电力设备》2017年第27期作者:张立刚 [导读] 摘要:大型锅炉引风机运行的稳定性和可靠性会对电力生产的效率及经济效益产生影响,而失速、喘振作为大型锅炉引风机最为常见的异常故障,对其进行研究就显得尤为重要。 (陕西德源府谷能源有限公司陕西榆林 719400) 摘要:大型锅炉引风机运行的稳定性和可靠性会对电力生产的效率及经济效益产生影响,而失速、喘振作为大型锅炉引风机最为常见的异常故障,对其进行研究就显得尤为重要。笔者结合大型锅炉引风机的工作特点,就失速、喘振等异常情况进行了分析,总结了风机型号选择、运行方式等方面存在的问题,希望可以为大型锅炉引风机相关异常的处理提供借鉴。 关键词:大型锅炉;引风机;失速;喘振 国家环境保护部在2011年颁布《火电厂大气污染物排放标准》,要求燃煤机组燃烧排放的烟气中氮氧化物浓度不能超过100mg/m3,现在全国各电厂陆续进行更为严格的超低排放改造,电力企业纷纷对锅炉低氮燃烧器、分级配风及加设SCR脱硝装置改造,实现对氮氧化物排放的有效控制,这种改造需要在烟道中安装两层催化剂,烟道阻力约增加1000Pa。引风机作为火力发电厂主要辅机设备,其耗电量占机组厂用电率的比重较大,加装SCR系统的机组大量喷氨降低氮氧化物,氨逃逸率过大使硫酸氢铵大量增加,而在160-230℃温度区间,硫酸氢铵是一种高粘性液态物质,粘附烟气中的飞灰颗粒板结在空预器换热元件上,导致空预器阻力增加,进一步增大了引风机出力,而且按原来风烟系统阻力选型的引风机调整范围变窄,易引起风机喘振等现象。 一、锅炉引风机失速、喘振异常概述 1.1引风机失速、喘振异常的发生原理 首先引风机失速即叶片叶弦的夹角和气流方向被称为冲角,会使进入风机叶栅的气流冲角随着开得过大的风机动叶而增大,一旦冲角超过临界值,叶片背面尾端立即会出现涡流区,冲角超过临界值越多则表示失速越严重,同时会加大流体阻力,进而堵塞流道,降低风机风压后引发喘振。 其次轴流风机运行中喘振是最特殊的现象,风机风量与出口压力不对应是造成风机喘振的原因。喘振指风机在运行于不稳定区域内并引起电流、风量和压力的大幅度脉动及管道和风机剧震动的现象。高压头,大容量风机发生喘振的危害很大,会直接损坏设备和轴承,锅炉的安全运行也会受风机事故的直接影响,总而言之,失速是发生喘振的基本因素,然而失速却不一定会是喘振,它只是单纯地失速恶化表现。 1.2引风机失速、喘振危害 失速导致风机损坏,由于旋转失速使风机各叶片受到周期性力作用,若风机在失速区内运行相当长时间,会造成叶片断裂,叶轮的其它部件也会受到损害。失速导致喘振,若管道系统容积与阻力适当,在风机发生失速压力降低时,出口管道内的压力会高于风机产生的压力而使气流发生倒流,管道内压力迅速降低,风机又向管道输送气体,但因流量小风机又失速,气流又倒流。伴随喘振的发生,风机参数也大幅度波动,振动剧烈。可在很短时间内损坏风机,必须立即停止风机运行。风机发生喘振、失速时,造成炉膛压力大幅波动,锅炉燃烧不稳定,在高负荷发生时,可能导致风机跳闸、机组RB降出力、锅炉灭火等事故。风机喘振时,风机的风量和风压、电动机电流急剧波动,产生气流的撞击,振动显著增加,噪声巨大,此时风机叶片、机壳、风道均受大很大的交变力作用,会造成风机严重损坏,风机的容量与压头越大,则喘振的危害性越大。因此,轴流风机应避免在失速、喘振状态下长时间运行。 二、锅炉引风机失速、喘振异常的原因 2.1风机失速原因 如果风机长时间运行于失速区,必然会损坏叶轮的机械部件或造成叶片断裂,因此则有相关风机制造厂规定,如果风机运行于失速区域内超过15h则需立即更换叶片。但对于机组来说,风机失速会造成设备出现跳闸现象,同时会减少机组负荷及迫使单侧通风组停止运行。喘振前机组负荷为600MV,引风机动叶开度在93%左右,引风机喘振时的进口压力、电机电流和进口烟气流量呈大幅度周期性脉动,同时炉膛负压的波动也较大。引风机出现喘振时首先发生喘振的B侧引风机,电机电流也下降到215A,之后A侧引风机也开始出现喘振,还产生抢风现象,导致进口烟气流量、进口压力、电机电流的波动变化较大。恰好引风机附近有运行人员巡检,当场听到周期性和剧烈的噪音与振动。 2.2引风机喘振原因 空预器的烟气侧压差过大增加引风机进口管路阻力,最终出现管路特性曲线中所显示的变陡现象。对此引风机需不断增加出力使炉膛负压维持到相应的范围,引风机电流会随着动叶不断地开大而增加,进而导致引风机进入不稳定工况区域,造成引风机失速,失速恶化则会发生喘振并发展为和另一台引风机抢风情况,最终导致两台引风机进口烟气流量、电机电流、进口压力出现大幅度交替脉动,使机组和设备的安全运行受到严重威胁。 2.3引风机失速与喘振的联系和区别 轴流式风机的基本属性即失速,每个引风机上的叶轮可以都会出现不稳定的失速现象,但这种失速现象是肉眼看不到的,处于隐性之中。肉眼无法看到的,因此只能采用高频测试器和高灵敏度仪器对其探测。但喘振和它不同的一点就在于是显行的。风机的流量、压力、功率等脉动会在发生喘振时伴随着噪声有剧烈明显的晃动,但需指出的一点是,喘振只会出现在一定的条件内,如同等风机安装在不同系统就会出现喘振和不喘振现象。此外,叶片结构特性也是造成风机失速的因素之一,从开始到结束其基本规律都一直存在,其运行不会受系统容积形状的影响。风机与系统耦合的振荡特性是喘振的表现形式,风道容积在一定程度会限制其频率和振幅,在发生失速时尽管叶轮附近的工况会出现波动,然而整台风机的流量、压力和功率基本不会受失速影响,依旧保持稳定运行。但需指出的的是,整台风机的压力、流量和功率在发生喘振时会遭到大幅度脉动,致正常运行无法维持。此外,失速是降低压力的关键因素,它只存在于顶峰以左的区域段,喘振只发生于风机特性曲线的坡度区域段,二者有着紧密联系,因而喘振发生和失速的存在息息相关。 三、锅炉引风机失速、喘振异常解决办法 3.1合理选择引风机型号和型式 风机选型的合理确定是保证其经济安全运行的前提,其设计参数更要严格把握,如果参数过大,会导致风机不能运行在高效区域内,

交通事故预防措施71198

交通事故预防措施 1、坚持“安全第一,预防为主”的方针,开展全员安全培训, 增强搞好安全生责任感,提高安全意识。 2、搞了安全宣传,经常进行事故与典型案例剖析,教育司乘 人员克服麻痹与侥幸心理,做到安全警钟常鸣。 3、严格驾驶员的选聘关。坚持选用三年以上驾龄、5万公 里安全资历与持有客运营运资格证的驾驶员,坚持公司对被聘用驾驶员驾驶技能的实践考核。 4、坚持周五安全活动日制度。 5、坚持开展好驾驶员对车辆例行保养检查,按例保检验单 报班与强制二级维护保持车辆经常于完好状况。 6、不准将车交给无证人或暂扣、吊销驾驶证的人驾驶。 7、不得酒后开车,更不能醉酒后驾车。 8、坚持中速行驶,坚持“礼让三先”,严禁强超抢会,车辆行 驶在陡坡、弯道、涵洞等危险地段,要提高警惕,谨慎驾驶。 9、行车中不得饮食、闲谈与打手机,集中精力,谨慎行驶。 10、保持行车间距,防止发生追尾事故。 11、配合车站做好安全防范,杜绝“三危”物品上车。 12、春夏季节注意提醒驾驶员劳逸结合,保持足够的睡眠与 休息时间,保持充沛的精力。 13、定期检查车上配备的灭火器,经常保持其使用性能良

好。 14、冬季随车携带防滑链等器材。 15、司乘车辆都要按规定险种与标的到指定保险单位办理 有关人、车保险。 16、安技人员要坚持每天在上路安全管理,做好安全生产检 查、监督。 17、坚持节假日与24小时领导速写放与搞好行车事故处 理。凡发生事故的车主与驾驶员,安技科要逐个进行谈话,帮助其她析事故原因,总结教训,提出防范措施与办法。 驾史员操作规程标准 1、携带驾驶证、行驶证、营运手续等证件。 2、检查报修项目就是否修好。 3、做好出车的“十检”工作。 4、严格遵守交通法规,认真执行安全驾驶操作规程,不违 章、不斗气、不超速行驶、不强行超车、不酒后开车、不让非驾驶员开车。 5、次势端正、精力集中、不闲谈、不吸烟、不吃东西、不 转移视线、双手不同时离开方向盘。 6、中途行驶,安全礼让,行驶时要保持前后车的安全距离,

除尘引风机说明书

产品说明书除尘引风机南宁市明阳机械制造有限公司

目录 1 风机说明 1.1 风机概述 1.2 数据表及性能曲线 1.3 风机结构介绍 1.3.1 叶轮 1.3.2 主轴 1.3.3 轴承 1.3.4 挡板调节门 1.3.5 壳体 1.3.6进风口 1.3.7进、出口膨胀节 1.3.8 密封 2 风机的安装 3 风机调试与运行 3.1 风机调试前的准备工作 3.2 挡板调节门传动机构的调试3.3 风机的联动试车 3.4 立即停车事件 4风机维护 4.1 运行过程中的维护 4.2 临时停机期间的检修 4.3 计划停机期间的检修 4.4 风机部件的维护 4.4.1 叶轮与轴的维护 4.4.2 轴承的维护 4.4.3挡板调节门的维护 4.4.4膨胀节的维护 4.5 风机的主要故障及原因 4.5.1 风量不足 4.5.2 风压不足 4.5.3 电动机超载 4.5.4 机体振动 4.5.5 轴承温升过高 附录风机工作参数 1.风机性能参数表 2.风机性能曲线图

1.风机说明 1.1 风机概述 风机主要由机壳部(包括进气箱部)、进风口部、传动部、叶轮部、轴承箱部、调节门部、电动执行器等部件组成。风机由电动机驱动,电机型号为YKK710-4W,株洲南车电机股份有限公司产品。液力耦合器型号为YOTFC920.AN,大连液力机械有限公司产品。挡板调节门由电动执行器驱动,型号为D(MC)250+MSG600.164FHA-R,EMG产品。 1.2 数据表及性能曲线 本风机是按用户提供的技术参数设计,技术参数参见附录。风机的性能曲线也见附录。用户可通过改变调节门的叶片开度来达到运行所需要的工况点。 1.3 风机结构介绍 1.3.1 叶轮 叶轮型式为单吸入式,叶片为平板形叶片,有10片叶片。轮盖的进口端为圆弧形。叶片流道型式为对数螺旋线,此种型线流动损失小。叶片与轮盖及轮盘的连接均采用焊接方式,叶片与前盘材料为HQ785。后盘材料为15MnV。 叶轮与主轴的连接采用法兰结构,而不是轮毂连接(参见图1),从而较大地减轻了叶轮的重量。叶轮与主轴共用12只高强度螺栓(35CrMoA)紧固,所有螺栓均用止动垫圈锁紧,同时主轴法兰轴肩部又能阻止螺栓本身的转动,故这种连接方式是非常安全可靠的,同时又能承受较大的扭矩。叶轮与主轴装配后做动平衡试验,以保证转子部的平稳运转。 1.3.2 主轴 主轴为整体锻造轴,两端用滑动轴承支承,一端经联轴器与液偶相连。主轴材质为35CrMoA-5,具有足够的刚度和强度。 1.3.3 轴承 风机轴承采用油脂自润滑,轴承型号为ZWBG22-160T/375、ZWBG22-160/375滑动轴承,润滑油脂采用。轴承箱采用压力回水冷却,冷却管为G1”,进水量为0.8~1m3/h。

风机在运行中失速的原因分析及应对措施

风机在运行中失速的原因分析及应对措施 摘要:随着我国经济的快速发展,我国的环保工作也进行得如火如荼,成效显著。但我国产业结构仍处于高能耗模式当中,这种产业机构不利于我国环境治理 工作的顺利开展。为了优化我国产业结构,协调环境保护工作,要求在火力发电 机组中通过引进先进的技术或设备,提高供电效率,实现产业结构优化。鉴于此,本文主要介绍了某电厂 300MW 机组引风机的特性及技术参数。在此基础上,分 析引风机失速的原因、失速后的处理,以及采取防止引风机失速措施。 关键词:引风机;风量;转速 引言:本文以某锅炉厂生产的型号为:型号:DG1025/18.2-∏6,型式:亚 临界参数、四角切圆燃烧方式、自然循环汽包炉,单炉膛、一次再热、平衡通风、固态除渣露天∏型布置,全钢架、全悬吊结构的燃煤锅炉。在运转工作中,锅炉 配备一台50% 容量的电动引风机。由于燃用煤种硫份含量偏高及超低排放要求, 造成机组空预器差压逐渐增大,随之而来引风机失速频繁发生。 1引风机在生产中的应用 该厂引风机在低负荷时则采用两路汽源并用来降低小机排气温度,以实现机 组运行的安全性;小机排气可通过背压机对热网供热,进一步降低供电煤耗,提 高上网电量。同时引风机可以实现变转速调节负荷,减少节流损失,避免了引风 机对厂用电系统的电压冲击。从引风机实际运行情况来看,其具备低能耗、高效 率的优点,能为企业带来巨大的经济利益和环保效益,对企业的产业结构优化具 有促进作用,意味着其逐步成为一种趋势,在发电产业中具有良好的发展前景。 2该引风机设备参数 该电厂工程采用引增合一,引风机为成都风机厂生产的静叶可调轴流式风机,引风机由东方有限公司生产。引风机调整方式转速及静叶配合调节。该引风机技 术参数详见表 1。 表 1 该引风机技术参数 3引风机失速分析 3.1机组正常运行一段时间后,随着空预器堵塞的加剧,空预器进出口烟气侧和风量侧差 压持续上升,造成引风机入口风量低于设计值。机组负荷 300MW 时,引风机进口风量(低 温省煤器投运)DCS 数据计算来为 255m3/s,而设计为235m3/s,已严重偏离设计工作点, 造成风机易进入失速区域。 3.2采取低氧燃烧措施后,烟气量偏小。 3.3引风机的轮机性能存在一定差别,造成两台机器工作点不一致。 3.4风机出力偏差未结合风机工作点进行调整,使并列风机流量偏差增加。 3.5烟道阻力有一定偏差,烟气温度低,烟道阻力大的风机所需全压升高、容积流量小, 更容易被抢风而引起失速。 3.6风机在炉膛压力大幅度波动及机组负荷变化时,并列引风机进汽调门性能不一致,造 成风机短时间出现出力偏差增加,工作点偏移抢风。 4引风机失速后的处理方法 4.1发生引风机失速时运行人员应先判断哪台风机失速,一般引风机入口负压小的风机为 失速风机。立即手动解除两台引风机小机转速和静叶自动,手动进行调整。 4.2投入等离子进行稳燃,快速降负荷至 2000MW 左右,减小送风机动叶,维持总风量 在 500-600t/h 左右,防止风机跳闸及炉膛灭火。 4.3立即手动将两台引风机都增加 100rpm 左右的转速,主要目的是为了将两台引风机工 作点远离失速区,有利于失速风机的并列。 4.4手动将失速引风机的静叶关小,手动关小另一台引风机的静叶至两台引风机入口负压

增压风机 失速分析

某发电分公司燃化除灰部脱硫运行 2007-11-6 【摘要】:某发电分公司#5、6脱硫系统自2006年9月投产以来,增压风机经常性的失速,造成#5、6脱硫系统不能正常运行,针对增压风机失速进行分析、整理,保证脱硫系统的正常运行,提高运行工人分析事故和处理事故的能力,对发现的问题吸取精华,剔除糟泊。 【关键词】:增压风机失速分析漳电脱硫 【引言】:近年来,由于我国国民经济的迅速发展,对电力的需求增长更快,作为主要电源供应的燃煤发电机组也逐年增加,燃煤火力发电装置排放物对人类生存直接构成危害,我国火力发电用煤主要是高灰分、高硫分煤的比例比较大,而且几乎不经过任何洗选等预处理过程,同时,火力发电硫氧化物排放的总量最大而且集中,因此,火力发电需要对尾气硫化物进行脱除,目前在发电厂应用最多的脱硫技术是比较成熟的石灰石-湿法,石灰石-湿法技术关键是脱硫系统中增压风机的正常运行,只有保证增压风机正常运行,才能保证脱硫系统正常运行,乃至整个机组的正常运行 增压风机是大容量轴风机,是直接影响主机安全运行的重要因素,同时也是环保评价我厂脱硫投入率的前提,轴硫分风机失速信号测点就是风机叶片前后的烟气流量的差压前后的反应,运行对DCS增压风机筒振重点监测是十分必要的,正常情况下烟气流入静叶挡板门通过动叶旋转至增压风机出口,烟气流与动叶形成很小的夹角当经过叶片后形成平行的流线状态为最好。当烟气与某一叶片形成有扰动角度时,这时绕过叶片的烟气流在叶片背面形成涡流,叶片之间的气道受阻,轻则筒振增大,失速报警信号发出。重则,扰动气流破坏相邻的边界层,使之多个动叶间烟气流通道被气流团阻塞(包括级间叶片气流团剧烈扰动导致末级叶片背压升高)不采取措施风机喘震增大引起共振,导致叶片折断轴变形断裂等严重后果。 #6脱硫系统运行,增压风机静叶挡板开度60%,增压风机出口温度异常升高、电流下降、筒振升高、失速报警信号发、出口压力下降,增压风机内声音异常,静叶挡板门各静叶轴承座振动增大,造成#6增压风机失速有以下原因: 1、脱硫系统中出入口烟气挡板门内置扇形板任意一扇脱落或销子断使扇门不能开启,都会导致增压风机入口流量不足或出口阻力增大。 1)、烟气系统入口挡板门没有完全开启或挡板门的一扇脱落,造成入口风量不足,增压风机不能正常工作,发生喘振,造成失速,经检查入口挡板门在全开位置,没有发现任意一扇脱落开不起来,也没有发现销子断裂,挡板门的主轴转动自如; 2)、烟气系统出口挡板门没有完全开启,或挡板门的一扇脱落,造成入口风量不足,增压风机不能正常工作,发生喘振,造成失速,经检查入口挡板门在全开位置,没有发现任意一扇脱落开不起来,也没有发现销子断裂,挡板门的主轴转动自如; 3)、烟气系统烟道中的支撑多,支撑不合格,支撑上积灰,造成系统阻力大,经专家测试系统支撑不是造成增压风机失速的原因; 2、GGH积灰造成烟气阻力大,GGH打开人孔检查后,发现换热元件上积灰严重,增压风机入口烟尘含量高,造成系统积灰,造成GGH积灰严重的原因有: 1)、烟气中灰尘含量高,携带的烟尘黏结在换热器元件上,造成换热元件堵塞

防止发生交通事故措施

防止发生交通事故措施 为进一步加强交通安全管理,防止交通事故的发生,特制定本措施。 1、充分做好思想政治工作,消除思想情绪,解决实际问题,使驾驶员不带情绪出车;发现情绪不稳定时,暂时不安排驾车外出工作。 2、严格执行车辆出车前、行车中、收车后的三检制度,做到不开“带病车”、“凑合车”。 3、任何人不得指挥不合格车辆出车行使,修理中的车辆不准进行各种运输活动。 4、长途行车(单程100公里以上)车况必须由交通安全检查组进行行车前检查。 5、加强交通法规、规章制度和业务技能的培训和学习,做好安全教育工作,提高员工自觉遵章的能力和意识,做到警钟长鸣。 6、严格执行派车单制度,加强车辆管理,对驾驶员进行职业道德教育,做到不以车谋私,杜绝私自出车。 7、严格执行我厂的“准驾证”制度,不准私自带人练习驾驶,不准将车交他人和无证人员驾驶。 8、不准超速行驶,强超、抢会,开“英雄车”、“赌气车”。

9、严格禁止酒后驾车。 10、在工作安排、车辆调度中防止疲劳驾驶,单程400公里以上客运车辆安排两名驾驶员,每名驾驶员连续驾车不得超过3小时。 11、行车中要集中注意力,不得有抽烟、闲谈、使用移动电话等影响驾驶的行为。 12、熟练掌握特殊天气、危险路段的驾驶技术,严格执行制定的相关的防范措施。如:《冬季安全行车措施》等。 13、车辆在高速公路上行驶时,必须系好安全带,同时,要求乘客做到。 14、在转弯、会车、掉头、倒车时,严格遵守《中华人民共和国道路交通安全法》中的相关规定,应控制车速,防止侧滑、碰撞发生。 15、吊车作业中要严格执行《汽车起重机安全规程》,除驾驶室外其它部位及吊物下严禁有人走动或停留,严禁工作人员利用吊钩上升和下降,起重物不准长期悬在半空。 16、汽车修理要严格执行保养制度,做到“应修必修、修必修好,”特别要加强对超期服役车辆的检修频次,确保车况良好。 17、在车辆运行、修理中要防止燃料溢漏、电路短路、动火作业、焊接等可能引发的火灾。 18、前方职工上、下班,运行职工倒班,检修职工加班

y 锅炉引风机

Y9-38系列锅炉引风机 产 品 说 明 书 上海循特流体机械有限公司 中国·上海

一、用途 Y9-38型锅炉引风机适用于燃用各种煤质并配有消烟除 尘装置的0.5~35t/h的工业蒸汽锅炉的引风之用。凡进气条 件相近,性能又相适应者均可选用,介质最高温度不得超过 250℃。 在引风机前必须加装效率不低于85%得除尘装置,以降低进入风机的烟气含尘量,不但减少了烟气对环境污染,而且降低可烟尘对风机的磨损,有利提高风机的使用寿命。 二、形式 1)该风机制成单吸入,机号有No.4、No.4.5、No.5、No.5.6 、No.6.3、No.7.1、No.8、No. 9、No.10、No.11.2、No.12.5、No.14、No.16共13种。 2)该通风机制成顺时针旋转或逆时针旋转两种形式。从传动部正视风机,如叶轮按顺时针方向旋转,称为顺时针旋转风机。以顺时针表示;叶轮逆时针旋转,称为逆时针转风机,以逆时针表示。 3)风机的出口位置,以机壳的出口角度表示。顺时针旋转风机、逆时针旋转风机均可制成0°、45°、90°、135°、180°、225°共6种角度。 三、结构特点 风机主要由叶轮、进风口、机壳、传动组调节门等部件组成 1)叶轮材料为Q345(16Mn),长短相间前向弯曲叶片。.经过动、静平衡校正,因此运转平稳。 2)机壳用钢板焊接成蜗形壳整体。在蜗板上开有清灰门。便于清除叶片和机壳内的积灰,保证叶轮的平衡性和气动性能。 3)进风口制成收剑式流线型整体结构。用螺栓与前盖板组固定。 4)传动部分由主轴、水冷轴承箱、联轴器等组成。 主轴由优质钢制成,采用滚动轴承,轴承箱有整体是和部分式两种形式。No.4~No。6.3采用

相关主题