搜档网
当前位置:搜档网 › 边坡稳定性案例分析

边坡稳定性案例分析

边坡稳定性案例分析
边坡稳定性案例分析

边坡稳定性分析方法综述及案例研究

摘要:本文首先介绍实际工程中边坡稳定性分析及处治技术研究的意义,其次介绍边坡破坏的形式及影响因素,并系统地介绍边坡稳定性分析的三大类方法及其原理。最后结合工程实际案例,采用赤平投影方法和FLAC3D软件数值模拟对案例中涉及的边坡进行了稳定性评价,并提出合理的加固措施。

关键词:边坡稳定性,稳定性分析方法,赤平投影法,数值模拟,边坡加固

ABSTRACT: This article firstly introduces the meaning of slope stability analysis in practical projects and study on treatment technology, then demonstrates the forms of slope failure and the influence factors. The article also introduces the three main methods on slope stability analysis and their theories systematically. In the end, according to a practical project, stereographic projection and numerical simulation through FLAC3D software are employed to conduct estimation of stability of a slope involved in the project, and thus the reasonable reinforcement measures.

Key Words:slope stability analysis, stability analysis methods, stereographic projection, numerical simulation, slope reinforcement

1 引言

边坡是指地壳表面一切具有侧向临空面的地质体,是坡面、坡顶及其下部一定深度坡体的总称。坡面与坡顶面下部至坡脚高程的岩体称为坡体。

边坡工程的稳定性分析历来是工程界和学术界极为关注的研究课题, 而边坡稳定性分析和评价一直是边坡工程的核心问题。边坡稳定分析涉及到水利水电工程、铁道工程、公路工程、矿山工程等诸多工程领域,能否正确评价边坡的稳定性并处治加固不稳定边坡常常是此类工程成败的关键, 也是确保工程安全和降低建设费用的重要环节。

目前研究边坡稳定性的方法主要有三大类[1],即定性类方法、定量类方法和非确定性方法。定性类方法主要有过程机制分析法和工程地质类比法,定量类方法主要有刚体极限平衡法和有限元等数值方法,非确定分析方法较多,主要为可靠度法及与计算智能相结合的智能分析方法等新方法。

本文在介绍三大类边坡稳定性分析方法的同时,结合具体工程案例,对案例涉及到的边坡采用赤平投影法和FLAC3D软件进行了稳定性分析及数值模拟,最后对比并给出了该边坡的最佳加固方案。

2 边坡变形破坏基本原理

2.1 边坡应力场的基本特征

边坡成坡过程中,临空面周围的岩体发生卸荷回弹,引起应力重分布和应力集中等效应。根据一些线弹性有限元计算成果,边坡成坡后,岩体的应力状态较前发生了以下几个主要方面的变化[2]。

⑴由于应力重分布,边坡周围主应力迹线发生明显偏转。无论是在重力场条件下,还是在以水平应力为主的构造应力场条件下,其总的特征表现为越靠近临空面,最大主应力越接近平行于临空面,最小主应力则与之近于正交。

⑵由于应力分异的结果,在临空面附近造成应力集中带。但坡脚区和坡缘(边坡面与坡顶面的交线)区情况有所不同。坡脚附近最大主应力(相当于临空面的切向应力)显著增高,且越近表面越高;最小主应力(相当于径向应力)显著降低,于表面处降为零,甚至转为拉应力。因而,这一带是边坡中应力差或最大剪应力最高的部位,形成一最大剪应力增高带,通常是边坡中最容易发生变形和破坏的部位,往往因此而产生与坡面或坡底面平行的压制拉裂面。坡缘附近,在一定条件下,坡面的径向应力和坡顶面的切向应力可转为拉应力,形成一张力带。因而,这些部位的岩体容易被拉裂形成与坡面近于平行的拉裂面。

⑶ 与主应力迹线偏转相联系,坡体内最大剪应力迹线由原先的直线变为近似圆弧线,弧的下凹面朝着临空方向。

⑷ 坡面处由于径向压力实际等于零,所以实际上处于单向应力状态(不考虑边坡走向方向的2σ时),向内渐变为两向或三向(考虑2σ时)状态。

2.2边坡岩体变形破坏基本形式

边坡形成过程中,由于应力状态的上述变化,边坡岩土体将发生不同方式、不同规模和不同程度的变形,并在一定条件下发展为破坏。斜坡破坏的基本类型按运动方式划分为崩落(塌)、倾倒、滑动(落)、侧向扩离和流动等5种基本类型,还可组合成多种复合类型,如滑坡-泥石流。

2.3 影响边坡稳定性的因素

2.3.1岩土性质

岩土的成因类型、组成的矿物成分、岩土结构和强度等是决定边坡稳定性的重要因素。由坚硬(密实)、矿物稳定、抗风化性好、强度较高的岩土构成的边坡,其稳定性一般较好;反之就较差。

2.3.2岩体结构

岩体包括结构面和结构体。岩体中结构面的存在,降低了岩体的整体强度,增大了岩体的变形性能,加强了岩体的流变力学特性和其他时间效应,并且加深了岩体的不均匀性、各向异性和非连续性等性质。大量的岩质边坡工程事故表明,不稳定岩体往往是沿着一个结构面或多个结构面的组合边界产生剪切滑移、张裂破裂和错动变形等而造成边坡岩体的失稳。

2.3.3水文地质条件

水文地质条件包括地下水的赋存、补给、径流、排泄条件。由于岩土体的力学性质受水的影响很大,地下水富集程度的提高一方面增大坡体下滑力;另一方面降低软弱夹层和结构面的抗剪程度,引起孔隙水压力上升,降低滑动面的有效正应力,导致滑动面的抗滑力减小。此外,地下水的渗流将对岩土体产生动水力、水位的升高将产生浮托力、地表水对岸坡的侵蚀使其失去侧向或底部支撑等,这些都对边坡的稳定不利。

2.3.4地震作用

地震对边坡稳定性的影响极大,地震往往伴随有大量的边坡失稳。地震作用导致边坡稳定性降低主要是由于地震作用产生水平地震附加力,当水平地震附加力的作用方向不利时,边坡的下滑力增大,滑动面的抗滑力减小。另外,在地震作用下,岩土中的孔隙水压力增加和岩土体强度降低,也对斜坡的稳定不利。2.3.5地貌因素

不利形态和规模的边坡往往在坡顶产生张应力,并导致坡顶出现张裂缝;在坡脚产生强烈的剪应力,出现剪切破坏带,这些作用极大地降低了边坡的稳定性。平面上呈凹形的边坡较呈凸形的稳定。

2.3.6风化作用

风化作用使岩土的抗剪强度降低,裂隙增加、扩大,影响斜坡的形状和坡度;并且透水性增加,使地面水易于浸入,改变地下水的动态等。边坡沿裂隙风化时,可使岩土体脱落或沿边坡崩塌、堆积和滑移等。

2.3.7人类工程活动的影响

随着人类工程活动规模的日益扩大,人类工程活动对边坡稳定性的影响越来越显著,不当的人类工程活动引起的边坡失稳事故频频发生,使得人们不得不重视人类工程活动对边坡稳定性的影响。

例如,不当的削坡往往使坡脚结构面或软弱夹层的覆盖层变薄或切穿,减小坡体滑动面的抗滑力,从而边坡的稳定性降低;坡顶加载既增加了坡体下滑力,又加大了坡顶张应力和坡脚剪应力的集中程度,使边坡岩土体破坏,降低强度;对于地下开挖,当地下采掘工程平行于边坡走向,开挖活动往往切割边坡的锁固段,降低了边坡稳定性,甚至使其失稳,如果地下开挖埋深较大,失稳往往是整体性的。

3 边坡稳定性分析的定性类方法

边坡稳定性的定性类方法主要有过程机制分析法和工程地质类比法[2]。

3.1 过程机制分析法

过程机制分析法应用边坡变形、破坏的基本规律,通过追溯边坡演变的全过程,对边坡稳定性发展的总趋势和区域性特征作出评价和预测。

过程机制分析法主要包括:⑴根据阶段性规律预测边坡所处演变阶段和发展趋势,⑵根据周期性规律判定促进边坡演变的主导因素,⑶根据区域性规律阐明边坡稳定性分区特征。

3.1.1阶段性规律

边坡可能具有的变形形式和破坏方式与斜坡外形特征、地质结构以及所处环境之间是密切相关的。对于一个具一定外形和结构特征的斜坡,可以应用赤平投影方法综合分析坡体中起控制作用的结构面或软弱带的空间组合状况,即可大致确定斜坡的类型和可能的变形机制及破坏方式[4] [5] [6]。

通过现场调研,查明某一具体斜坡已有的变形迹象,阐明其形成演变机制,即可参照各类变形模式演变图式和阶段划分的地质依据,确定边坡所处演变阶段。分析中应特别注意变形模式的转化标志。

对于一些重要的边坡,通过现场调研,查明边坡类型和变形机制模式,建立相应的力学和数学模型,采用物理和数值再现模拟,将模拟成果与实际调查情况进行对照,则可对边坡目前的演变阶段和发展趋势作出评价和预测。

3.1.2周期性规律

促进斜坡变形破坏的各种因素,在地质历史进程中都有其各自的周期性变化规律。例如河流由侵蚀变为淤积、由淤积再转为侵蚀;地震的周期性出现以及气象、水文动态的季节性变化和多年变化等。因而斜坡演变也会具有周期性变化规律,并受到主导因素的周期性变化规律所制约。追溯斜坡演变过程中的周期性规律,可以判定不同时期促进斜坡演变的主导因素。

3.1.3区域性规律

在地质条件、地貌条件以及气候条件相似地区,斜坡演变规律会有相似性。斜坡演变的区域性规律,实际上决定于动力环境的形成和演变特征。在进行区域评价时,应注意环境动力因素的演变对斜坡演变的影响。以近期地质构造活动为例,可以表现在地区近期的升降特征、地区构造最大主压应力方向及其变化、活断层断面特征及活动方式。

3.2 工程地质类比法

工程地质类比法是指把所要研究的边坡与已取得勘察资料、建筑经验地质条件类似的边坡进行对照,并作出工程地质评价的方法。主要是对已有边坡的岩性、结构、自然环境、变形主导因素和发育阶段等作全面分析,并与拟建边坡作出相似性的比较,评价拟建边坡的稳定性和发展趋势。例如:从失稳边坡与稳定边坡在地貌上不同的特征来判断边坡的演变和稳定性;从边坡的结构和作用等因素的组合来判断边坡稳定性的变化趋向等。

3.2.1边坡稳定条件形态对比法

稳定边坡形成要素一般有如下规律性,对于待分析的边坡可与之相比较并初步判断该边坡是否稳定。

1)自然边坡的外形受地质构造、岩性、气候条件、地下水赋存状况等因素影响。因重力作用,通常稳定的高边坡比稳定的低边坡平缓。

2)影响边坡的重力、岩性、岩体结构、气候条件等因素相同时,人工边坡较自然边坡可维持较陡的坡度。

3)研究表明,对于同一种边坡的稳定自然边坡高度H和坡面投影长度L存在幂函数关系:

b

=aL

(3-1) 参数a、b的取值与边坡岩性有关。在双对数坐标中,该幂函数关系拟合为直线。根据经验,不同类型边坡所绘制的各直线大约会聚于点(H,L)=(3050m,22800m)。

3.2.2边坡失稳条件对比法

通过对拟建边坡进行长期观测和与邻近同类边坡的相似性对比,结合边坡出现的不利于稳定的地质条件,确定其对边坡稳定影响的程度,作出稳定性判断。

不利的地质条件主要如下:

⑴边坡及其邻近地段滑坡、崩塌、陷穴等不良地质现象;

⑵岩质边坡中的泥岩、页岩等易风化、软化岩层或软硬交互的不利岩层组合;

⑶土质边坡中网状裂隙发育,有软弱夹层,或边坡体由膨胀岩土层组成;

⑷边坡存在外倾结构面;

⑸地层渗透性差异大,地下水在弱透水层或基岩面上积聚流动,断层及裂隙中有承压水露出;

⑹坡上有漏水,水流冲刷坡脚或因河水位急剧升降引起岸坡内动水压力的强烈作用;

⑺ 边坡处于强震区或邻近地段采用大爆破施工。

3.3 定性类方法小结

定性类方法建立在对斜坡变形、破坏的基本规律之上,并可结合大量已有边坡的工程经验,相对于定量类方法及非确定性方法而言具有简单、方便的特点。

然而定性类方法也有明显缺点。定性类方法考虑因素有限,得到的关于边坡是否稳定的结论也相对模糊。尤其不能精确考虑滑带土的黏聚力、内摩擦角、岩土体容重、地下水动态以及人类工程活动等重要影响因素。事实上,受客观条件和人类认识自然能力的限制,上述因素还具有取值的不确定性和时间上的不稳定性。因此,定性类方法可以作为边坡稳定性分析的初步判定方法,尚需结合定量类方法或非确定性方法来综合判定得出结论。

4 边坡稳定性分析的定量类方法

边坡稳定性分析的定量类方法主要有刚体极限平衡法和有限元法等数值方法。这些方法都以一个边坡稳定系数K 作为边坡稳定性的评价[1][3]。

4.1 边坡稳定系数的定义

工程界广泛使用稳定系数来进行边坡稳定性评价,稳定系数大于1,则边坡稳定;小于1则边坡不稳定;等于1时则说明边坡处于临界状态。由于稳定性计算中包含若干不确定性,为保证设计的边坡处于稳定状态,应使计算的稳定系数大于1,且具有一定的安全储备,即设计的稳定系数应大于规范规定的设计(允许)安全系数。

目前边坡稳定系数的定义分为三种:抗滑力和滑动力的比值定义法、强度折减系数定义法和超载系数定义法。

4.1.1抗滑力和滑动力的比值定义法

稳定系数定义为滑坡体中滑动面上的抗滑力与滑动力之比:

R K=S

(4-1) 式中:R ——坡体岩土提供的广义抗滑力,如抗剪强度、抗滑力、抗滑力矩等;

S ——坡体岩土的广义滑动力,如剪应力、下滑力、滑动力矩等。

根据沿滑裂面剪应力的计算方法,稳定系数的定义有如下三种:

(1) 基于应力水平的定义法

当滑动面上一点的大小有效主应力差为()13

-σσ'',以此为直径作莫尔圆,圆心

保持不变,作一个与摩尔-库伦强度包络线相切的应力圆(破坏应力圆),相应的应力圆直径记为()13f -σσ'',则整个滑面的稳定系数定义为:

()1313f dl

K=dl σσσσ''-''-?? (2) 基于剪应力的定义法

设c ',?'为材料的黏聚力和内摩擦角,τ和n

σ'是滑动面上的剪应力和正应力,则整个滑面的稳定系数定义为:

()n tan dl K=dl c σ?τ'''+?? (3) 基于应力水平加权强度的定义法

该法采用的稳定系数表达式如下:

()()()n 13

n

13f tan dl K=tan dl c c σ?σσσ?σσ'''+''-'''+''-?? 式中各符号意义同上。

4.1.2强度折减系数定义法

岩土坡沿某一滑裂面的稳定系数K 定义为:将岩土体的抗剪强度指标降低为/K c ',tan /K ?',当沿着此滑裂面的岩土体处处达到极限平衡时对应的折减系数K 即为稳定系数(也称为材料强度储备系数)[7] [8]。

4.1.3超载系数定义法

超载法是在假定边坡岩体强度参数不变的前提下,逐级增加荷载,把边坡临界失稳相应荷载与边坡正常工作荷载之比定义为稳定系数。

超载法通过不断增加荷载,直至边坡达到破坏,相应的破坏荷载f P 与坡顶建

筑物的实际荷载0P 的比值即为稳定系数:

f 0P K=P

(4-2)

(4-3)

(4-4)

(4-5)

4.2刚体极限平衡法

4.2.1刚体极限平衡法概述

刚体极限平衡法是将边坡稳定问题当作刚体平衡问题来研究,它具有以下基本假定:

(1)视岩土体为刚体,即只考虑破坏面上的极限平衡状态,不考虑岩土体变形;(2)遵循库仑判据,破坏面上强度由c、?控制;

(3)应力集中,即滑体中应力以正应力和剪应力方式集中作用于滑面上;

(4)针对平面稳定问题,即边坡走向与或滑动面走向的夹角在20?

±以内。

在稳定性分析中,对于仅有单一滑面的简单边坡,根据基本假设完全可以确定稳定性分析中所出现的未知数。但在复杂状态下,亦即边坡体被分割成几何形态比较复杂的岩土块,这时只凭刚体极限平衡法中的基本假定已无法确定数目较多的未知数。须在基本假设之外再增添若干补充假定,例如岩土块间接触面上作用力的方向、作用力的位置等。由于分析的观点不同,采用补充假定的方式也不同,因此刚体极限平衡法派生出各种不同类型的解法。

刚体极限平衡法的关键在于确定边坡岩土体的强度指标、边坡滑动面的形状及其位置、稳定系数。

4.2.2刚体极限平衡法的基本方法

刚体极限平衡法中最基本的方法为瑞典条分法。瑞典条分法的剪切面假定为圆弧,计算中不考虑分条间的作用力,因此稳定系数可以根据绕圆心的抵抗力矩与滑动力矩的比值来确定,且每个分条底部的反力可以直接由该分条上的荷载算出。

由于瑞典条分法假定简单,计算结果与实际情况出入较大,因此有许多改进的条分法,例如考虑分条间推力方向的传递系数法。

图1:传递系数法示意图

传递系数法有两个基本假定:⑴每个分条范围内的滑动面为一直线段,整个滑体是沿折线滑动;⑵分条间的反力平行于该分条的滑动面,且作用点在分隔面的中央。传递系数法通过计算各分条在重力、滑动面上的孔隙水压力、水平作用力、滑动面上的摩擦力、黏聚力,以及从上一条分传递过来的推力,得到对下一条分的推力作用

E(如图1所示)。计算过程中,各分条的条间推力乘以一个大

i

于1.0的系数K向下传递。计算出的最后一块的块间推力

E=0时的系数K即为边

n

坡的实际安全系数。

此外,改进的瑞典条分法还有简布法、力多边形法、萨尔玛法等。对于空间双滑动面情形,还有楔形滑动岩体沿双滑动面交线滑动的稳定性分析。其他常用刚体极限平衡法介绍如表1所示[9] [10] [11]。

表1:常用刚体极限平衡法

4.3边坡稳定性数值分析方法

刚体极限平衡法未考虑岩土体内部的应力应变关系,无法分析边坡破坏的发生和发展过程,无法考虑变形对边坡稳定的影响,无法考虑岩土体与支挡结构的共同作用及其变性协调。因此,当边坡破坏机制复杂或边坡分析方法需要考虑应力变形时,宜结合数值分析法进行分析。

数值分析方法能够考虑岩土应力应变关系,比极限平衡法更为精确合理,而且能够考虑岩土体与支挡结构的共同作用及其变形协调。

目前,基于数值分析的边坡稳定性分析方法主要包括有限单元法(FEM)、快速拉格朗日法(FLAC法)、离散元法(DEM)等[12]。

4.3.1有限元法(FEM)

有限单元法在边坡岩土体的稳定性分析中得到最早应用(1967年) ,也是目前最广泛使用的一种数值分析方法。有限元法的优点是部分地考虑了边坡岩体的非均质和不连续性,可以给出岩体的应力、应变大小与分布,避免了极限平衡分析法中将滑体视为刚体而过于简化的缺点,能使人们近似地从应力应变去分析边坡的变形破坏机制,分析最先、最容易发生屈服破坏的部位和需要首先进行加固的部位等。但是它还不能很好地求解大变形和位移不连续等问题,对于无限域、应力集中问题等的求解还不理想。

目前国际上使用较多的有限元分析软件ABAQUS能进行有效应力和孔压的计算,具有强大的接触面处理功,具备处理填土或开挖等岩土工程中的特定问题的能力,能提供不同计算时刻的应力矢量图和位移矢量图以便于各种定性分析[13][14][15]。

4.2.2.3 快速拉格朗日法(FLAC)

由于有限元和边界元都有小变形的假设,而国内现用的离散元程序一般都假定离散块体为刚体不计其本身的变形。近年来发展起来的快速拉格朗日法(FLAC)则是在较好地吸取上述方法的优点和克服其缺点的基础上形成的一种新型的数值分析方法。

FLAC首先由Cundall在20世纪80年代提出并将其程序化、实用化。FLAC基本原理类同于离散单元法,但它却能像有限元那样适用于多种材料模式与边界条件的非规则区域的连续问题求解;在求解过程中,FLAC又采用了离散元的动态松弛法,不需求解大型联立方程组(刚度矩阵),便于在微机上实现。另一方面,同以往的差分分析相比,FLAC在以下几方面作了较大改进和发展:它不但能处理一般的大变形问题,而且能模拟岩体沿某一弱面产生的滑动变形。FLAC还能针对不同材料特性,使用相应的本构方程来比较真实地反映实际材料的动态行为。FLAC 的缺点是计算边界、单元网格的划分带有很大的随意性。

4.3.3 离散元法(DEM)

离散元法是由Cundall P A(1971年) 首先提出并应用于岩土体稳定性分析的一种数值分析方法。它是一种动态的数值分析方法,可以用来模拟边坡岩体的非均质、不连续和大变形,因而也就成为目前较为流行的一种岩土体稳定性分析数值方法。该方法在进行计算时,首先将边坡岩体划分为若干刚性块体(目前已可以考虑块体的弹性变形) ,以牛顿第二运动定律为基础,结合不同本构关系,考虑块体受力后的运动及由此导致的受力状态和块体运动随时间的变化。它允许块体

间发生平动、转动,甚至脱离母体下落,结合CAD 技术可以在计算机上形象地反映出边坡岩体中的应力场、位移及速度等力学参量的全程变化。该方法对块状结构、层状破裂或一般碎裂结构岩体比较适合。

4.4 定量类方法小结

定量类方法在一定程度上克服了定性类方法的缺点,故目前在工程界中被广泛运用。传统的刚体极限平衡法虽然概念简单,计算量相对较小,但由于其未考虑岩土体内部的应力应变关系,无法考虑变形对边坡稳定的影响等原因,在工程界中受到一定质疑。因此,当边坡破坏机制复杂或边坡分析方法需要考虑应力变形时,宜结合数值分析法进行分析。

5 边坡稳定性分析的非确定性方法

非确定性分析方法主要是指可靠度法及与计算智能相结合的智能分析方法等新方法。非确定性方法较多,本文只简要介绍几类。

5.1基于随机模拟的边坡稳定分析法

随机模拟[2]是一种通过对随机变量的随机模拟和统计试验,来解决数学物理问题和工程技术问题近似解的方法。该方法的优点是观念简单,不需要连续性、可微性等严格限制;缺点是计算量大,计算精度一般不很高,而且是概率意义下的精度。

在边坡稳定性分析中,最危险滑动面唯一地存在于某一确定的可行域内,其抗滑稳定系数为S K ,为了将可行域Ω内该滑动面准确搜索出来,可在域Ω内生成

若干某种形状的滑动面,同时计算响应的Si K 。若取随机变量μ,当某一随机投掷

的滑动面i S 的稳定系数Si S K [K ]≤时,取为0,否则取为1,即

1=0μ??? Si S Si S K [K ]K [K ]≤> ()()滑动面投掷成功滑动面投掷失败 在滑动面投掷量足够大时,关于n 次投掷试验中,共m 次投掷成功,则S [K ]为

斜坡稳定性系数准确值的概率为:

n f i i 1P = 1- μ=∑

响应为S [K ]的滑动面即为最危险滑动面。

具体的最危险滑动面随机搜索过程可概括为:

1)在可行域Ω内随机生成并投掷一定数量的滑动面;

2)按剩余推力法计算每滑动面对应的Si K 值; 3)Simin K 为S [K ]的近似值,并计算f max P 。视Simin K 对应的滑动面为最可能的滑

(5-1)

(5-2)

动面位置和形状,视f max P 为此种计算条件下对该斜坡破坏概率值。

值得注意的是,所投掷的滑动面是由陡、缓两组优势节理面构成,其迹长和计算剖面上的视倾角概率分布形式,可由岩体结构面概率网络模型取得。投掷量的确定是以随投掷量n 增加而Si K 不再显著减少为准则,并在投掷过程中依据工程

精度要求及机时耗费情况而定。

5.2基于可靠度理论的边坡稳定分析法

基于可靠度理论的滑坡稳定性计算能克服客观存在的土性参数的空间离散性、时间变异性[16]。利用可靠度理论中的概率矩点估计法对斜坡稳定系数、可靠度和破坏概率进行计算和分析。

5.2.1可靠度理论的基本原理

滑坡可靠性分析方法的理论依据是概率统计原理,认为影响边坡稳定的各种因素是服从一定概率分布(一般认为是正态分布)的随机变量,因此稳定系数也是服从特定分布的随机变量。通过对各种因素概率分布及它们与安全系数的关系,得出安全系数的分布形式,进而确定边坡稳定的可靠度及破坏概率。

a.状态函数

假设状态函数 ()Z = G X ,若Z 0≥,则边坡处于可靠状态,若Z 0<则边坡处于破坏状态。()12n X=x ,x ,,x 为基本随机变量,表示坡体内某一点的稳定状

态的控制因素,具有一定的分布,如正态分布等;12n x ,x ,,x 表示影响斜坡稳定

的变量,如容重、粘聚力、内摩擦角、地下水压力,外部荷载等。随着位置不同,各变量也不同,都是具有一定分布的随机变量。

b.破坏概率 破坏概率用来表征斜坡破坏的可能性,其数值的大小即斜坡破坏的概率。如用R 表示坡体内总抗滑力,S 表示总滑动力,则

()()f P =P R-S 0< c.可靠度指标

令状态函数()Z= G X = R-S ,设的概率密度函数为()g x ,则破坏概率f P 为:

()()()()()0f -P =P

R-S 0=g x dx=1ββ∞<Φ-=-Φ? 其中z z

μβσ=定义为衡量边坡可靠性的一个指标,z μ和z σ分别是状态函数的均值和方差。β与f P 之间存在一一对应关系,β越小,f P 越大;反之,β越大,f P 越小。通过求解状态函数的均值和方差可确定斜坡的破坏概率。

(5-3)

(5-4)

5.2.2可靠度理论的计算过程 状态函数的计算采用传递系数法的安全系数显式表达式,即建立选定的某些影响边坡稳定性的参数的方程

()12n s Z = F x ,x x F =

。 无须知道状态变量()i x i 1,2n = 概率分布,只在区间()min max X ,X 上分别对

称地选择2个取值点,通常取i1xi xi i2xi xi x ,x μσμσ=-=+。对于n 个状态变量,

有2n 个取值点,共有n 2个可能组合。在n 2个组合下,可根据状态方程,求得n 2个状态函数值Z 。然后可用概率的点估计法求得n 2个状态函数值Z 的一阶原点矩和二

阶中心矩,并以此来估计均值z μ和方差2z σ。之后便可求得β和f P 值。

5.3其他非确定性方法

文献[17]利用经典土压力理论设定合理土条间推力线作用位置,根据静力平衡及力矩平衡条件,并结合土条界面及滑动面上的摩尔库伦准则,建立了以条块界面安全系数v F 为变量的线性超定方程组,应用MATLAB 软件基于最小二乘法对该

方程组求解,并依据极大值原理及合理性条件:v S F F ≥,最终获得边坡整体安全

系数S F 。该文献通过算例得出结论:当条块界面与边坡整体安全系数相等时,边

坡抗剪能力发挥最大;推力线在合理范围内的具体位置对安全系数的影响不大。

文献[18]认为边坡稳定性受多种因素控制,每种因素的权重存在不确定性,且边坡是否稳定的概念也是相对模糊的。故应采用模糊集合论的方法来分析判断斜坡稳定性,使定性描述转变为定量计算。

文献[19]从可靠度理论出发,认为土的空间不确定性能影响斜坡的安全系数S F 和失效概率f P 。该文献提出了用双马尔科夫链模型来模拟实际斜坡土的空间不确

定性,其中的两个一维马尔科夫链模型分别模拟水平方向和竖直方向的土的种类变化。文献首先从实际项目的凿洞数据获得了土层在一定范围类的分布情况,估计出相应的水平向和竖直向土层种类转换概率矩阵,完成了双马尔科夫链土层转换概率模型;之后采用ABAQUS 软件采用有限元强度折减法对边坡失稳情况进行了500次模拟,得到了收敛的安全系数S F 和失效概率f P 。

5.4 非确定性方法小结

相对于确定性方法而言,非确定性方法的理论及方法更加合理,例如可以考虑参数的时空变异性,使用了概率意义上的安全系数、可靠指标等标价标准。但目前非确定性方法还不成熟,各种方法的可行性以及所得的结果正确性往往需要与确定性方法的结果相比较来验证,而且难以避免庞大的计算量。因此,目前非确定性方法能处理的问题较少,还有待继续研究和推广。

(5-5)

6 工程案例

6.1工程概况

根据规划,某拟建建筑采用框架结构、桩基础,工程为多层结构,拟建场地四周均形成基坑边坡,边坡高度3.40~8.40m。拟建场地内原有建筑物已经拆除,拟建场地北侧紧挨道路,东侧紧挨已建公寓楼,南侧紧挨图书馆和教学楼,西侧紧挨已建女生公寓。

6.2 场地工程地质条件

6.2.1 地形地貌

拟建场地北西侧高南东侧低,场地原始地形均已改变,整体地形较平缓,场地内最高点位于北西侧,高程251.04m,最低点位于场地南东侧,高程为240.00m,相对高差11.04m。

场地总体属构造剥蚀丘陵地貌。

6.2.2气象、水文

拟建场地属亚热带温湿气候,冬暖春早,雨量充沛。多年平均气温为16~18℃,根据最低气温-5.3℃,极端最高气温43.5℃。多年平均降雨量1167mm,历年最大降雨量1544.8mm,最低839mm。年平均降雨日143.4 天,降雨多集中在5~9 月,占每年平均降雨量的三分之二,7 月降雨最高(224mm),日最大降雨量150mm。年平均湿度79%,年蒸发量1138mm。

根据地表地质调查,拟建场地距离嘉陵江约2Km。场地及邻近未见大面积地表水体。

6.2.3 地质构造

拟建场地位处观音峡冲断背斜东翼,岩层产状101°∠7°。岩层呈单斜产出,场内及邻近未发现断层通过,地质构造简单。

根据钻探揭示和现场调查拟建场地岩层为砂岩,局部夹有薄层破碎砂岩,岩层面结合很差,属软弱结构面。根据调查,岩体中发育三组裂隙:

①275°∠60~70°,裂面平直,张开,碎屑充填,间距1.00~3.00m,延伸长5.00~10.00m,裂隙面结合程度很差,属软弱结构面;

②100°∠40°,裂面较平直,张开,局部泥质充填,间距约1.00~2.70m,延伸长2.00~6.00m,裂隙面结合程度很差,属软弱结构面;

③358°~38°∠49~74°,裂面平直,张开,泥质充填,间距约2.00~4.00m,

延伸长3.00~5.00m,裂隙面结合程度很差,属软弱结构面。

6.2.4 地层岩性

据地面调查,拟建场地大部被第四系全新统人工杂填土和素填土(Q4ml)覆盖,下覆基岩为侏罗系中统上沙溪庙组(J2s)砂岩。现由新到老分述:第四系全新统(Q4)

①杂填土(Q4ml):杂色,主要由建筑垃圾及少量粉质粘土、砂岩碎石组成,其中碎石含量约占28%,粒径一般5~40mm,分布不均,松散,稍湿,为新近堆填,为拆迁老建筑整平而成。层厚0.40~3.80m (ZK8),场地分布于拆迁范围内。

②素填土(Q4ml):杂色,主要由粉质粘土和少量砂岩碎石组成,其中碎石含量约占25%,粒径一般5~30mm,分布不均,稍密,稍湿,堆填时间10 年以上,主要为修建建筑及道路整平堆积。层厚0.40~1.10m (ZK1),场地边缘及周围分布广泛。

~~~~~~~~~~~~~~不整合~~~~~~~~~~~~~~

②砂岩:黄色,灰色,中粒结构,中厚层状构造,主要矿物成分为长石、石英,云母次之,钙质胶结。本次勘察揭露最大铅直厚度22.42m(ZK16)。场地内分布广泛。

6.2.5 基岩面及基岩风化带特征

据钻探获取岩芯的实际情况,场地内基岩埋深0.40~3.80m,基岩面坡度角2~7°。据钻取岩芯的硬度和完整性划分强、中风化带:

强风化带:岩芯较破碎,呈碎块状,短柱状,局部夹少量薄饼状,质软,锤击声嘶哑,锤击易碎。厚0.40~2.50m(ZK1)。

中等风化带:岩芯较完整,主要呈短柱状,柱状,局部夹少量薄饼状,岩芯节长一般5~30cm,质较硬,砂岩锤击声清脆,锤击难碎。本次揭露最大铅直厚度21.32m(ZK16)。

6.2.6 水文地质条件及地下水和环境土腐蚀性评价

场地总体北西高,南东低,场地内及其附近为市区,地表及地下排水系统较完善,且表层一般为砼块,雨季场地地表水一般向地下管道径流、排泄。地下水类型主要为第四系松散孔隙水及基岩裂隙水。地下水主要接受大气降水的补给。勘察中选择了ZK12 钻孔将孔内水提干,经过24 小时观测,孔内基本无水。综合分析,勘察场地地下水贫乏。地下车库不需要进行抗浮设计。

经对周围环境进行调查,场地内无污染源的情况综合分析判断,拟建场地环境类别为Ⅱ类,拟建场地内的地下水和土对砼有微腐蚀,对砼中钢筋具有微腐蚀

性,对钢结构具有微腐蚀性。

综上所述,场地水文地质条件简单。

6.2.7 不良地质现象

据地面地质调查及据钻探揭示表明,场内未发现滑坡、崩塌、泥石流等不良地质作用。

6.3 计算工况与剖面选取

6.3.1 计算工况的选取

根据场地勘察报告中的水文地质条件,场地内及其附近为市区,地表及地下排水系统较完善,且表层一般为砼块,雨季场地地表水一般向地下管道径流、排泄。地下水类型主要为第四系松散孔隙水及基岩裂隙水。地下水主要接受大气降水的补给。勘察中选择了ZK12 钻孔将孔内水提干,经过24 小时观测,孔内基本无水。综合分析,勘察场地地下水贫乏。鉴于此,本文在分析该边坡稳定性时采用天然状态的工况。

6.3.2 边坡剖面的选取

边坡工程的受力状态问题本来属于空间三维问题,但把它看成二维问题进行分析也能得到令人满意的结果,所以为了简化分析过程,岩土工程界普遍采用二维分析方法[20] [21]。本文所研究的边坡稳定性问题也将采用二维分析方法。本次工程案例选择场地内的EH段9-9′截面处的边坡进行稳定性分析,边坡的工程地质平面图及工程地质剖面图分别如图2和图3所示。

图2:工程地质平面图

图3:工程地质剖面图

6.3.3 岩土参数选取

由勘察报告可知,拟建场地素填土和杂填土场地分布广泛,层厚小(0.40~3.80m),总体素填土密实程度为稍密,杂填土呈松散状态。

根据临近场地,结合重庆经验,填土天然重度取19.50KN/m3,饱和重度取19.80KN/m3,压实填地(压实系数:0.90)基承载力建议取100KPa;强风化基岩(砂岩)的岩体基本质量等级为V类,地基承载力特征值取350KPa;中风化基岩(砂岩)的重度取25.00KN/m3,天然、饱和单轴抗压强度标准值分别为30.73MPa 和

24.25MPa,地基承载力特征值按《建筑地基基础设计规范》(GB50007-2011)5.2.6 计算公式确定为8.49MPa。

砂岩饱和单轴抗压强度标准值为24.25MPa,中等风化砂岩为较软岩。声波测井结果表明,中等风化砂岩岩体较完整,岩体基本质量等级为Ⅳ。

岩土体性质指标参数根据勘察报告提供的建议值(见表2)进行选取。参考《建筑边坡工程技术规范》表4.3.1中的结构面抗剪强度指标标准值,对于表2中未列出的强风化砂岩和压实素填土的粘聚力和内摩擦角,考虑适当取较低值,分别取为20Kpa(0.02Mpa)和20o。

表2:岩土体性质指标参数建议值

7 边坡稳定性分析

本文分别采用赤平投影法和FLAC3D数值模拟法对所选取的边坡进行稳定性定性分析和定量分析。

7.1赤平投影法

根据场地地质构造,采用理正岩土软件5.6中的“岩质边坡分析”中的“赤平极射投影法”对边坡进行稳定性定性分析。

根据场地工程地质资料,采用上半球投影方式,边坡高度H取8.400m,岩体容重取25kN/m3(采用中风化基岩的力学参数),水容重取0.00 kN/m3(不考虑地下水)。坡顶面倾向355°,倾角0°;边坡面上倾向355°,倾角90°;

考虑勘察报告中的两组外倾结构面——平面A倾向275°,倾角65°;平面B 倾角18°,倾角60°(不考虑内倾软弱结构面100°∠40°的影响)。平面A和平面B的粘聚力和内摩擦角取为岩土层在边坡高度范围内的加权平均值,分别为1565kPa和30°。

计算结果如图4所示:

图4:平面赤平投影计算结果

计算结果表明该边坡稳定类型为可能滑动。可以看到,外倾结构面A的走向与边坡面的走向近乎垂直,对边坡稳定性影响不大;而结构面B的走向与边坡面的走向相差23o,且倾角为60o,小于坡角为90o,所以结构面B为不稳定滑动面。

边坡稳定性分析资料讲解

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报

等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电 工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的问题。如果岩坡由于力过大和强度过低,则它可以处于不稳定的状态,一部分岩体向下或向外坍滑,这一种现象叫做滑坡。滑坡造成危害很大,为此在施工前,必须做好稳定分析工作。 岩坡不同于一般土质边坡,其特点是岩体结构复杂、断层、节理、裂隙互相切割,块体极不规则,因此岩坡稳定有其独特的性质。它同岩体的结构、块体密度和强度、边坡坡度、高度、岩坡表面和顶部所受荷载,边坡的渗水性能,地下水位的高低等有关。 岩体内的结构面,尤其是软弱结构面的的存在,常常是岩坡不稳定的主要因素。大部分岩坡在丧失稳定性时的滑动面可能有三种。一种是沿着岩体软弱岩层滑动;另一种是沿着岩体中的结构面滑动;此外,当这两种软弱面不存在时,也可能在岩体中滑动,但主要的是前面两种情况较多。在进行岩坡分析时,应当特别注意结构面和软弱层的影

边坡稳定分析与计算例题

边坡工程计算例题1. Consider the infinite slope shown in figure. (1) Determine the factor of safety against sliding along the soil-rock interface given H = 2.4m. H, will give a factor of safety, F, of 2 against sliding along (2) What height, s the soil-rock interface?. ??25?1k k1H Soil Rock Solution ⑴Equation is ?naCt?F?, s2???natna?r?H?cost?? Given ,,,r,HC We have 24?F1.s(2) Equation is C, ?H?nat2??n??cotsa?r?(F) s?nta??,,F,C,r Given s We have m11?1.H32??. 2. A cut is to be made in a soil that has,, and mkN/16.5?m?29kN/c?15?The side of the cut slope will make an angle of 45°with the horizontal. What FS, of 3?depth of the cut slope will have a factor of safety,S2?.If, and then Solution We are given 3FS?mkN/c?29??15C FSFS andshould both be equal to 3. We have?C c?FS c c d Or cc292mkN/??c??9.67d FSFS3SC Similarly, ?tan?FS??tan d??tan15tantan???tan?d3FSFS?s Or tan15???1?tan5.1?????d3?? ?into equation givesand Substituting the preceding values of c dd??????cos4csin45cos5.19.67sin?4dd m?H?7.1????? ???????5.1??1cos1?16.5cos45?????d 某滑坡的滑面为折线,其断面和力学参数如图和表所示,拟设计抗滑结构物,3.。,

边坡稳定性影响因子

摘自《基于范例推理的边坡稳定性智能评价方法研究》 边坡稳定性的分类标准 影响边坡稳定性的因素很多,根据各种因素对其稳定性的作用大小,考虑到现有技术条件下易于测量和便于实际应用,选择以下6项主要因素作为边坡稳定性评价指标,即:岩石抗压强度、岩石质量指标RQD、岩体弹性波速度、边坡高度、年降水量、岩体结构特征分值等。将边坡工程的稳定性分成5个等级,即:极稳定、稳定、中等稳定、不稳定、极不稳定等。表4一1、表4一2列出了根据工程实践经验和专家意见所获得的影响边坡稳定性的分类标准。采用极差化对表4一1数据进行无量纲化处理,列于表4一3。

摘自《斜坡稳定性综合评价方法的集成式因素权重赋值方法》 以工程地质类比法为基础,针对斜坡稳定性综合评价时因素权重赋值的困难,在斜坡稳定性影响因素分析及系统总结一些权重赋值方法之后,提出了一种集成式因素权重赋值方法,并给了赋值方法的选择策略及赋值过程的计算程序框图,使综合评价过程的因素权重赋值更为合理。工程类比法在应用时的影响因素确定及其权重赋值是关键。 一般斜坡稳定性影响因素都可以概括为内外两大因素,其评价指标及层次基本上可用图1来 概括;但在具体到某一区域斜坡或某一类型斜坡时,其指标选择要进行一定的取舍和细化,因为上述指标并非对每一区域或类型的斜坡稳定性都起主要影响作用。因此,在具体操作时常采用图2的结构。影响因素指标通常由地质分析进行初选和终选,初选一般由地质工程师通过勘探研究决定,终选一般采用专家确定或由统计分析获得。

目前常用的指标权重赋值方法是统计分析法和专家打分法。 摘自《边坡案例推理稳定性评价系统及治理措施优化研究》 基于案例的推理技术(acse一basedreasnoing,简称CBR),是近些年来发展起来的一项人工智能技术,是一种用以前的经验和方法,通过类比和联想来解决当前相似问题的求解策略,也可称为类比推理。它首先根据问题的特征,访问知识库中过去同类问题的求解策略,从中检索出相似的案例。当该案例满足问题要求时,该案例就是问题的解答,否则将以领域知识和经验为指导,根据问题的实际情况对检索到的案例加以调整、综合使之符合当前问题的需求。 首先根据边坡的物质组成将边坡分为土坡和岩坡,因为这两类边坡的稳定性影响因素差异很大。土坡的失稳模式分为:崩塌、圆弧滑动、沿基岩面滑动、液化滑坡。岩坡的失稳模式分为:崩塌、倾倒滑坡、剥落、圆弧滑动、楔形滑动、平面滑动、切层滑动。 本文系统中岩坡分为圆弧形破坏和楔形破坏,土坡分为圆弧滑动和沿层面滑动破坏。 根据英国专家Stead1984年对露天矿失稳边坡的统计结果,单一因素、二个因素、_三个因素、四个因素导致边坡失稳的分别占失稳边坡总数的16%、35%、34%、14%,这些共占失稳边坡总数的99%;失稳边坡中断层、节理、岩层倾角、软弱层带、地下水的出现率分别为:60%、54%、75%、40%、44%,是出现率最高的5个因素。这些统计结果表明:影响岩石边坡稳定性的主要因素一般不会超过5个,定量化可表示为边坡高度、重度、内聚力、摩擦角、边坡角、孔隙压力等。 其中最有代表的是sha等(1994)提出了六个评价指标:重度(Y)、内聚力(C)、内摩擦角(中)、结构面倾角(e)、坡高(H)、孔隙水压力系数u(),收集了82个实例。基于以上研究,本文选用重度(Y)、内聚力(C)、内摩擦角(中)、边坡角(平)、坡高(H)、孔隙水压力系数u()这六个评价指标作为影响边坡稳定的主要因素。文献Maximum likelihood estimation of slope stability 本文拟用遗传算法来优化边坡案例各属性特征的权重。同时与层次分析法计算的结果进行比

【精品】第9章边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价. 9。1边坡的变形与破坏类型 9。1.1概述

随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边

坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。

用理正岩土计算边坡稳定性

运用《理正岩土边坡稳定性分析》 作定量计算 (整理人:朱冬林,2012-2-21) 1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步! 2、为什么要用理正岩土边坡稳定性分析? 现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。这时候,就要辅以定量分析计算来提供证据了。 还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告

中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。 3、是否好用? 很好用。在保宜项目我一天计算几十个断面,既有效又快。 4、断面图能不能直接从CAD图读入? 可以。只需事先转化为dxf即可(用dxfout命令保存)。对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。 5、下面结合实例讲解计算过程,保证学一遍就上手。 以土质边坡计算为例(最常用) 进入土质边坡稳定性分析程序

边坡稳定性分析方法

边坡稳定性分析方法 1.1 概述 边坡稳定性分析是边坡工程研究的核心问题,一直是岩土工程研究的的一个热点问题。边坡稳定性分析方法经过近百年的发展,其原有的研究不断完善,同时新的理论和方法不断引入,特别是近代计算机技术和数值分析方法的飞速发展给其带来了质的提高。边坡稳定性研究进入了前所未有的阶段。 任何一个研究体系都是由简单到复杂,由宏观到微观,由整体到局部。对于边坡稳定性研究,在其基础理论的前提下,边坡稳定分析方法从二维扩展到三维,更符合工程的实际情况;由于一些新理论和新方法的出现,如可靠度理论和对边坡工程中不确定性的认识,边坡稳定分析方法由确定性分析向不确定性分析发展。同时,由于边坡工程的复杂性,边坡稳定评价不能依赖于单一方法,边坡的稳定性评价也由单一方法向综合评价分析发展。 1.2 边坡稳定性分析方法 边坡稳定性分析方法很多,归结起来可分为两类:即确定性方法和不确定性方法, 确定性方法是边坡稳定性研究的基本方法,它包括极限平衡分析法、极限分析法、数值分析法。不确定性方法主要有随机概率分析法等。 1.2.1 极限平衡分析法 极限平衡法是边坡稳定分析的传统方法,通过安全系数定量评价边坡的稳定性,由于安全系数的直观性,被工程界广泛应用。该法基于刚塑性理论,只注重土体破坏瞬间的变形机制,而不关心土体变形过程,只要求满足力和力矩的平衡、Mohr-Coulomb准则。其分析问题的基本思路:先根据经验和理论预设一个可能形状的滑动面,通过分析在临近破坏情况下,土体外力与内部强度所提供抗力之间的平衡,计算土体在自身荷载作用下的边坡稳定性过程。极限平衡法没有考虑土体本身的应力—应变关系,不能反映边坡变形破坏的过程,但由于其概念简单明了,且在计算方法上形成了大量的计算经验和计算模型,计算结果也已经达到了很高的精度。因此,该法目前仍为边坡稳定性分析最主要的分析方法。在工程实践中,可根据边坡破坏滑动面的形态来选择相应的极限平衡法。目前常用的极限平衡法有瑞典条分法、Bishop法、Janbu法、Spencer法、Sarma法Morgenstern-Price 法和不平衡推力法等。

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

边坡稳定性计算说明

边坡稳定性计算 一、编制依据 为保证挖方施工安全,施工现场做到“安全、文明”,满足施工进度要求,以下列法律、法规、标准、规范、规程、相关文件为强制性前提,进行边坡稳定性计算。 1、现有施工图设计; 2、《公路桥涵施工技术规范》(JTJ041-2000); 3、《路桥施工计算手册》(人民交通出版社); 4、《土力学与地基基础》; 二、工程概况及地质情况 岢岚至临县高速公路是《山西省高速公路网规划》“3纵11横11环”中西纵高速公路的重要组成部分,也是山西省西部把第四横(保德-五台长城岭)和第五横(平定杨树庄—佳县)高速公路窜连起来的重要路段。 项目区路线走廊带地形起伏极大,总体地势为东北高西南低,地貌主体为隆起的基岩中山与黄土梁峁,部分区域为海拔较低的河流沟谷及冲沟,。受构造活动和水流侵蚀作用的影响,本区地形切割剧烈,河谷发育,沟壑纵横,依据地貌成因类型及其显示特征,将本区划分为黄土丘陵区、侵蚀堆积河川宽谷区、山岭区、黄土覆盖中低山区四个地貌单元,岩性主要为第四系冲、坡积及风积粉土及粉质粘土等。 三、计算 本项目地形复杂,涵洞、桩基及路基施工作业面比较多。根据挖方路段在全线的分布情,选择有代表性路段进行分析计算。由于项目地质挖方为风积粉土及粉质粘土,是典型的黄土地貌。根据施工图纸给出的计算参数,对于黄土挖方路段,拟定边坡参数γ=19g/cm3,C=40 Kpa,φ=29°,采用瑞典条分法进行计算,稳定安全系数达到1.2以上。 3.1 瑞典条分法原理 如图所示边坡,瑞典条分法假定可能滑动面是一圆弧AD,不考虑条块两侧的作用力,即假设Ei和Xi的合力等于Ei+1和Xi+1的合力,同时它们的作用线

边坡稳定计算

附件四:边坡稳定性计算书 1、汽机房区域边坡稳定性计算书(适用于基坑基底标高为-7.00m~-9.00m)H=8.5m 天然放坡支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ] ---------------------------------------------------------------------- 天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法 基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 1.00m 天然放坡计算结果:

第4章ANSYS边坡工程应用实例分析

v1.0 可编辑可修改 156 第4章 ANSYS边坡工程应用实例分析 本章重点 边坡工程概述 ANSYS边坡稳定性分析步骤 ANSYS边坡稳定性实例分析 本章典型效果图

v1.0 可编辑可修改 157 边坡工程概述 边坡工程 边坡指地壳表部一切具有侧向临空面的地质体,是坡面、坡顶及其下部一定深度坡体的总 称。坡面与坡顶面下部至坡脚高程的岩体称为坡体。 倾斜的地面称为斜坡,铁路、公路建筑施工中,所形成的路堤斜坡称为路堤边坡;开挖路堑所形成的斜坡称为路堑边坡;水利、市政或露天煤矿等工程开挖施工所形成的斜坡也称为边坡;这些对应工程就称为边坡工程 对边坡工程进行地质分类时,考虑了下述各点。首先,按其物质组成,即按组成边坡的地层和岩性,可以分为岩质边坡和土质边坡(后者包括黄土边坡、砂土边坡、土石混合边坡)。地层和岩性是决定边坡工程地质特征的基本因素之一,也是研究区域性边坡稳定问题的主要依据.其次,再按边坡的结构状况进行分类。因为在岩性相同的条件下,坡体结构是决定边坡稳定状况的主要因素,它直接关系到边坡稳定性的评价和处理方法。最后,如果边坡已经变形,再按其主要变形形式进行划分。即边坡类属的称谓顺序是:岩性—结构—变形。 边坡工程对国民经济建设有重要的影响:在铁路、公路与水利建设中,边坡修建是不可避免的,边坡的稳定性严重影响到铁路、公路与水利工程的施工安全、运营安全以及建设成本。在路堤施工中,在路堤高度一定条件下,坡角越大,路基所占面积就越小,反之越大。在山区,坡角越大,则路堤所需填方量越少。因此,很有必要对边坡稳定性进行分析,

v1.0 可编辑可修改边坡变形破坏基本原理 应力分布状态 边坡从其形成开始,就处于各种应力作用(自重应力、构造应力、热应力等)之下。在边坡的发展变化过程中,由于边坡形态和结构的不断改变以及自然和人为营力的作用,边坡的应力状态也随之调整改变。根据资料及有限元法计算,应力主要发生以下变化: (1)岩体中的主应力迹线发生明显偏转,边坡坡面附近最大主应力方向和坡而平行,而最小主应力方向则与坡面近于垂直,并开始出现水平方向的剪应力,其总趋势是由内向 外增多,愈近坡脚愈高,向坡内逐渐恢复到原始应力状态。 (2) 在坡脚逐渐形成明显的应力集中带。边坡愈陡,应力集中愈严重,最大最小主应力的 差值也愈大。此外,在边坡下边分别形成切向应力减弱带和水平应力紧缩带,而在靠 近边坡的表部所测得的应力值均大于按上覆岩体重量计算的数值。 (3) 边坡坡面岩体由于侧向应力近于零,实际上变为两向受力。在较陡边坡的坡面和顶面, 出现拉应力,形成拉应力带.拉应力带的分布位置与边坡的形状和坡面的角度有关。边 坡应力的调整和拉应力带的出现,是边坡变形破坏最初始的征兆。例如,由于坡脚应 力的集中,常是坡脚出现挤压破碎带的原因;由于坡面及坡顶出现拉应力带,常是表 层岩体松动变形的原因。 边坡岩体变形破坏基本形式 边坡在复杂的内外地质营力作用下形成,又在各种因素作用下变化发展。所有边坡都在不断变形过程中,通过变形逐步发展至破坏。其基本变形破坏形式主要有:松弛张裂、滑动、崩塌、158

边坡稳定性分析

边坡稳定性分析 内容摘要 目前,边坡失稳的防治仍然是一项很艰巨的任务,对边坡的稳定性分析及处治技术进行深入研究具有重要的意义。论文首先简要阐述了边坡工程稳定性分析及处治技术研究的意义,介绍了边坡工程稳定性分析的一些常用方法,并结合笔者的实践经验,提出了边坡工程处治对策。 边坡稳定分析是岩土工程中的重要研究课题。边坡稳定性分析的观点变化是随着人类理论方面的突破和实践经验的积累而变化的。总的来说,边坡稳定性分析是一个逐步由定性分析向定量、半定量分析发展的过程,并且可视化程度越来越高。文章从定性分析、定量分析、不确定分析等角度介绍了几种主要的边坡稳定性分析方法 关键词:边坡;边坡稳定性;边坡失稳;稳定性分析;处治对策 1

边坡稳定性分析 目录 内容摘要 (1) 1绪论 (4) 1.1 边坡稳定性概念 (4) 1.1.1 边坡体自身材料的物理力学性质 (4) 1.1.2 边坡的形状和尺寸 (5) 1.1.3 边坡的工作条件 (5) 1.1.4 边坡的加固措施 (5) 1.2 边坡的稳定性表示方法 (5) 1.3 边坡破坏 (6) 2 边坡的分类 (6) 3 边坡稳定性的影响因素 (7) 3.1 潜在影响因素 (7) 3.1.1 地形因素 (7) 3.1.2 地质材料因素 (7) 3.1.3 地质构造因素 (8) 3.2 诱发影响因素 (8) 3.2.1 环境因素 (8) 3.2.2 人为因素 (9) 4 边坡稳定性的分析方法 (10) 4.1 定性分析方法 (10) 4.1.1 工程地质类比法 (10) 4.1.2 地质分析法(历史成因分析法) (10) 4.1.3 图解法 (10) 4.1.4 边坡的分析数据库和专家系统 (11) 4.2 定量分析方法 (11) 4.2.1 极限平衡法 (11) 2

边坡稳定性案例分析

边坡稳定性分析方法综述及案例研究 摘要:本文首先介绍实际工程中边坡稳定性分析及处治技术研究的意义,其次介绍边坡破坏的形式及影响因素,并系统地介绍边坡稳定性分析的三大类方法及其原理。最后结合工程实际案例,采用赤平投影方法和FLAC3D软件数值模拟对案例中涉及的边坡进行了稳定性评价,并提出合理的加固措施。 关键词:边坡稳定性,稳定性分析方法,赤平投影法,数值模拟,边坡加固 ABSTRACT: This article firstly introduces the meaning of slope stability analysis in practical projects and study on treatment technology, then demonstrates the forms of slope failure and the influence factors. The article also introduces the three main methods on slope stability analysis and their theories systematically. In the end, according to a practical project, stereographic projection and numerical simulation through FLAC3D software are employed to conduct estimation of stability of a slope involved in the project, and thus the reasonable reinforcement measures. Key Words:slope stability analysis, stability analysis methods, stereographic projection, numerical simulation, slope reinforcement

边坡稳定性计算方法11111

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗 剪度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析 该滑动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条 进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的 剪应力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无粘性 土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图 9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。假定 边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面 AC 上的力 系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由 粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里 假定φ= 0 。边坡沿AC的安全系数F s 用作用在 AC面上的抗滑力矩和下滑力矩之比表 示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ= 0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法 前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。为了将圆弧滑动法应用于φ> 0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳定安全系数。 采用分条法计算边坡的安全系数F ,如图 9 - 4 所示,将滑动土体分成若干土条。土条的宽度越小,计算精度越高,为了避免计算过于繁

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

平面、折线滑动法边坡稳定性计算书

平面、折线滑动法边坡稳定性计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑边坡工程技术规范》GB50330-2002 3、《建筑施工计算手册》江正荣编著 一、基本参数 边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20 土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12 边坡高度H(m) 11.862 边坡斜面倾角α(°)40 坡顶均布荷载q(kPa) 0.2 二、边坡稳定性计算 计算简图 滑动面参数 滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m) 1 35 5.67 2 35 5.6 3 35 5.67 土条面积计算:

R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/m T1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/m R2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/m T2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/m R3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865 kN/m T3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/m K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1) 第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为: ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφi K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25 满足要求!

边坡稳定性报告

目录 一、概况 ............................................. 错误!未定义书签。(一)项目概况...................................... 错误!未定义书签。(二)工程地质概况.................................. 错误!未定义书签。 1、地形地貌....................................... 错误!未定义书签。 2、地层岩性....................................... 错误!未定义书签。 3、气象........................................... 错误!未定义书签。 4、水文地质特征................................... 错误!未定义书签。 5、地震参数....................................... 错误!未定义书签。 二、计算依据.......................................... 错误!未定义书签。 三、边坡稳定性验算.................................... 错误!未定义书签。(一)验算断面...................................... 错误!未定义书签。 1、生产区边坡验算断面............................. 错误!未定义书签。 2、生活区边坡断面................................. 错误!未定义书签。(二)边坡稳定性验算................................ 错误!未定义书签。 1、验算工况....................................... 错误!未定义书签。 2、验算参数选取................................... 错误!未定义书签。 3、验算结果....................................... 错误!未定义书签。 四、结论.............................................. 错误!未定义书签。 五、建议.............................................. 错误!未定义书签。

边坡稳定性分析模式及流程

一、土岩混合边坡分析 土岩混合边坡稳定性分析一般有四种: 1、上部土层及风化层内部的破坏(圆弧或折线,受土体强度控制,软件自动搜索最危险滑面); 2、沿土岩交界面滑动破坏(土与风化层面或土、风化层与基岩面,受交界面强度控制,软件指定交界面进行计算稳定性,采用圆滑滑动(均质土体时)和折线滑动(覆盖层与基岩面时)两种计算); 3、下部岩体结构面破坏(受结构面控制,平面或楔形体破坏,倾倒破坏也可能。先用赤平投影定性分析(龙海涛和理正结合使用),根据定性情况,若不稳定,则用理正进行定量稳定性计算(平面滑动和楔形体滑动))。 4、上部土体圆弧滑动,下部岩体沿结构面滑动破坏(分析了1和3后,二者都不稳定时,则对边坡整体进行计算,采用1的最危险滑动面与3的平面滑动面组合成上部圆弧,下部直线(层面、某节理裂隙或结构面组合的交线)的整体滑动面,采用传递系数法进行稳定性计算),则1.2.3.4得到四种稳定系数,根据稳定系数进行综合评价。 5、极软岩边坡可能受岩土体强度控制,也可能受结构面控制,故也应对边坡整体进行稳定性计算,采用圆弧滑动(简化毕肖普法)和折线滑动(传递系数隐式解法)分别进行计算。 6、若1.2稳定,3不稳定,则会发生下部岩体沿结构面滑动破坏,从而带动上部土体一起滑动破坏。故下部岩体稳定性很重要。 综合內摩擦角是对平面滑动的,若提粘聚力很小,甚至为零,只有內摩擦角,则破坏模式为平面滑动,如砂砾石层,岩层等。若判断破坏模式为圆弧滑动,则必须提粘聚力与內摩擦角,如破碎岩层、强风化层与上部土层可能发生圆弧滑动破坏。故,提不提粘聚力,可否换算成综合內摩擦角,取决于判断其破坏模式是圆弧还是平面滑动。 下部为极软岩的土岩混合边坡除按岩质边坡分析外,还需计算五种滑动面稳定系数,如下:(下部为硬质的边坡,可不计算整体圆弧滑动,整体折现滑动视基岩内部裂隙及破碎带

用理正岩土计算边坡稳定性66816讲解学习

用理正岩土计算边坡稳定性66816

运用《理正岩土边坡稳定性分析》 作定量计算 (整理人:朱冬林,2012-2-21) 1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步! 2、为什么要用理正岩土边坡稳定性分析? 现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。这时候,就要辅以定量分析计算来提供证据了。

还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。 3、是否好用? 很好用。在保宜项目我一天计算几十个断面,既有效又快。 4、断面图能不能直接从CAD图读入? 可以。只需事先转化为dxf即可(用dxfout命令保存)。对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。 5、下面结合实例讲解计算过程,保证学一遍就上手。 以土质边坡计算为例(最常用) 进入土质边坡稳定性分析程序

相关主题