搜档网
当前位置:搜档网 › 概率统计大题题型总结 理 学生版

概率统计大题题型总结 理 学生版

概率统计大题题型总结 理 学生版
概率统计大题题型总结 理 学生版

统计概率大题题型总结

题型一频率分布直方图与茎叶图

例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.

第17题图

(Ⅰ) 根据茎叶图计算样本均值;

(Ⅱ)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;

(Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率.

例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t该产品获利润500元,未售出的产品,每t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,150

100≤

≤X)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内销商该农产品的利润.

(Ⅰ)将T表示为X的函数;

(Ⅱ)根据直方图估计利润T不少于57000元的概率;

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入

X∈,则取该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)

X=的概率等于需求量落入[100,110)的概率),求利润T的数学期105

X=,且105

望.

变式1.【2015高考重庆,理3】重庆市2013年各月的平均气温(o C)数据的茎叶图如下:

则这组数据的中位数是()

A、19

B、20

C、

D、23

变式2.【2015高考新课标2,理18】(本题满分12分)

某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:

A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89

B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79

(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);

(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:

记时间C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.

变式3.(2012辽宁理)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情

况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.

(Ⅰ)根据已知条件完成下面的22 列联表,并据此资料你是否认为“体育迷”与性别有关

A 地区

B 地区

4 5 6 7 8 9

(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽 样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X . 变式4 【2014新课标Ⅰ理18】(本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);

(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i) 利用该正态分布,求(187.8212.2)P Z <<;

(ii) 某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为

于区间

(,)的产品件数,利用(i )的结果,求EX .

若Z ~2(,)N μδ,则()P Z μδμδ-<<+=,(22)P Z μδμδ-<<+=. 题型二 抽样问题

例【2015高考广东,理17】某工厂36名工人的年龄数据如下表:

(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据; (2)计算(1)中样本的平均值x 和方差2s ;

(3)36名工人中年龄在s x -与s x +之间有多少人所占的百分比是多少(精确到%) 变式 (2009天津卷文)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B,C 三个区中抽取7个工厂进行调查,已知A,B ,C 区中分别有18,27,18个工厂

(Ⅰ)求从A,B,C 区中分别抽取的工厂个数;

(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率。

题型三 古典概型 有限等可能事件的概率

在一次实验中可能出现的结果有n 个,而且所有结果出现的可能性都相等。如果事件A 包含的结果有m 个,那么P (A )=

n

m

。这就是等可能事件的判断方法及其概率的计算公式。高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。

例题1【2015高考天津,理16】(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.

(I)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;

(II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 例2【2015高考安徽,理17】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.

(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;

(Ⅱ)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望). 变式1【2015高考重庆,理17】 端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意

选取3个。

(1)求三种粽子各取到1个的概率;

(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望

变式2 (2013天津理)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1,

2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).

(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.

(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.

题型四 几何概型----无线等可能事件发生的概率

例1【2015高考湖北,理7】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12

x y +≥”的概率,2p 为事件“1

||2

x y -≤”的概率,3p 为事件“12

xy ≤”的概率,则 ( )

A .123p p p <<

B .231p p p <<

C .312p p p <<

D .321p p p <<

变式1【2015高考福建,理13】如图,点A 的坐标为()1,0 ,点C 的坐标为

()2,4 ,函数()2f x x = ,若在矩形ABCD 内随机取一点,则此点取自阴影部

分的概率等于 .

变式2(2012年高考(北京理))设不等式组02

02

x y ≤≤??≤≤?表示的平面区D .在区

域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )

A .

4

π

B .22π-

C .

6

π D .

44

π

- 题型五 相互独立事件发生概率计算

事件A (或B )是否发生对事件B (或A )发生的概率没有影响,则A 、B 叫做相互独立事件,它们同时发生的事件为B A ?。用概率的乘法公式()()()B P A P B A P ?=?计算。 例1(2013辽宁数学理)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3

道题解答.

(I)求张同学至少取到1道乙类题的概率;

(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都

是35,答对每道乙类题的概率都是4

5

,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.

例2(2013山东理)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛

随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是2

3

,假设各局比赛结果相互独立.

(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;

(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X 的分布列及数学期望.

变式1 (2012年高考(山东理))先在甲、乙两个靶.某射手向甲靶射击一次,命中的概

率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为2

3

,每命中

一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.

(Ⅰ)求该射手恰好命中一次得的概率;

(Ⅱ)求该射手的总得分X 的分布列及数学期望EX .

变式2(2012重庆理)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)

甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或

每人都已投球3次时投篮结束.设甲每次投篮投中的概率为1

3

,乙每次投篮投中的概率为

1

2

,且各次投篮互不影响. (Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望 题型六 n 次独立重复试验的概率 ----二项分布

若在n 次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n 次独立重复试验。若在1 次试验中事件A 发生的概率为P ,则在n 次独立惩处试

验中,事件A 恰好发生k 次的概率为()()1n k

k k

n n

P k C P P -=-。

高考结合实际应用问题考查n 次独立重复试验中某事件恰好发生k 次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。

例1【2015高考湖南,理18】某商场举行有奖促销活动,顾客购买一定金额商品后即可

抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.

例2【2014辽宁理18】(本小题满分12分)

一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;

(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .

变式1(2012四川理)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系

统A 和B 在任意时刻发生故障的概率分别为

1

10

和p . (Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为

49

50

,求p 的值; (Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ. 题型七 离散型随变量概率分布列 设离散型随机变量的分布列为

它有下面性质:①),2,1(0K =≥i P i ②,121=++++K K i p p p 即总概率为1;

③期望;11K K +++=i i P x P x E ξ方差K K +-++-=i i P E x P E x D 2121)()(ξξξ

离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 高考常结合应用问题对随机变量概率分布列及其性质的应用进行考查. 例题1 (2010天津理)某射手每次射击击中目标的概率是2

3

,且各次射击的结果互不影响。

(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率

(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率; (Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列。 题型八 标准正态分布

例(2013年高考湖北卷(理))假设每天从甲地去乙地的旅客人数X 是服从正态分布

()2800,50N 的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为0p .

(I)求0p 的值;(参考数据:若()2,X N μσ:,有()0.6826P X μσμσ-<<+=

()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=.)

(II)某客运公司用A .B 两种型号的车辆承担甲.乙两地间的长途客运业务,每车每天往返一次,A .B 两种车辆的载客量分别为36人和60人,从甲地去乙地的运营成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求

B 型车不多于A 型车7辆.若每天要以不小于0p 的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的运营成本最小,那么应配备A 型车.B 型车各多少辆 变式1【2015高考湖北,理4】设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密度曲线如图所示.下列结论中正确的是( )

A .21()()P Y P Y μμ≥≥≥

B .21()()P X P X σσ≤≤≤

C .对任意正数t ,()()P X t P Y t ≤≥≤

D .对任意正数t ,()()P X t P Y t ≥≥≥ 变式2 【2015高考山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布

()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )

(附:若随机变量ξ服从正态分布()2,N μσ ,则()68.26%P μσξμσ-<<+= ,

()2295.44%P μσξμσ-<<+=。)

(A )% (B )% (C )% (D )% 题型九 线性回归分析

例1【2014年全国新课标Ⅱ(理19)】(本小题满分12分)

某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:

(Ⅰ)求y 关于t 的线性回归方程;

(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()

()

1

2

1

n

i

i

i n

i i t t y y b t t ∧

==--=

-∑∑,

??a

y bt =- 例2【2014年重庆卷(理03)】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =,

3.5y =

,则由观测的数据得线性回归方程可能为( )

变式 (09扬州市模拟) 为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7次考试的成绩.

(1)他的数学成绩与物理成绩哪个更稳定请给出你的证明;

(2)已知该生的物理成绩y 与数学成绩x 是线性相关的,若该生的物理成绩达到115

分,请你估计他的数学成绩大约是多少并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议. 题型十 独立性检验

例.(2013福建,文19)(本小题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.

25周岁以上组 25周岁以下组

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;

(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”

附:

(注:此公式也可以写成2

()()()()()

n ad bc K a b c d a c b d -=++++)

变式:见题型一变式3

概率论与数理统计知识点总结!

《概率论与数理统计》 第一章随机事件及其概率 §1.1 随机事件 一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率 古典概型公式:P (A )= 所含样本点数 所含样本点数 ΩA 实用中经常采用“排列组合”的方法计算 补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A : “每个盒子恰有1个球”。求:P(A)=?Ω所含样本点数:n n n n n =???... Α所含样本点数:!1...)2()1(n n n n =??-?-?n n n A P ! )(=∴ 补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。(i =1,2,3)求:P(A i )=? Ω所含样本点数:6444 443==?? A 1所含样本点数:24234=?? 8 36424)(1== ∴A P A 2所含样本点数: 363423=??C 16 9 6436)(2== ∴A P A 3所含样本点数:443 3 =?C 16 1644)(3== ∴A P 注:由概率定义得出的几个性质: 1、0

P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n ) 推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1 推论3: P (A )=1-P (A ) 推论4:若B ?A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式): 对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律: n n A A A A A A ???=???......2121 n n A A A A A A ???=??? (2121) §1.4 条件概率与乘法法则 条件概率公式:P(A/B)= )()(B P AB P (P(B)≠0)P(B/A)= ) () (A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A ) 有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。 全概率与逆概率公式: 全概率公式: ∑==n i i i A B P A P B P 1 )/()()( 逆概率公式: ) () ()/(B P B A P B A P i i = ),...,2,1(n i = (注意全概率公式和逆概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;如果求在第二步某事件发生条件下第一步某事件的概率,就用逆概率公式。) §1.5 独立试验概型 事件的独立性: )()()(B P A P AB P B A =?相互独立与 贝努里公式(n 重贝努里试验概率计算公式):课本P24 另两个解题中常用的结论—— 1、定理:有四对事件:A 与B 、A 与B 、A 与B 、A 与B ,如果其中有一对相互 独立,则其余三对也相互独立。 2、公式:)...(1)...(2121 n n A A A P A A A P ???-=??? 第二章 随机变量及其分布

概率知识点总结及题型汇总-统计概率知识点总结

概率知识点总结及题型汇总 一、确定事件:包括必然事件和不可能事件 1、在一定条件下必然要发生的事件,叫做必然事件。必然事件是指一定能发生的事件,或者说发生的可能性是100%;如:从一包红球中,随便取出一个球,一定是红球。 2、在一定条件下不可能发生的事件,叫做不可能事件。不可能事件是指一定不能发生的事件,或者说发生的可能性是0,如:太阳从西边出来。这是不可能事件。 3、必然事件的概率为1,不可能事件的概率为0 二、随机事件 在一定条件下可能发生也可能不发生的事件,叫做随机事件。 一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一个随机事件发生的可能性的大小用概率来表示。 三、例题:指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件,哪些是确定事件? ①一个玻璃杯从一座高楼的第10层楼落到水泥地面上会摔破; ②明天太阳从西方升起;③掷一枚硬币,正面朝上; ④某人买彩票,连续两次中奖;⑤今天天气不好,飞机会晚些到达. 解:必然事件是①;随机事件是③④⑤;不可能事件是②.确定事件是①② 三、概率 1、一般地,对于一个随机事件A ,把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A) . (1)一个事件在多次试验中发生的可能性,反映这个可能性大小的数值叫做这个事件发生的概率。(2)概率指的是事件发生的可能性大小的的一个数值。 2、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性 都相等,事件 A 包含其中的m种结果,那么事件A 发生的概率为P(A) = m n . (1)一般地,所有情况的总概率之和为1。(2)在一次实验中,可能出现的结果有限多个. (3)在一次实验中,各种结果发生的可能性相等. (4)概率从数量上刻画了一个随机事件发生的可能性的大小,事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。 (5)一个事件的概率取值:0≤P(A)≤1 当这个事件为必然事件时,必然事件的概率为1,即P(必然事件)=1 不可能事件的概率为0,即P(不可能事件)=0 随机事件的概率:如果A为随机事件,则0<P(A)<1 (6)可能性与概率的关系 事件发生的可能性越大,它的概率越接近于1,事件发生的可能性越小,则它的概率越接近0.

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

最新统计概率文科题型总结

精品文档 统计和概率高考题型总结 题型一、频率分布直方图 1.对某校高三年级学生参加社区服务次数进行统计, 随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数. 根据此数据作出了频数与频率的统计表和频率分布直方图如下: (Ⅰ)求出表中,M p 及图中a 的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15) 内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间 [25,30)内的概率. 题型二、古典概型 2.某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下: (I )若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值; (Ⅱ)在(I )的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率. 题型三、回归方程 3.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5

精品文档 (I )从3月1日至3月5日中任选2天,记发芽的种子数分别为,,求事件“,均小于25”的概率; (II )请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程???y bx a =+; (III )若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方 程是可靠的,试问(II )所得的线性回归方程是否可靠? (参考公式:回归直线方程式???y bx a =+,其中1 2 2 1 ???,n i i i n i i x y nx y b a y bx x nx ==-==--∑∑) 题型四、独立性检验 4. 为了解学生喜欢数学是否与性别有关,对50个学生进行了问卷调查得到了如下的列联表: (1(2(参考公式:2 () ()()()() n a d b c K a bc d a cb d -=+ +++,其中na b cd =+++ ) 题型五、茎叶图 5.随机抽取某中学甲、乙两班各10名同学,测量它们的身高(单位:cm ),获得身高数据的茎叶图如图所示。 甲班 乙班 2 18 1 9 9 1 0 17 0 3 6 8 9 8 8 3 2 16 2 5 8 8 15 9 (1) 根据茎叶图判断哪两个班的平均身高较高; (2) 计算甲班的样本方差; (3) 现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率。 题型六、分层抽样 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1) 求x 的值;

概率论重点及课后题答案2

第2章条件概率与独立性 一、大纲要求 (1)理解条件概率的定义. (2)掌握概率的加法公式、乘法公式,会应用全概率公式和贝叶斯公式. (3)理解事件独立性的概念,掌握应用事件独立性进行概率计算. (4)了解独立重复试验概型,掌握计算有关事件概率的方法,熟悉二项概率公式的应用. 二、重点知识结构图 三、基础知识 1.条件概率 定义设有事件A B 、,且()0P B ≠,在给定B 发生的条件下A 的条件概率,记为(|)P A B ,有 ()(|)() P AB P A B P B = 2.乘法公式

定理若对于任意事件A B 、,都有()0,()0P A P B >>,则 ()()(|)()(|)P AB P A P B A P B P A B == 这个公式称为乘法定理. 乘法定理可以推广到有限多个随机事件的情形. 定理设12,,,n A A A 为任意n 个事件(2n ≥),且121()0n P A A A -> ,则有 121121312121()()(|)(|)(|)n n n n P A A A A P A P A A P A A A P A A A A --= 3.全概率公式 定理设12,,B B 为一列(有限或无限个)两两互不相容的事件,有 1 i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一事件A ,有1 ()()(|)i i i P A P B P A B ∞==∑. 4.贝叶斯公式 定理设12,,B B 为一系列(有限或无限个)两两互不相容的事件,有 1i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一具有正概率的事件A ,有 1 ()(|) (|)()(|)k k k j j j P B P A B P B A P B P A B ∞==∑ 5.事件的相互独立性 定义若两事件A B 、满足,则称A B 、(或B A 、)相互独立,简称独立. 定理若四对事件;;A B A B A B A B 、、 、;、 中有一对是相互独立的, 则另外三对事件也是相互独立的.即这四对事件或者都相互独立,或者都相互不独立. 定义设12n A A A ,,,是n 个事件,若对所有可能的组合1i j k n ≤<<<≤ 成立: ()()()i j i j P A A P A P A =(共2n C 个)

统计概率知识点归纳总结归纳大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性与随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率、 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5.掌握离散型随机变量的分布列、 6.掌握离散型随机变量的期望与方差、 7.掌握抽样方法与总体分布的估计、 8.掌握正态分布与线性回归、 考点1、求等可能性事件、互斥事件与相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复、 (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1、 (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(、其中P 为事件A 在一次试验中发生的概率,此式为二项式 [(1-P)+P]n 展开的第k+1项、

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤就是: 第一步,确定事件性质???????等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种、 第二步,判断事件的运算???和事件积事件 即就是至少有一个发生,还就是同时发生,分别运用相加或相乘事件、 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -?=???+=+???=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复、 考点2离散型随机变量的分布列 1、随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示、 ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量、 ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量、 2、离散型随机变量的分布列 ①离散型随机变量的分布列的概念与性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P(i x =ξ)=i P ,则称下表、

概率统计大题总结

概率与统计大题总结 一、 知识点汇编: 1.线性回归分析 (1)函数关系是一种确定性关系,而相关关系是一种非确定性关系.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. (2)线性回归分析:方法是画散点图,求回归直线方程,并用回归直线方程进行预报.其回归方程的截距和斜率的最小二乘估计公式分别为: 回归模型中,R 2表示解释变量对于预报变量变化的贡献率.R 2越接近于1,表示回归的效果越好.如果对某组数据可能采取几种不同的回归方程进行回归分析,也可以通过比较几个R 2,选择R 2大的模型作为这组数据的模型. 说明:r 只能用于线性模型,R 2则可用于任一种模型. 对线性回归模型来说,2 2 =R r . 3、独立性检验 (1)对于性别变量,其取值为男和女两种.这种变量的不同“值”表示个体所属的不同类 别,像这类变量称为分类变量. (2)假设有两个分类变量X 和Y ,它们的值域分别为{}11x ,y 和{}12y ,y 其样本频数列联表

称为 y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计 a +c b +d a + b + c +d (3)构造随机变量()()()()()() 2 2 +++-= ++++a b c d ad bc K ,a b c d a c b d 利用K 2的大小可以确定在多大程度上可以认为“两个分类变量有关系”,这种方法称为 如:如果k >7.879,就有99.5%的把握认为“X 与Y 有关系”. 4、概率 事件的关系: ⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ?; ⑵事件A 与事件B 相等:若A B B A ??,,则事件A 与B 相等,记作A=B ; ⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ?(或B A +) ; ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ?(或 AB ) ; ⑸事件A 与事件B 互斥:若B A ?为不可能事件(φ=?B A ),则事件A 与互斥;

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

概率统计常见题型及方法总结

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致 B 这 个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因 i A 的概率问题 全概率公式:()()() 1 B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少? 解i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球,2分 则 b a a B P += )(1,2分 111++++ ++++=b a a b a b b a a b a a b a a +=2分 依次类推2分 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少? 、解记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任取一件产品 进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为0.05,而一件次品被误判为正品的概率为0.01。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解设A 表示“任取一件产品被检验为正品”,B 表示“任取一件产品是正品”,则 ()96100P B = ,()4100 P B =,()|0.95P A B =,()|0.01P A B =

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

XX考研数学概率论重要考点总结

XX考研数学概率论重要考点总结 第一章随机事件和概率 一、本章的重点内容: 四个关系:包含,相等,互斥,对立﹔ 五个运算:并,交,差﹔ 四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔ 概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔ 五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔· 条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。 近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。 二、常见典型题型: 1.随机事件的关系运算﹔ 2.求随机事件的概率﹔ 3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。 第二章随机变量及其分布 一、本章的重点内容: 随机变量及其分布函数的概念和性质(充要条件)﹔

分布律和概率密度的性质(充要条件)﹔ 八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔ 会计算与随机变量相联系的任一事件的概率﹔ 随机变量简单函数的概率分布。 近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布 二、常见典型题型: 1.求一维随机变量的分布律、分布密度或分布函数﹔ 2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔ 3.反求或判定分布中的参数﹔ 4.求一维随机变量在某一区间的概率﹔ 5.求一维随机变量函的分布。 第三章二维随机变量及其分布 一、本章的重点内容: 二维随机变量及其分布的概念和性质, 边缘分布,边缘密度,条件分布和条件密度, 随机变量的独立性及不相关性, 一些常见分布:二维均匀分布,二维正态分布, 几个随机变量的简单函数的分布。

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+= ++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数:1 1 2 2 2 2 1 1 1 1 ()() ()() ()() n n i i i i i i n n n n i i i i i i i i x x y y x y nx y r x x y y x x y y ======---?∑∑= = ----∑∑∑∑ 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 1x 2x 合计 1y a b a b + 2y c d c d + 合计 a c + b d + n

概率论与数理统计总结

第一章 随机事件与概率 第一节 随机事件及其运算 1、 随机现象:在一定条件下,并不总是出现相同结果的现象 2、 样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω 表示基本结果,又称为样本点。 3、 随机事件:随机现象的某些样本点组成的集合常用大写字母A 、B 、C 等表 示,Ω表示必然事件, ?表示不可能事件。 4、 随机变量:用来表示随机现象结果的变量,常用大写字母X 、Y 、Z 等表示。 5、 时间的表示有多种: (1) 用集合表示,这是最基本形式 (2) 用准确的语言表示 (3) 用等号或不等号把随机变量于某些实属联结起来表示 6、事件的关系 (1)包含关系:如果属于A 的样本点必属于事件B ,即事件 A 发生必然导致事 件B 发生,则称A 被包含于B ,记为A ?B; (2)相等关系:若A ?B 且B ? A ,则称事件A 与事件B 相等,记为A =B 。 (3)互不相容:如果A ∩B= ?,即A 与B 不能同时发生,则称A 与B 互不相容 7、事件运算 (1)事件A 与B 的并:事件A 与事件B 至少有一个发生,记为 A ∪B 。 (2)事件A 与B 的交:事件A 与事件B 同时发生,记为A∩ B 或AB 。 (3)事件A 对B 的差:事件A 发生而事件B 不发生,记为 A -B 。用交并补可以 表示为B A B A =-。 (4)对立事件:事件A 的对立事件(逆事件),即 “A 不发生”,记为A 。 对立事件的性质:Ω=?Φ=?B A B A ,。 8、事件运算性质:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B∩C)=(A ∪B)∩(A∪C)、 A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)棣莫弗公式(对偶法则):B A B A ?=? B A B A ?=? 9、事件域:含有必然事件Ω ,并关于对立运算和可列并运算都封闭的事件类ξ 称为事件域,又称为σ代数。具体说,事件域ξ满足: (1)Ω∈ξ; (2)若A ∈ξ,则对立事件A ∈ξ; (3)若A n ∈ξ,n=1,2,···,则可列并 ∞ =1 n n A ∈ξ 。

概率统计知识点全面总结

知识点总结:统计与概率 I 统计 1.三大抽样 (1)基本定义: ① 总体:在统计中,所有考查对象的全体叫做全体. ② 个体:在所有考查对象中的每一个考查对象都叫做个体. ③ 样本:从总体中抽取的一部分个体叫做总体的样本. ④ 样本容量:样本中个体的数目叫做样本容量. (2)抽样方法: ①简单随机抽样:逐个不放回、等可能性、有限性。=======★适用于总体较少★ 抽签法:整体编号( 1~N )放入不透明的容器中搅拌均匀逐个抽取n 次,即可得样本容量为 n 的样本。 随机数表法:整体编号(等位数,如001、111不能是1、111) 从0~9中随机取一行一列然后初方向随机 (上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。 ②系统抽样:容量大.等距,等可能。=======★适用于总体多★ 用随机方法编号,若N 无法被整除,则剔除后再分组,n N k 。再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。(每组编号相同)。 ③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★ 总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =n N 3.总体分布的估计: (1)一表二图: ①频率分布表——数据详实 ②频率分布直方图——分布直观 ③频率分布折线图——便于观察总体分布趋势 ★注:总体分布的密度曲线与横轴围成的面积为1。 (2)茎叶图: ①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。 ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

概率统计常见题型及方法总结

概率统计常见题型及方法 总结 Prepared on 22 November 2020

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因i A 的概率问题 全概率公式: ()()() 1B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少 解 i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球, 2分 则 b a a B P +=)(1, 2分

)()()()()(1111111B A P B P B A P B P A P += 111++++ ++++= b a a b a b b a a b a a b a a += 2分 依次类推 2分 b a a A P i += )( 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少 、解 记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 ()()1()212()()()()12 r r r n P B P A B n m n P B A n m n m P B P A B P B P A B m n m n ?+===++?+?++ 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任取一件产品进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为,而一件次品被误判为正品的概率为。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解 设 A 表示“任取一件产品被检验为正品”, B 表示“任取一件产品是正品”,则 ()96100P B = ,()4100 P B =,()|0.95P A B =,()|0.01P A B = (1)由全概率公式得 ()()()()()||0.9124P A P B P A B P B P A B =+= (2)这批产品被检验为合格品的概率为 ()3 3 0.91240.7596p P A ===???? 四、在电报通讯中不断发出信号‘0’和‘1’,统计资料表明,发出‘0’和‘1’的概率分别为和,由于存在干扰,发出‘0’时,分别以概率和接收到‘0’和‘1’,以的概率收为模糊信号‘x ’;发出‘1’时,分别以概率和收到‘1’和‘0’,以概率收到模糊信号‘x ’。

概率论和数理统计知识点与练习题集

第一章概率论的基本概念 §概率的定义 一、概率的性质 (1)1 P. ≤A ) ( 0≤ (2)0 ) P,1 φ (= P. S ) (= (3)()()()() P A B P A P B P AB. ?=+- (4)) A P- =. P (A ( 1 ) (5)) P A B B A = P P- -.特别地,若A = ( ) ( ) ( P (AB ) A B?,-,) = P- ( ) B P A P≥. (A ( B ( ) ) ) P A P (B 例设,A B为随机事件, ()0.4,()0.3 P A B ?= P A P B A,则()_____. =-= 解:,3.0 A P B B P()()()()0.7 P A B P A P B P AB ?=+-= P -AB ( ) ( ) (= = - )

§ 条件概率 一、 条件概率 定义 设B A ,是两个事件,且0)(>A P ,称)|(A B P = ) () (A P AB P 为在事件A 发生的条件下事件B 发生的条件概率。 二、全概率公式 全概率公式:12,,,n A A A 为样本空间S 的一个事件组,且满足: (1)12,, ,n A A A 互不相容,且),,2,1(0)(n i A P i =>; (2) 12?? ?=n A A A S . 则对S 中的任意一个事件B 都有 ) ()()()()()()(2211n n A B P A P A B P A P A B P A P B P +++=

例设有一仓库有一批产品,已知其中50%、30%、20%依次是甲、乙、丙厂生产的,且甲、乙、丙厂生产的次品率分别为20 1 ,151,101,现从这批产品中任取一件,求取得正品的概率 解 以1A 、2A 、3A 表示诸事件“取得的这箱产品分别是甲、乙、丙厂生产”;以B 表示事件“取得的产品为正品”,于是: ;20 19 )|(,1514)|(,109)|(,0102)(,103)(,105)(321321====== A B P A B P A B P A P A P A P 按全概率公式 ,有: 112233()(|)()(|)()(|)() =++P B P B A P A P B A P A P B A P A 92.010 2 20191031514105109=?+?+?= 三、 贝叶斯公式 设B 是样本空间S 的一个事件,12,,,n A A A 为S 的一个事件组, 且满足:(1)12,, ,n A A A 互不相容,且),,2,1(0)(n i A P i =>; (2) 12?? ?=n A A A S . 则 ) ()()()()()()() ()|(11n n k k k k A B P A P A B P A P A B P A P B P B A P B A P ++= = 这个公式称为贝叶斯公式。 例:有甲乙两个袋子,甲袋中有4个白球,5个红球,乙袋中有4个白球,4个红球.今从甲袋中任取一球放入乙袋,搅匀后再从乙袋中任取一球,

相关主题