搜档网
当前位置:搜档网 › 浅谈多孔陶瓷

浅谈多孔陶瓷

浅谈多孔陶瓷
浅谈多孔陶瓷

浅谈多孔陶瓷

08 化本黄振蕾080900029

摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学

关键词:多孔陶瓷制备应用发展

0. 引言

多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的

比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料

和传感器材料等方面得到广泛的应用[ 2]。因此, 多孔陶瓷材料及其制备技术受到广泛关注。

1 多孔陶瓷材料的制备方法

1. 1 挤压成型法

挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400孔/ 2. 54 cm X 2. 54 cm 的规格。

美国与日本已研制出了600孔/ 2. 54 cm X 2. 54 cm、900孔/ 2.54 cm X 2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。我国亦开始了600 孔/ 2. 54 cm X2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型

的多孔陶瓷。其工艺流程为:原料合成+水+有机添加剂T混合练混T挤出成型T干燥T

烧成T制品。这种工艺的优点在于,可根据实际需要对孔形状和大小进行精确设计;缺点

是不能成型复杂孔道结构和孔尺寸较小的材料, 同时对挤出物料的塑性有较高要求[ 4]。

1. 2 颗粒堆积成孔工艺法颗粒堆积工艺是在骨料中加入相同组分的微细颗粒,利用微细颗粒易于烧结的特点,在高温下液化,从而使骨料连接起来。骨料粒径越大,形成的多孔陶瓷平均孔径就越大,并呈线性关系。骨料颗粒尺寸越均匀,产生的气孔分布也越均匀,孔径分布也越小。另外,添加剂的含量和种类,以及烧成温度对微孔体的分布和孔径大小也有直接关系。如

Yang 等[ 5]

用Yb2O3作为助剂制备了多孔氮化硅陶瓷,通过加入Yb2O3后,使氮化硅微孔陶瓷孔的分布更加均匀,经烧结后使孔隙率达到很好的要求。另外,孔隙率可通过调整颗粒级配对孔结构进行控制,制品的孔隙率一般为20%~ 30% 。若在原料中加入碳粉、木屑、淀粉、塑料等成孔剂,高温下使其挥发可将整体孔隙率提高至75% 左右[ 6]。主要优点在于工艺简单,制备强度高;不足之处在于气孔率低。

1. 3 发泡工艺法

发泡工艺是向陶瓷组分中添加有机或无机化学物质, 在加热处理期间形成挥发性的气体制备出各种孔径大小和形状的泡沫陶瓷, 使用该方法干燥和烧结可以制成网眼型和泡沫型两种多孔陶瓷。例如, 用碳化钙, 氢氧化钙、铝粉硫酸铝和双氧水做发泡剂; 用硫化物和硫酸盐混合作发泡剂等[ 7]。与其他工艺相比, 该法更易控制制品的形状、成分和密度, 特别适合用于闭孔陶瓷制品的生产。吴皆正等

[ 8]用十二烷基磺酸钠和硫酸钙为发泡剂, 以石英

砂为原料,制备了孔隙度为35%~ 55%、平均粒径为8~ 60 m具有狭窄的孔径分布和一定强度的可控微米级多孔陶瓷材料。

1. 4 溶胶-凝胶工艺法

溶胶凝胶方法( Sol-Gel)制备纳米级的微孔陶瓷,它是利用凝胶化过程中胶体粒子的堆积以及凝胶处理、热处理过程中留下小气孔,形成可控的多孔材料。基本过程是将金属醇盐溶于低级醇中,缓慢地滴入水进行水解反应,得到相应金属氧化物的溶胶,调节该溶胶的pH值,nm尺度的金属氧化物颗粒就会产生聚集。自从LLeenaars等人1984年提出

Sol-gel 法制备微孔薄膜以来[9],溶胶凝胶法主要用来制备微孔陶瓷材料,特别是微孔陶瓷薄膜。这是许多研究者重视的一个领域。薛明俊等[ 10]使用羟铝土加入适量的造孔剂控制温度, 采用溶胶-凝胶法制备Al2O3 多孔陶瓷, 并分析了多孔陶瓷的气孔率、气孔分布。

用Sol -Gel工艺制得多孔陶瓷孔径分布范围极为狭窄,其孔径大小可通过溶液组成和热处

理过程的调节来控制, 是目前最为活跃的领域[ 11]。

2. 多孔陶瓷在环境工程中的应用

多孔陶瓷材料优良物理和力学性能使其得到了较大的发展和工业应用, 成为环境工程领

域关注的热点, 是一种很有发展前景的生态环境材料, 在环境治理和除污防毒工程中得到了广泛应用和推广。

2.1 在废水治理中的应用

重金属通过矿山开采、金属冶炼、金属加工及化工生产废水、化石燃料的燃烧、施用农

药化肥和生活垃圾等人为污染源, 以及地质侵蚀、风化等天然源形式进入水体, 加之重金属具有毒性大、在环境中不易被代谢、易被生物富集并有生物放大效应等特点, 不但污染水环境, 也严重威胁人类和水生生物的生存。但是, 目前在重金属离子废水处理的各种方法中, 无论是化学法、物理化学法、生物处理法, 普遍存在着运行成本高昂、管理手段繁琐、效率低下、有可能造成二次污染等缺陷。多孔陶瓷材料因其特殊的结构而具有的各种优异的特性, 使其

完克服上述各种方法的缺陷成为可能,因此,成为治理重金属污染废水研究领域的热点。例如, 多孔陶瓷可对溶液中的有毒重金属离子(如六价铬离子等)进行吸附分离[12 ],并能对污水进行脱色处理[13 ]。王士龙等采用多孔陶瓷(陶粒)分别处理含铅和锌废水,铅和锌的去除率均达98%以上[14-15 ] , 取得了令人满意的效果。

2.2 固体废物处理

该应用主要是以固体废弃物为原料来制备多孔陶瓷。如赤泥是氧化铝生产中排放的工业

废物,目前全世界每年产生约 6 000万t,我国赤泥排放大约在500万t以上[16 ]。对这种废弃物现在国内流行的处理方法是筑坝湿法堆存, 但这种处理方法不仅占用大量农田, 而且赤泥中的含碱废液污染地表和地下水源,严重破坏生态环境。而赤泥的化学成分(主要含SiO2 , CaO,AI2O3 , Fe2O3)适宜于生产陶瓷,因此,该途径可实现赤泥的资源化,从而减轻铝厂的环境负荷,有利于扩大再生产[17-18 ]。可用作制多孔陶瓷材料的固废还有煤矸石、粉煤灰[ 19 ]、污水处理厂的污泥[ 20 ]、河道淤泥、各种矿渣、废玻璃和废陶瓷等。

2.3 吸声降噪

噪声是除水污染、大气污染、固体废物污染之外的第四大公害 , 给人们的日常生活带来 了极大的影响。 而多孔陶瓷具有相互贯通的孔隙且与外界连通 ,又具有较高的机械强度 ,因此 , 多孔陶瓷可作为一种优良的吸声材料。声波传入多孔体内部后 , 引起孔隙中的空气产生振动 并与陶瓷筋络发生摩擦。由于粘滞作用 , 声波转变为热能而消耗 . 从而达到吸收声音的效果 [21 ]。用于吸声材料的多孔陶瓷 ,要求有较小的孔隙尺寸(20?150(1 m )、较大的孔率(60%

以上)及较高的机械强度[22 ]。由于多孔陶瓷优良的耐火性和耐气候性 ,因而通常作为隔音 降噪材料用于高层建筑、地铁、隧道等防火要求极高的场合 , 以及电视发射中心、电影院等 有较高隔音要求的场合 ,并取得了很好的效果 [21, 22,2

3] 。 2.4 隔热吸能

近年来 , 随着全球化气候变暖形势的逐渐严峻及不可再生性能源的大量枯竭 , 人们越来

越意识到在建筑业采用节能隔热的新型绿色环保建材的重要意义 [ 24 - 25 ] 。无论是建筑的外

墙、门窗还是屋顶等 , 彻底淘汰旧式粘土砖瓦、密实钢窗 , 代之以多孔陶瓷材料 , 不仅可以节 省大量人力物力 , 更重要的是可以防止热量散失、 阻挡室内外的热量交换 , 从而达到节约能源 进而保护环境的目的。 由于多孔陶瓷孔隙率高 ,使得其密度较小、 热传导系数较低 ,从而造成 了巨大的热阻及较小的体积热容 , 使其成为新型保温隔热材料 [ 2

6 ] 。而且若将其内部抽成真 空, 那么多孔陶瓷将成为目前世

界上最好的隔热材料———超能隔热材料 [ 27 ] 。因而能很好

的防止热量的损失而引发的热污染。 3. 多孔陶瓷发展方向 [ 28]

以看出 , 多孔陶瓷的应用已经涉及到人类生活和社会发展的各个方面。 分离过滤及渗透用、 绝热和换热及作为载体应用等为主 , 但多孔陶瓷跨学科

应用的专利也比 较多 , 再就是向尖端科技发展 , 特别是在航空航天方面的应用也相对较多 , 这说明多孔陶 瓷的技术研究在突破传统的应用领域朝交叉学科和新的应用领域拓展。 总之 , 从目前多孔陶 瓷专利的申请情况可以看出 , 多孔陶瓷以后的研究方向和实际要突破的技术层次大致可以归 纳为以下几个方面 :

3. 1 多孔陶瓷材料的分离过滤及渗透应用

在多孔陶瓷材料的分离过滤及渗透应用方面 , 尤其是随着大端面陶瓷过滤器的工业化推 广应用 , 基于材料密封等技术要求的陶瓷过滤及渗透元件规格尺寸相应增大 , 故如何采用 新的配方工艺和补强增韧的技术来提高其材料的强度和韧性及其它物化性能指标 , 这是必 须深化研究和应尽早成熟化 , 产业化的必由之路。例 : 可通过新的配方工艺制备纳米结构 - 微米结构复合多孔陶瓷材料 , 多孔陶瓷材料因具有微米结构而有较高的硬度 , 具有纳米 结构而有较高韧性。 改变这种复合材料中的纳米结构和微米结构比例 , 可调节材料的强度与 韧性 , 或通过采用编织陶瓷纤维利用化学气相沉积技术 , 或制备陶瓷 金属复合材料来制备 高强高空隙率的分离及渗透用多孔陶瓷材料。

3. 2 多方位拓宽多孔陶瓷的功能性

多方位拓宽多孔陶瓷的功能性 , 可采用复合技术或嫁接技术制备一些多功能性材料。例 开发和生产具有抗菌和净化功能的微孔陶瓷材料 ; 采用有机和无机材料复合技术制备电传导 膜、生物反应膜等 ; 采用陶瓷膜材料的表面修饰和改性技术 , 制备大尺寸无缺陷的或具有新 功能的陶瓷膜材料 , 还有必要把高科技的纳米技术引入传感器多孔陶瓷领域 , 开发出微型 化、集成化、智能化、多功能、高附加值的传感器新产品。随着传感技术、数据处理技术、 计算机技术、 人工智能等相关技术的发展 , 多传感器信息融合必将成为未来复杂工业系统的 重要技术。以上领域的研究和开发对扩大多孔陶瓷的应用范围具有重要意义。

3. 3 加强对多孔陶瓷材料应用性能的研究和提升 加强对多孔陶瓷材料应用性能的研究和提

近些年 , 多孔陶瓷的发展比较迅速 多孔陶瓷的应用也非常广泛。 从专利的申请情况可 虽然目前仍以传统的

升。例: 材料的清洗再生技术、过滤系统的优化技术和集成技术, 多孔陶瓷完整膜的无损在线检测技术研究等, 提高产业化水平, 并延长多孔陶瓷的使用寿命是其必须重点攻克的推广应用和市场化难关。

4. 结束语

近年来, 多孔陶瓷材料得到了很大的发展, 其制备方法不断完善、应用领域不断扩大。对其制备工艺的研究正在走向系统化、理论化并逐渐转入使用开发阶段, 人们已基本实现了对孔径、壁厚的控制。多孔陶瓷材料的研究与应用已经受到人们的普遍关注, 对多孔陶瓷材料的进一步开发和应用将会带来巨大的经济和效益。鉴于各应用领域对多孔陶瓷材料数量质量上的迫切需要, 结合本世纪人们对控制和改善生存环境意识的提高, 寻求适合工业化产、与环境友好的多孔陶瓷材料的制备工艺是今后研究的一个重要方向。

参考文献:

[ 1 ] 马文, 沈卫平, 董红英, 顾淑媛, 等. 多孔陶瓷的制备工艺及进展[ J] . 粉末冶金技术, 2002, 20( 6) : 365.

[ 2 ] 王慧. 多孔陶瓷) 绿色功能材料[ J] . 中国陶瓷, 2002,38( 3) : 6 9.

[ 3 ] 邓重宁. 600 孔/ in2 蜂窝陶瓷载体挤出成型模具[ J] . 陶瓷, 2001, 152( 4) ;

40-41.

[ 4 ] Ca rt y W M , ledno r P W . M ono lit hic C eram ics an dH eter o g eneo us Catalysts: Ho ney combs and Foams [ J] .Cur rent Opinio n in Solid Stat e & Mater Sci, 1996, ( 1) :88 -95.

[ 5 ] Yang J F, Deng Z Y, Ohji T, Fabr ication and characterization o f por ous Silicon nitr ide cer amics using Yb2O3as sinteringaddit ive[ J] . J Eur Ceramics SOC, 2003, 23( 2) : 378.

[ 6 ] She J H, Ohji T. Fabrication and Characterizatio n o f Hig hlyPo ro us Mullite Cer amics[ J] . Mater Chem And Phy , 2003,80: 610 -614.

[ 7 ] Binner J P G. Pro duction and Pr operties of Low DensityEng ineer ing Ceramic Fo ams [ J ] . Br itish Cer amicsT ransact ion, 1997, 96( 6) : 247 249.

[8 ]吴皆正等.用So l -Gel法制备氧化铝多孔陶瓷的研究[J].中国陶瓷,1999, ( 3):

5.

[ 9 ] 薛明俊, 刘智慧, 江凯. 硅酸铝多孔材料的研制[ J] . 中国陶瓷, 1995, 31( 2) : 17-20.

[ 10 ] H irshfeld D A, Li T K, Liu D M. Pr ocessing of Por ousOx ide Ceram ics [ J] . Key Eng ineer ing Mater ials, 1996,115: 65 -80.

[ 11 ] 倪春. 医用生物制品的真空冷冻干燥技术[ J] . 广西机械, 1999, ( 1) : 1518.

[ 12 ] 郑礼胜,王士龙,张虹,等. 用沸石处理含铬重金属废水的试验研[ J ]. 环境工程, 1997, 15 (3) : 13 -

15.

[ 13 ] 张艳,赵宜江,嵇鸣,等. 氢氧化镁吸附———陶瓷膜微滤对印染水脱色的研究

[ J ]. 科学与技术, 2000, 20 (1) : 41 - 45.

[ 14 ] 王士龙,张虹,谢文海,等. 用陶粒处理含铅废水[ J ]. 济南大学学报(自然科学版) , 2003, 17

(3) : 295 - 297.

[ 15 ] 王士龙,张虹,柯亚萍,等. 用陶粒处理含锌废水[ J ]. 污染防治技术, 2002 (3) : 23 - 25.

[ 16 ] 曹瑛,李卫东,刘艳改. 工业废渣赤泥的特性及回收利用现状[ J ]. 硅酸盐通报, 2007, 26 (1) : 143 - 145.

[ 17 ] 李方文, 吴建锋, 徐晓虹, 等. 应用多孔陶瓷滤料治理环境污染[ J ]. 中国安全科学学报,

2006, 16 (7) : 112 - 117.

[ 18 ] 徐晓虹, 邸永江, 吴建锋, 等. 利用固体废弃物制备多孔陶瓷滤球的研究[ J ]. 陶瓷学报, 2003, 24 (4) : 197 - 200.

[ 19 ] 任祥军, 张学斌, 刘杏芹, 等. 粉煤灰基多孔陶瓷膜的制备研究[ J ]. 材料科学与工程学报, 2006, 24 (4) : 484 - 488.

[ 20 ] F Andreola,L Barbieri,A Coreadi, et al. The Possibility to Recy2cle Solid Residues of theMunicipalWaste Incineration into a Ce2ramic Tile Body [ J ]. Journal of Materials Science, 2001 ( 36 ) :4869 - 4873.

[ 21 ] 吴庆祝, 刘水先, 李福功, 等. 泡沫陶瓷及其应用[ J ]. 陶瓷,2002 (2) : 4 - 12.

[ 22 ] 朱小龙, 苏雪筠. 多孔陶瓷材料[ J ]. 中国陶瓷, 2000, 36 ( 4) :36 - 39.

[ 23 ] 侯来广, 曾令可, 王慧, 等. 陶瓷废料制备的吸音材料吸音性能影响因素的分析[ J ]. 陶瓷学报, 2006, 27 (1) : 6 - 10.

[ 24 ] 宋婧, 曾令可, 税安泽, 等. 复合蓄热材料的研制与应用[ J ]. 硅酸盐通报, 2007, 26 (1) : 173 - 176; 198.

[ 25 ] 黄勇, 张立明, 汪长安, 等. 先进结构陶瓷研究评述[ J ]. 硅酸盐通报, 2005, 24 (5) : 91 - 101. [ 26 ] Elfatih Ibrahim, Li Shao, Saffa B. Riffat. Performance of porousceramic

evaporators for building cooling app lication [ J ]. Energyand Buildings, 2003, 35 (9) : 941 -

949.

[ 27 ] 翟风瑞. 多孔陶瓷材料及其应用前景[ J ]. 红河学院学报,2005, 3 (3) : 22 - 25.

[ 28 ] 薛友祥, 王耀明. 多孔陶瓷材料引领国内过滤技术的发展. 新材料产业, 2007( 2)

浅谈多孔陶瓷

浅谈多孔陶瓷 08 化本黄振蕾080900029 摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学 关键词:多孔陶瓷制备应用发展 0. 引言 多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的 比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料 和传感器材料等方面得到广泛的应用[ 2]。因此, 多孔陶瓷材料及其制备技术受到广泛关注。 1 多孔陶瓷材料的制备方法 1. 1 挤压成型法 挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400孔/ 2. 54 cm X 2. 54 cm 的规格。 美国与日本已研制出了600孔/ 2. 54 cm X 2. 54 cm、900孔/ 2.54 cm X 2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。我国亦开始了600 孔/ 2. 54 cm X2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型 的多孔陶瓷。其工艺流程为:原料合成+水+有机添加剂T混合练混T挤出成型T干燥T 烧成T制品。这种工艺的优点在于,可根据实际需要对孔形状和大小进行精确设计;缺点 是不能成型复杂孔道结构和孔尺寸较小的材料, 同时对挤出物料的塑性有较高要求[ 4]。 1. 2 颗粒堆积成孔工艺法颗粒堆积工艺是在骨料中加入相同组分的微细颗粒,利用微细颗粒易于烧结的特点,在高温下液化,从而使骨料连接起来。骨料粒径越大,形成的多孔陶瓷平均孔径就越大,并呈线性关系。骨料颗粒尺寸越均匀,产生的气孔分布也越均匀,孔径分布也越小。另外,添加剂的含量和种类,以及烧成温度对微孔体的分布和孔径大小也有直接关系。如 Yang 等[ 5] 用Yb2O3作为助剂制备了多孔氮化硅陶瓷,通过加入Yb2O3后,使氮化硅微孔陶瓷孔的分布更加均匀,经烧结后使孔隙率达到很好的要求。另外,孔隙率可通过调整颗粒级配对孔结构进行控制,制品的孔隙率一般为20%~ 30% 。若在原料中加入碳粉、木屑、淀粉、塑料等成孔剂,高温下使其挥发可将整体孔隙率提高至75% 左右[ 6]。主要优点在于工艺简单,制备强度高;不足之处在于气孔率低。

浅谈多孔陶瓷材料及其过滤技术

龙源期刊网 https://www.sodocs.net/doc/4611786282.html, 浅谈多孔陶瓷材料及其过滤技术 作者:朱俊 来源:《佛山陶瓷》2011年第11期 摘要:陶瓷过滤器以其独特的功能特性,在分离、净化领域中已成为一种不可替代的产品。本文根据多孔陶瓷过滤技术的发展变迁,对多孔金属滤材与多孔陶瓷滤材的性能进行了比较,阐述了多孔陶瓷滤材过滤元件的性能指标及过滤原理,介绍了多孔陶瓷及过滤器的应用现状,同时指出了多孔陶瓷材料过滤技术的发展前景。关键词:多孔陶瓷材料;过滤技术;发展前景 1引言 多孔陶瓷是一种以耐火原料为骨料,配以结合剂,经过高温烧结而制成的陶瓷过滤材料,其结构内部具有大量的微细气孔。它除具有耐高温、高压、耐酸、碱腐蚀等特性外,还具有孔径均匀、透气性高等特点。因此,可广泛用作过滤、分离、布气和消音材料。20世纪50年代后,国外就开始应用多孔陶瓷做过滤元件进行上、下水净化;矿泉水除菌;含油气体净化等。现今,多孔陶瓷产品已标准化、系列化。国内对多孔陶瓷在过滤技术中的应用研究虽起步较晚,但过滤器在分离、净化领域中已得到较全面的推广应用。如石化行业中液一固、气~固分离;制药、酿造行业中的无菌净化处理;环保行业中高温烟气除尘等。陶瓷过滤器以其独特的功能特性,在各分离、净化领域中已成为一种不可替代的产品。 2多孔陶瓷滤材技术的发展现状 多孔陶瓷是一种含有较多孔洞,并利用其结构或表面达到所需性能的过滤材料。其主要的制备方法有添加造孔剂法、发泡法、有机泡沫浸渍法和溶胶~凝胶法。常用于电化学陶瓷膜及熔融金属、液体、气体等的过滤。由于再生性差、成本高及孔结构难控制等方面的缺点,使其应用受到制约。通过完善制备工艺、改良材质、协调孔隙度与强度的关系等措施可提高其应用性能。 多孔陶瓷材料过滤技术得主要产品包括:各种规格的微孔陶瓷过滤元件和微孔陶瓷过滤器、高性能陶瓷膜过滤元件及陶瓷膜过滤装置、高温气体净化的陶瓷过滤材料及高温陶瓷除尘器、高温融体过滤用泡沫陶瓷过滤元件以及陶瓷净水器、陶瓷曝气器、陶瓷消声器、各种陶瓷电解隔膜等。产品已广泛应用于化工、制药、冶金、水处理及环保工业等方面。 国外多孔陶瓷材料研究开发和应用已有80余年历史,陶瓷膜产品研制、开发、应用也有近30年历史,其产品的产业化、商业化程度已达到较高的水平,产品的技术水平也有了很大地提高。 2.1微孔陶瓷过滤元件和微孔陶瓷过滤器

浅谈多孔陶瓷

浅谈多孔陶瓷 08化本黄振蕾080900029 摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节 能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学科的高度关注。 关键词:多孔陶瓷制备应用发展 0.引言 多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料和传感器材料等方面得到广泛的应用[ 2]。因此, 多孔陶瓷材料及其制备技术受到广泛关注。 1多孔陶瓷材料的制备方法 1. 1 挤压成型法 挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400 孔/ 2. 54 cm ×2. 54 cm 的规格。美国与日本已研制出了600 孔/ 2. 54 cm ×2. 54 cm、900 孔/ 2.54 cm ×2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。我国亦开始了600 孔/ 2. 54 cm ×2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型的多孔陶瓷。其工艺流程为: 原料合成+ 水+ 有机添加剂→混合练混→挤出成型→干燥→烧成→制品。这种工艺的优点在于, 可根据实际需要对孔形状和大小进行精确设计; 缺点是不能成型复杂孔道结构和孔尺寸较小的材料, 同时对挤出物料的塑性有较高要求[ 4] 。 1. 2 颗粒堆积成孔工艺法 颗粒堆积工艺是在骨料中加入相同组分的微细颗粒, 利用微细颗粒易于烧结的特点, 在高温下液化, 从而使骨料连接起来。骨料粒径越大, 形成的多孔陶瓷平均孔径就越大, 并呈线性关系。骨料颗粒尺寸越均匀, 产生的气孔分布也越均匀, 孔径分布也越小。另外, 添加剂的含量和种类, 以及烧成温度对微孔体的分布和孔径大小也有直接关系。如Yang 等[ 5]用Yb2O3 作为助剂制备了多孔氮化硅陶瓷, 通过加入Yb2O3 后, 使氮化硅微孔陶瓷孔的分布更加均匀, 经烧结后使孔隙率达到很好的要求。另外, 孔隙率可通过调整颗粒级配对孔结构进行控制, 制品的孔隙率一般为20% ~ 30% 。若在原料中加入碳粉、木屑、淀粉、塑料等成孔剂, 高温下使其挥发可将整体孔隙率提高至75% 左右[ 6]。主要优点在于工艺简单, 制备强度高; 不足之处在于气孔率低。

多孔陶瓷材料的制备技术

第14卷第3期Vol.14No.3 材 料 科 学 与 工 程 Materials Science&Engineering 总第55期 Sept.1996多孔陶瓷材料的制备技术 朱时珍 赵振波 北京理工大学 北京 100081 刘庆国 北京科技大学 北京 100083 【摘 要】 本文评述了近年来多孔陶瓷材料制备技术的研究现状,对目前研究比较活跃,应用比较成功的几种制备技术进行了分析,并讨论了今后的发展趋势。 【关键词】 多孔陶瓷 制备 造孔剂 泡沫浸渍 Techniques For Preparation of Porous Ceramic Materials Zhu Shizhen Zhao Zhenbo Beij ing Institute of Technology Beijing 100081 Liu Qingguo Beij ing University of Science and Technology Beij ing 100083【Abstr act】 T he r ecent status of techniques for prepar ation of por ous ceramic mater ials was re-viewed.Var ious t echniques for pr epar ation of por ous cer amic mater ials resear ched mor e actively and ap-plied more successfully wer e analyzed,and the future development tr ends were discussed. 【Key wor ds】 Porous cer amics,F abr ication,P or e-form ing mat er ials,F oam impregna tion 一、前 言 近年来表面与界面起突出作用的新型材料日益受到重视,既发现一些新的物理现象和效应,在应用上又很有潜力,具有广泛的发展前景[1]。多孔陶瓷材料正是一种利用物理表面的新型材料。例如,利用多孔陶瓷的均匀透过性,可以制造各种过滤器、分离装置、流体分布元件、混合元件、渗出元件和节流元件等;利用多孔陶瓷发达的比表面积,可以制成各种多孔电极、催化剂载体、热交换器、气体传感器等;利用多孔陶瓷吸收能量的性能,可以用作各种吸音材料、减震材料等;利用多孔陶瓷低的密度、低的热传导性能,还可以制成各种保温材料、轻质结构材料等[2],加之其耐高温、耐气候性、抗腐蚀,多孔陶瓷材料的应用已遍及冶金、化工、环保、能源、生物等各个部门,引起了全球材料学界的高度重视,并得到了较快发展,每年这方面的专利都有近百篇,而且有逐年增长的趋势。但由于绝大多数制备工艺参数及关键问题处于技术保密状态,目前尚无系统论述各种制备技术的文章,本文结合作者研制用于高温固体氧化物燃料电池的多孔A l2O3陶瓷支持管(体)的研究工作,分析了多孔陶瓷材料制备技术的现状及今后的发展趋势。 ? 33 ?

实验一多孔陶瓷的制备

实验一多孔陶瓷的制备 一、实验目的 1. 了解多孔陶瓷的用途 2. 掌握多孔陶瓷的制备方法 3. 了解多孔陶瓷的制备工艺 二、实验原理 多孔陶瓷是一种新型陶瓷材料,也可称为气孔功能陶瓷,它是一种利用物理表面的新型材料。多孔陶瓷具有如下特点:巨大的气孔率、巨大的气孔表面积;可调节的气孔形状、气孔孔径及其分布;气孔在三维空间的分布、连通可调;具有其它陶瓷基体的性能,并具有一般陶瓷所没有的主要利用与其巨大的比表面积相匹配的优良热、电、磁、光、化学等功能。实际上,很早以前人们就使用多孔陶瓷材料,例如,人们使用活性碳吸附水份、吸附有毒气体,用硅胶来做干燥剂,利用泡沫陶瓷来做隔热耐火材料等。现在,多孔陶瓷,尤其是新型多孔陶瓷的应用范围广多了。 1. 多孔陶瓷的种类 多孔陶瓷的种类很多,按所用的骨料可以分为以下六种: 按孔径分为以下三种情况: 2. 多孔陶瓷的制备: 陶瓷产品中的孔包括:(1)封闭气孔:与外部不相连通的气孔 (2)开口气孔:与外部相连通的气孔 下面介绍多孔陶瓷中孔的制备方法和制备技术 2.1孔的形成方法:

(1)添加造成孔剂工艺:陶瓷粗粒粘结、堆积可形成多孔结构,颗粒靠粘结剂或自身粘合成型。这种多孔材料的气孔率一般较低,20~30%左右,为了提高气孔率,可在原料中加入成孔剂(porous former),即能在坯体内占有一定体积,烧成、加工后又能够除去,使其占据的体积成为气孔的物质。如碳粒、碳粉、纤维、木屑等烧成时可以烧去的物质。也有用难熔化易溶解的无机盐类作为成孔剂,它们能在烧结后的溶剂侵蚀作用下除去。此外,可以通过粉体粒度配比和成孔剂等控制孔径及其它性能。这样制得的多孔陶瓷气孔率可达75%左右,孔径可在μm—mm之间。虽然在普通的陶瓷工艺中,采用调整烧结温度和时间的方法,可以控制烧结制品的气孔率和强度,但对于多孔陶瓷,烧结温度太高会使部分气孔封闭或消失,烧结温度太低,则制品的强度低,无法兼顾气孔率和强度,而采用添加成孔剂的方法则可以避免这种缺点,使烧结制品既具有高的气孔率,又具有很好的强度。 (2)有机泡沫浸渍工艺:有机泡沫浸渍法是用有机泡沫浸渍陶瓷浆料,干燥后烧掉有机泡沫,获得多孔陶瓷的一种方法。该法适于制备高气孔率、开口气孔的多孔陶瓷。这种方法制备的泡沫陶瓷是目前最主要的多孔陶瓷之一。 (3)发泡工艺:可以在制备好的料浆中加入发泡剂,如碳酸盐和酸等,发泡剂通过化学反应等能够产生大量细小气泡,烧结时通过在熔融体内产生放气反应能得到多孔结构,这种发泡气体率可达95%以上。与泡沫浸渍工艺相比,更容易控制制品的形状、成分和密度,并且可制备各种孔径大小和形状的多孔陶瓷,特别适于生产闭气孔的陶瓷制品,多年来一直引起研究者的浓厚兴趣。 (4)溶胶-凝胶工艺:主要利用凝胶化过程中胶体粒子的堆积以及凝胶(热等)处理过程中留下小气孔,形成可控多孔结构。这种方法大多数产生纳米级气孔,属于中孔或微孔范围内,这是前述方法难以做到的,实际上这是现在最受科学家重视的一个领域。溶胶-凝胶法主要用来制备微孔陶瓷材料,特别是微孔陶瓷薄膜。 (5)利用纤维制得多孔结构:主要利用纤维的纺织特性与纤细形态等形成气孔,形成的气孔包括:a 有序编织、排列形成的;b 无序堆积或填充形成的。 通常将纤维随意堆放,由于纤维的弹性和细长结构,会互相架桥形成气孔率很高的三维网络结构,将纤维填充在一定形状的模具内,可形成相对均匀,具有一定形状的气孔结构,施以粘结剂,高温烧结固化就得到了气孔率很高的多孔陶瓷,这种孔较大的多孔陶瓷的气孔率可达80%以上;在有序纺织制备方法中,有一种是将纤维织布(或成纸),,再将布(或纸)折叠成多孔结构,常用来制备“哈尔克尔”,这种多孔陶瓷通常孔径较大,结构类似于前面提到的以挤压成型的蜂窝陶瓷;另外是三维编织,这种三维编织为制备气孔率、孔径、气孔排列、形状高度可控的多孔陶瓷提供了可能。 (6)腐蚀法产生微孔、中孔:例如对石纤维的活化处理,许多无机非金属半透膜也曾以这种方法制备。 (7)利用分子键构成气孔:如分子筛,这是微孔材料也是中孔材料。象沸石、柱状磷酸锌等是这类材料。

多孔陶瓷的结构及性能

多孔陶瓷的结构性能及应用 摘要:本文综合论述多孔陶瓷的结构、组成、性能并围绕其在能源与环保领域的应用展开介绍,体现其作为一种绿色环保材料的重要意义和应用价值。 关键词:多孔陶瓷;结构;组成;性能;应用;能源;绿色 前言: 当今世界,工农业的发展导致了能源的大量消耗和环境的恶化,解决能源和环境问题已刻不容缓。人们越来越关注可持续发展的问题,世界各国都对这一问题予以充分重视,并将其作为重要内容列入国家发展计划。煤炭、石油和天然气等大量不可再生能源的消耗使得人们不得不考虑如何节能以及如何寻找新的替代能源?而由于污染带来的各种生态环境破坏,对自然的和谐发展和人类健康带来了空前的挑战。因此,在二十一世纪,着眼于解决能源与环境问题的高新技术将得到广泛关注,并将对自然和社会的良性发展起到重要作用。 正文: 一、什么是多孔体陶瓷 多孔陶瓷是一种含有气孔的固体材料,一般来说,气孔在多孔陶瓷体中所占的体积分数在20%到95%之间。根据气孔的类型,可以分为开气孔和闭气孔两种,前者的气孔都是相互贯通的并与外界环境相连,而后者则是封闭在陶瓷体内的孤立气孔,在不同的场合中它们分别有不同的用途。

根据应用的目的不同,多孔陶瓷材料的组成也不同,具体包括氧化铝、堇青石、莫来石、海泡石、碳化硅、氧化锆、羟基磷灰石等等。为了获得一定形状和结构的多孔陶瓷材料,制备工艺过程起到了决定作用。目前,主要的几种多孔陶瓷制备工艺包括发泡工艺、挤出成型工艺以及有机泡沫浸渍工艺,这三种工艺制得的多孔制品分别被形象地称为泡沫多孔陶瓷、蜂窝多孔陶瓷和网眼多孔陶瓷。 由于其本身具有的独特性能,多孔陶瓷已经在我们的日常生活和现代工业生产中得到广泛的应用,包括分离与过滤、催化剂及其载体、生物反应器、燃料电池材料、气体传感器、隔热材料、热交换器、生物医学材料等等。能源和环境问题是社会健康和谐发展的永恒主题,多孔陶瓷在这些领域的广泛应用将产生不可估量的经济和社会效益。 二、多孔陶瓷的结构及其性能 多孔陶瓷材料由于其独特的多孔结构而具有热导率低、体积密度小、比表面积高,以及具有独特物理和化学性能的表面结构等优点,加之陶瓷材料本身特有的耐高温、化学稳定性好、强度高等特点,使多孔陶瓷在能源和环境领域有广泛的应用,具体体现在以下各个方面:1.消声器。在城市生活中,噪音是一种重要的污染。走在城市的街道上,可以听到来自于汽车排气管、飞机飞行以及空调压缩机工作等造成的各种让人心烦的噪声,而这一切其实都可以通过应用多孔陶瓷得以缓解,甚至消除。多孔陶瓷具有丰富的孔隙,当声波传播到多孔陶瓷上时,在网状的孔隙内引起空气的振动,进而通过空气与多

多孔陶瓷材料的应用及发展方向

多孔陶瓷材料的应用及发展方向 摘要 :介绍新型材料多孔陶瓷的特性和在诸多领域的应用,以及未来多孔陶瓷的发展方 向。 关键词 :多孔陶瓷;应用;发展方向 引言 在全球经济发展的浪潮中,环境与资源是人类遇到的两大难题,人们对节省资源、保 护环境的要求越来越高。多孔陶瓷正是适应了这种形势发展需求的新材料,它能够提高效 率、节约能源,尤其在环境保护方面发挥着越来越大的作用。多孔陶瓷在各行各业的应用 已经越来越普遍地体现出了这两大方面的意义。可以预计,多孔陶瓷将成为非常有活力、 有发展前途的新的经济增长点。 多孔陶瓷是一种经高温烧成、内部具有大量彼此相通并与材料表面也相贯通的孔道结 构的陶瓷材料。多孔陶瓷的种类很多,目前研制及生产的所有陶瓷材料几乎均可以通过适 当的工艺制成多孔体。 多孔陶瓷材料一般具有以下特性:化学稳定性好,通过材质的选择和工艺的控制,可 制成使用于各种腐蚀环境的多孔陶瓷;具有良好的机械强度和刚度,在气压、液压或其他 应力载荷下,多孔陶瓷的孔道形状和尺寸不会发生变化;耐热性好,用耐高温陶瓷制成的 多孔陶瓷可过滤熔融钢水和高温气体;具有高度开口、内连的气孔;几何表面积与体积比 高;孔道分布较均匀,气孔尺寸可控,在0.05~600μm范围内可以制出所选定孔道尺寸的多 孔陶瓷制品。 多孔陶瓷的应用 1

、金属铸造 多孔陶瓷在铸造业中的一个非常重要应用就是用作熔融金属过滤器。陶瓷过滤器净化 金属液的机理除了机械和反应过滤外,更重要的是对金属液起“整流”作用,这种作用使 得金属液渣包被破坏,同时延长渣上浮时间,从而达到净化金属液的作用。自从 60 年代中 期多孔陶瓷过滤器首次用于处理铝合金以来,陶瓷材料的发展及浇铸操作技术的提高已使 它们的应用扩大到包括熔模精密铸造、钢铸造工业及工业铸件等方面,即提高它们的机械 性能,降低铸件废品率,提高铸件工艺出品率,延长金属切削加工刀具寿命等。多孔陶瓷 过滤器在钢的连铸中的应用使钢水的洁净度和产量得到提高,不仅降低了非金属夹杂物含 量,而且有效地减少了水口堵塞。近年来,工业发达国家所有的铸件几乎全部采用多孔陶 瓷型内过滤浇铸工艺,并把此项工艺作为生产优质铸件的关键技术。 多孔陶瓷在铸造业中的另一个重要应用就是用于制备金属基—网状陶瓷复合材料,这 种材料系用铸造方法在预制多孔陶瓷中浇入金属而成。由于这类材料比普通铸件具有较大的阻尼系数,它将为机械工程解决振动问题提供了一条新的途径。 2 、石油化工 对于具有连通气孔的多孔陶瓷,当通过流体时,骨架对流体具有很好的接触、搅拌效 果以及阻挡大颗粒的作用。这些特性使得多孔陶瓷在化工生产中具有重要应用,如除臭装 置等用的催化剂载体、气体吸收塔、蒸馏塔的填料以及流化床中的过滤器等。利用多孔陶 瓷向液体中吹入反应气体,用吹氧方法培养微生物等。利用多孔陶瓷制成的酸性溶液电解 用隔膜,可以防止电极间生成的物质与电解液相混合,提高电解效率。 3 、核电工业

多孔陶瓷吸声板

多孔陶瓷吸声板 摘要:伴随社会的高速发展,噪声似乎已成为我们日常生活中的一大梦魇,走在城市的街道上,可以听到来自汽车排气管、飞机飞行以及空调压缩机工作等产生的各种让人心生厌恶的噪声,为了能够拥有一个相对更加安静的生活工作环境,我们可以应用多孔陶瓷吸音的性能制成吸声板,最大程度上解决生产生活中的噪声污染问题以达到低碳的最终目的,充分体现了多孔陶瓷作为一种绿色环保材料的重要意义和应用价值。 关键词:多孔陶瓷;结构;性能;吸音;强度;低碳 前言:多孔陶瓷又称为气孔功能陶瓷,是指具有一定尺寸和数量的孔隙结构的新型陶瓷材料。在材料成形与高温烧结过程中,内部形成大量彼此相通或闭合的气孔。多孔陶瓷用作吸声材料目前已非空白,多墙面材料,运输工具外壳体,尤其应用于地铁,影院,博物馆等防火要求较高的场所。现有的大都是蜂窝泡沫陶瓷吸声板,这种材料有很好的吸音效果,尤其以天然菱镁矿粉为原料烧烤而成的多孔质吸声板材料不会释放甲醇和其它对人体有害的气体,经实验证明,这种材料最终可以作为肥料使用,是建设部推荐使用的绿色环保材料。但是,多孔陶瓷为了保证一定的气孔率,相应强度会变差。气孔率与强度的折中问题是目前的一大空白。生产高吸音性同时高强度的多孔陶瓷正是我们要研究的新方向,应用于生产将会产生不可估量的经济和社会效益。 正文: 1.多孔陶瓷吸声板吸声机理 在日常生活中噪声是一种污染,各种令人生厌的噪音可以通过多孔陶瓷吸声板的应用得以缓解,甚至消除。 1.1 吸声机理介绍 声音起源于物体的振动,它迫使邻近的空气跟着振动而成为声波,并在空气介质中向四周传播。当声波遇到材料表面时,一部分被反射,另一部分穿透材料,其余的部分则传递给材料,在材料的孔隙中引起空气分子与孔壁的摩擦和粘滞阻力,其间相当一部分声能转化为热能而被吸收掉。这些被吸收的能量(E)(包括部分穿透材料的声能在内)与传递给材料的全部声能(E0)之比,是评定材料吸声性能好坏的主要指标,称为吸声系数(α),用公式表示为 α= E0/E

多孔陶瓷的制备及性能分析

第一章综述 1.1 多孔陶瓷的概述 多孔陶瓷是一种经高温烧成、体内具有大量彼此相通或闭合气孔结构的陶瓷材料,是具有低密度、高渗透率、抗腐蚀、耐高温及良好隔热性能等优点的新型功能材料。 多孔陶瓷的种类繁多,几乎目前研制生产的所有陶瓷材料均可通过适当的工艺制成陶瓷多孔体。根据成孔方法和孔隙结构的不同,多孔陶瓷可分为三类:粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷。根据所选材质不同,可分为刚玉质、石英质、堇青石质、莫来石质、碳化硅质、硅藻土质、氧化锆质及氧化硅质等。 多孔陶瓷材料一般具有以下特性:化学稳定性好,可制成使用于各种腐蚀环境的多孔陶瓷;具有良好的机械强度和刚度,在气压、液压或其他应力载荷下,多孔陶瓷的孔道形状和尺寸不会发生变化;耐热性好,用耐高温陶瓷制成的多孔陶瓷可过滤熔融钢水和高温气体;具有高度开口、内连的气孔;几何表面积与体积比高;孔道分布较均匀,气孔尺寸可控,在0.05~600μm范围内可以制出所选定孔道尺寸的多孔陶瓷制品。 多孔陶瓷的优良性能,使其已被广泛应用于冶金、化工、环保、能源、生物等领域。如利用多孔陶瓷比表面积高的特性,可制成各种多孔电极、催化剂载体、热交换器、气体传感器等;利用多孔陶瓷吸收能量的性能,可制成各种吸音材料、减震材料等;利用多孔陶瓷的低密度、低热传导性,可制成各种保温材料、轻质结构材料等;利用多孔陶瓷

的均匀透过性,可制成各种过滤器、分离装置、流体分布元件、混合元件、渗出元件、节流元件等。因此,多孔材料引起了材料科学工作者的极大兴趣并在世界范围内掀起了研究热潮。 1.2 多孔陶瓷的制备方法 多孔陶瓷是由美国于1978年首先研制成功的。他们利用氧化铝、高岭土等陶瓷材料制成多孔陶瓷用于铝合金铸造中的过滤,可以显著提高铸件质量,降低废品率,并在1980年4月美国铸造年会上发表了他们的研究成果。此后,英、俄、德、日等国竞相开展了对多孔陶瓷的研究,已研制出多种材质、适合不同用途的多孔陶瓷,技术装备和生产工艺日益先进,产品已系列化和标准化,形成为一个新兴产业。我国从20世纪80年代初开始研制多孔陶瓷。 多孔陶瓷首要特征是其多孔特性,制备的关键和难点是形成多孔结构。根据使用目的和对材料性能的要求不同,近年逐渐开发出许多不同的制备技术。其中应用比较成功,研究比较活跃的有:添加造孔剂工艺,颗粒堆积成型工艺,发泡工艺,有机泡沫浸渍工艺,溶胶凝胶工艺等传统制备工艺及孔梯度制备方法、离子交换法等新制备工艺。 1.2.1挤压成型工艺 本工艺的特点是靠设计好的多孔金属模具来成孔。将制备好的泥浆通过一种具有蜂窝网格结构的模具基础成型,经过烧结就可以得到最典型的多孔陶瓷即现用于汽车尾气净化的蜂窝状陶瓷。此外,也可以 在多孔金属模具中利用泥浆浇注工艺获得多孔陶瓷。该类工艺的特点在于可以根据需要对孔形状和孔大小进行精确设计,对于蜂窝陶瓷最

试验一多孔陶瓷的制备与加工

实验指导书多孔陶瓷的制备 学科部(系):材料工程系执笔人:刘曙光,张爱娟,王卫伟、李成峰 一、实验目的 1. 了解多孔陶瓷的用途 2. 掌握多孔陶瓷的制备方法 3. 了解多孔陶瓷的制备工艺 二、实验原理 多孔陶瓷是一种新型陶瓷材料,也可称为气孔功能陶瓷,它是一种利用物理表面的新型材料。多孔陶瓷具有如下特点:巨大的气孔率;巨大的气孔表面积;可调节的气孔形状、气孔孔径及其分布;气孔在三维空间的分布、连通可调;具有其它陶瓷基体的性能,并具有一般陶瓷所没有的主要利用与其巨大的比表面积相匹配的优良热、电、磁、光、化学等功能。实际上,很早以前人们就使用多孔陶瓷材料,例如,人们使用活性碳吸附水份、吸附有毒气体,用硅胶来做干燥剂,利用泡沫陶瓷来做隔热耐火材料等。现在,多孔陶瓷尤其是新型多孔陶瓷的应用范围广多了。 1. 多孔陶瓷的种类 多孔陶瓷的种类很多,按所用的骨料可以分为以下六种: 按孔径分为以下三种情况: 2. 多孔陶瓷的制备: 陶瓷产品中的孔包括:(1)封闭气孔:与外部不相连通的气孔 (2)开口气孔:与外部相连通的气孔 下面介绍多孔陶瓷中孔的制备方法和制备技术

2.1孔的形成方法: (1)添加造成孔剂工艺:陶瓷粗粒粘结、堆积可形成多孔结构,颗粒靠粘结剂或自身粘合成型。这种多孔材料的气孔率一般较低,20~30%左右,为了提高气孔率,可在原料中加入成孔剂(porous former),即能在坯体内占有一定体积,烧成、加工后又能够除去,使其占据的体积成为气孔的物质。如碳粒、碳粉、纤维、木屑等烧成时可以烧去的物质。也有用难熔化易溶解的无机盐类作为成孔剂,它们能在烧结后的溶剂侵蚀作用下除去。此外,可以通过粉体粒度配比和成孔剂等控制孔径及其它性能。这样制得的多孔陶瓷气孔率可达75%左右,孔径可在μm~mm之间。虽然在普通的陶瓷工艺中,采用调整烧结温度和时间的方法,可以控制烧结制品的气孔率和强度,但对于多孔陶瓷,烧结温度太高会使部分气孔封闭或消失,烧结温度太低,则制品的强度低,无法兼顾气孔率和强度,而采用添加成孔剂的方法则可以避免这种缺点,使烧结制品既具有高的气孔率,又具有很好的强度。 (2)有机泡沫浸渍工艺:有机泡沫浸渍法是用有机泡沫浸渍陶瓷浆料,干燥后烧掉有机泡沫,获得多孔陶瓷的一种方法。该法适于制备高气孔率、开口气孔的多孔陶瓷。这种方法制备的泡沫陶瓷是目前最主要的多孔陶瓷之一。 (3)发泡工艺:可以在制备好的料浆中加入发泡剂,如碳酸盐和酸等,发泡剂通过化学反应等能够产生大量细小气泡,烧结时通过在熔融体内产生放气反应能得到多孔结构,这种发泡气体率可达95%以上。与泡沫浸渍工艺相比,更容易控制制品的形状、成分和密度,并且可制备各种孔径大小和形状的多孔陶瓷,特别适于生产闭气孔的陶瓷制品,多年来一直引起研究者的浓厚兴趣。 (4)溶胶-凝胶工艺:主要利用凝胶化过程中胶体粒子的堆积以及凝胶(热等)处理过程中留下小气孔,形成可控多孔结构。这种方法大多数产生纳米级气孔,属于中孔或微孔范围内,这是前述方法难以做到的,实际上这是现在最受科学家重视的一个领域。溶胶-凝胶法主要用来制备微孔陶瓷材料,特别是微孔陶瓷薄膜。 (5)利用纤维制得多孔结构:主要利用纤维的纺织特性与纤细形态等形成气孔,形成的气孔包括:a 有序编织、排列形成的;b 无序堆积或填充形成的。 通常将纤维随意堆放,由于纤维的弹性和细长结构,会互相架桥形成气孔率很高的三维网络结构,将纤维填充在一定形状的模具内,可形成相对均匀,具有一定形状的气孔结构,施以粘结剂,高温烧结固化就得到了气孔率很高的多孔陶瓷,这种孔较大的多孔陶瓷的气孔率可达80%以上;在有序纺织制备方法中,有一种是将纤维织布(或成纸),,再将布(或纸)折叠成多孔结构,常用来制备“哈尔克尔”,这种多孔陶瓷通常孔径较大,结构类似于前面提到的以挤压成型的蜂窝陶瓷;另外是三维编织,这种三维编织为制备气孔率、孔径、气孔排列、形状高度可控的多孔陶瓷提供了可能。 (6)腐蚀法产生微孔、中孔:例如对石纤维的活化处理,许多无机非金属半透膜也曾以这种方法制备。 (7)利用分子键构成气孔:如分子筛,这是微孔材料也是中孔材料。象沸石、柱状磷

多孔陶瓷材料的制备工艺

成绩______ 多孔陶瓷材料的制备工艺 材料化学专业 2011级罗庆芬 指导教师:周芸 摘要: 概述了多孔陶瓷的形成机理, 并详细介绍了多孔陶瓷的制备工艺, 具体阐述了各种方法的特点。 关键词:多孔陶瓷;形成机理;制备工艺 Abstract: this paper summarizes the formation mechanism of porous ceramics, and introduces in detail the preparation technology of porous ceramics, detailed elaborated the characteristics of various methods. Key words: porous ceramics; The formation mechanism; The preparation process 1 引言 陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。而多孔陶瓷材料是以刚玉砂、碳化硅、堇青石等优质原料为主料、经过成型和特殊高温烧结工艺制备的一种具有开孔孔径、高开口气孔率的一种多孔性陶瓷材料、具有耐高温,高压、抗酸、碱和有机介质腐蚀,良好的生物惰性、可控的孔结构及高的开口孔隙率、使用寿命长、产品再生性能好等优点,可以适用于各种介质的精密过滤与分离、高压气体排气消音、气体分布及电解隔膜等。 2 多孔陶瓷的空隙形成机理[1] 多孔陶瓷就微孔结构形式可分为2 种:闭气孔结构和开口气孔结构。闭气孔结构是指陶瓷材料内部微孔分布在连续的陶瓷基体中, 孔与孔之间相互分离, 而开口气孔结构又包括陶瓷材料内部孔与孔之间相互连通和一边开口, 另一边闭口形成不连通气孔2 种。多孔陶瓷的孔隙结构通常是由颗粒堆积形成的空腔、坯体中加入的大量的可燃物或者可分解物形成的空隙、坯体形成过程中机械发泡形成的空隙以及由于坯体成型过程中引入的有机前躯体燃烧形成的孔隙等。一般将采用骨料颗粒堆积法和前躯体燃尽法均可以制得较高的开口气孔的多孔陶瓷制品, 而采用可燃物或分解物在坯体内部形成的气孔会有较大部分形成闭口气孔或半开口气孔, 采用机械发泡法形成的气孔基本上都是闭口气孔。作为用作过滤、布气等使用的多孔陶瓷材料来讲, 一般都希望具有较高的开口气孔率, 围绕

多孔材料(综述)

多孔陶瓷材料的制备及其应用 丁正平

摘要:多孔材料由于其孔结构所具有的性能,在工业和社会生产中作用显著,本文第一章简述了多孔材料的分类、与传统材料的差别、制备的一般方法、评价体系以及应用。多孔材料主要分为两大类多孔陶瓷和多孔金属材料。多孔陶瓷由于既具有陶瓷的一般性质又具有独特的多孔结构,因而既具有一般陶瓷的性质,比如:耐热性能、稳定的化学性能、一定的强度;同时具有孔结构的渗透性能、吸声性能等等,因而在很多方面具有应用。本文综述了多孔陶瓷的几种制备方法、性能表征、以及几个方面的应用。 关键词:多孔陶瓷制备应用

目录 1.多孔材料 (1) 1.1多孔材料的概念 (1) 1.2多孔材料的分类 (1) 1.3多孔材料的性能特点 (2) 1.4一般多孔材料的制备方法 (3) 1.5成品的评价系统 (3) 1.6多孔材料的应用 (3) 2.多孔陶瓷 (4) 2.1概述 (4) 2.2性能特点 (4) 2.3多孔陶瓷制备方法 (4) 2.4性能及表征 (10) 2.5 多孔陶瓷的应用 (14) 2.6 前景与展望 (16) 参考文献 (18)

1多孔材料 1.1 多孔材料的概念 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。这些支柱或者平板通常被称为固定相,起到支撑整个材料的作用,材料的力学性能主要取决于固定相的性能,孔洞中填充的物质称之为流动相,根据填充物物理状态的不同,又可以细分为气相和液相,气相的较为常见,整个多孔材料就是由固定向和流动相组成。典型的孔结构有:一种是由大量多边形孔在平面上聚集形成的二维结构;由于其形状类似于蜂房的六边形结构而被称为“蜂窝”材料;更为普遍的是由大量多面体形状的孔洞在空间聚集形成的三维结构, 通常称之为“泡沫”材料。根据功能材料的要求,多孔材料的具备以下两个要素:一是材料中必须包含大量的空隙;二是材料必须被用来满足某种或者某些设计要求已达到所期待的某种性能指标,多孔材料中的空隙相识设计者和使用者所希望得到的功能相,为材料的性能提供优化作用[1]。 多孔材料在自然界中很常见,而且具有一些优良的力学性能,被人们广泛利用。最为常见的就是木材,木材中间有很多细小的空洞,在多年前的古埃及金字塔中就已经使用了这些基本的多孔材料,古罗马时代还被用于酒瓶的瓶塞。而人类的骨骼,也可以称得上是多孔材料,具有低密度和高的机械强度的特点。传统的多孔材料,孔隙直径相对而言很大,达到了毫米级别,而现代制备的多孔材料,不仅包含了大孔径的,还有孔径达到了几十纳米的,获得了在性能上与传统材料有差别的新型多孔材料。现代的多孔材料中,其中最简单的是由大量相似的棱形孔洞组成的蜂窝状材料,可用作轻质构件。更常见的是高分子泡沫材料,其用途广泛,可用于减少器件碰撞的减缓泡沫。 1.2 多孔材料的分类

多孔陶瓷材料的研究现状及应用

多孔陶瓷材料的研究现状及应用 摘要:简单的论述了多孔陶瓷的特性、空隙生成以及制备方法与工艺等。对多孔陶瓷的应用进行举例说明,展望多孔陶瓷的未来发展。 关键词:特性孔隙形成性能制备 1.简介 多孔陶瓷具有低密度、高渗透率、抗腐蚀、良好的隔热性能、耐高温和使用寿命长等优点,是一种新型功能材料。 多孔陶瓷又称为气孔功能陶瓷,是指具有一定尺寸和数量的孔隙结构的新型陶瓷材料。在材料成形与高温烧结过程中,内部形成大量彼此相通或闭合的气孔。多孔陶瓷具有均匀分布的微孔或孔洞,孔隙率较高、体积密度小、比表面较大和独特的物理表面特性,对液体和气体介质有选择的透过性、能量吸收或阻尼特性,作为陶瓷材料特有的耐高温、耐腐蚀、高的化学稳定性和尺寸稳定性。因此多孔陶瓷这一绿色材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、高级保温材料、生物植入材料、特种墙体材料和传感器材料等多方面得到广泛的应用[1]。孔隙率作为多孔陶瓷材料的主要技术指标,其对材料性能有较大的影响。一般来讲,高孔隙率的多孔陶瓷材料具有更好的隔热性能和过滤性能,因而其应用更加广泛。 2.多孔陶瓷的特性以及孔隙形成 由于孔隙是影响多孔陶瓷性能及其应用的主要因素,因此在目前多孔陶瓷制备方法比较成熟的基础上,更加注重通过特殊方法控制孔隙的大小、形态,以提高材料性能。并相应地建立孔形成、长大模型,对孔隙形成的机理进行理论分析。 2.1结构特征与性能 2.1.1孔结构特征 多孔陶瓷最大的结构特征就是多孔性。因制造工艺不同多孔陶瓷的孔结构主要有三种类型。即直通气孔,这类气孔直线贯通,相互之间没有连通或连通较少,如蜂窝陶瓷等用模具挤制形成的气孔;闭气孔,这类气孔互不相通,相互孤立,如发泡法形成而没有破裂贯通的气孔,过分焙烧,产生液相过多,将气孔封闭也形成闭气孔;开气孔,颗粒烧结法、添加造孔剂法、有机泡沫浸渍法及溶胶-凝

开孔多孔陶瓷的制备技术

开孔多孔陶瓷的制备技术 Fabrication Technology of Open2pore Porous Ceramics 时利民,赵宏生,闫迎辉,唐春和 (清华大学核能与新能源技术研究院,北京102201) SH I Li2min,ZH AO H ong2sheng,YA N Ying2hui,T ANG Chun2he (Institute of Nuclear and N ew Energy T echnology, Tsinghua U niversity,Beijing102201,China) 摘要:介绍了开孔多孔陶瓷的制备方法及其研究进展,着重描述了有机泡沫浸渍工艺、添加造孔剂工艺、溶胶2凝胶工艺、挤出成型工艺、木质陶瓷和包混工艺,并总结了各工艺制备多孔陶瓷的优、缺点。 关键词:开孔;多孔陶瓷;制备技术;应用 中图分类号:TB383文献标识码:A文章编号:100124381(2005)1220057205 Abstr act:The development of open2pore porous ceramics using differ ent fabrication methods was re2 viewed1A number of prepar ation procedures,including polymer ic sponge impregnation process,ad2 dition pore2for ming material process,sol2gel pr ocess,extrusion process,wood2ceramic process and coat mix process were described in detail1T he advantages and disadvantages of the fabrication tech2 nologies of open pore porous ceramics were also summarized1 Key words:open2pore;porosity ceramics;fabr ication technology;application 开孔多孔陶瓷作为一种新型的陶瓷材料,因其具有透过性好、比表面积大、密度低、强度高、热导率小、耐高温、耐磨损、化学稳定性好等诸多优良性能,已经被广泛应用于航空航天、能源、机械、冶金、化工、环保、军工、电子、生物和医学等多个科学领域,涉及流体分离过滤、扩散、隔热、吸音、传感、电化学过程、催化反应工程、医学移植和修复等诸多方面的用途。它可用于制作过滤器、分离膜、换热器、隔热层、吸音材料、减震缓冲器、各种传感器、燃料电池的电极及隔膜、催化剂及催化剂载体和人造骨骼等[1-3]。因此开孔多孔陶瓷引起了全球材料学界的高度重视。 除了使用传统的制备方法外,新的制备方法也应运而生,制备体系也不断得到完善。制备开孔多孔陶瓷的方法有很多种,本工作回顾了开孔多孔陶瓷的制备方法及其最近研究进展,着重对有机泡沫浸渍工艺、添加造孔剂工艺、溶胶2凝胶工艺、挤出成型工艺、木质陶瓷和包混工艺进行了具体介绍。 1有机泡沫浸渍工艺 有机泡沫浸渍工艺是Schwar tzwalder[4]于1963年发明出来的。该工艺是用有机泡沫浸渍陶瓷浆料、溶胶2凝胶和胶体溶液,干燥后烧掉有机泡沫,获得孔径范围为50L m至1mm的开孔三维网状多孔陶瓷的一种方法。该方法是目前制备开孔多孔陶瓷应用最广泛的方法之一,其工艺流程见图1[5]。 由于有机泡沫材料的孔径大小和浆料在其上的涂覆厚度决定了最后制品的孔径尺寸,因此选择合适的有机泡沫材料是有机泡沫浸渍工艺中制备符合要求的开孔多孔陶瓷材料的一个重要因素。所选的泡沫必须具有一定的亲水性和足够回弹性的开孔网状材料,能够与陶瓷材料牢固的吸引,并保证挤出多余料浆后能迅速地恢复形状。 另外,泡沫的气化温度要低于陶瓷的烧成温度,且不污染陶瓷材料。适应这些要求的有机泡沫材料主要包括聚氨脂、纤维素、聚氯乙烯和聚苯乙烯等。 陶瓷浆料是决定采用有机泡沫浸渍工艺所得开孔多孔陶瓷体性能的另外一个重要因素。浆料的基本组成是陶瓷颗粒、水和添加剂。添加剂主要有粘结剂、硫变化剂、反泡沫剂、絮凝剂等。陶瓷制品的具体用途决定了陶瓷颗粒的成分。粘结剂有硅酸盐、磷酸盐、硼酸盐、胶化的Al(OH)3、SiO2胶体等以及有机粘结剂,用来提高干坯的强度,防止在有机泡沫气化过程中倒塌;硫变化剂主要是一些天然的粘土,用来提高浆料的触变性,以便浸渍时使浆料进入泡沫,并均匀地涂在泡沫网上有足够的粘度保持在泡沫中;低

多孔陶瓷的制备工艺及应用文献综述

文献综述 多孔陶瓷的制备工艺及应用 肖燕 (湖南大学外国语学院 201213010322) 摘要:多孔陶瓷因其独特结构和优异性能近年来成为陶瓷材料领域的一个研究热点,本文综述了多孔陶瓷制备技术的发展以及其应用。 关键词:多孔陶瓷应用制备工艺 1.前言 多孔陶瓷又称微孔陶瓷、泡沫陶瓷,是一种新型陶瓷材料,是以刚玉砂、碳化硅、堇青石等优质原料为主料、配以添加剂经过成型和特殊高温烧结工艺制备的一种具有开孔孔径、高开口气孔率的一种多孔性陶瓷材料。多孔陶瓷一般可按孔径大小分为3类:微孔陶瓷(孔径小于2nm)、介孔陶瓷(孔径为2~50nm)及宏孔陶瓷(孔径大于50nm)。若按孔形结构及制备方法,其又可分为蜂窝陶瓷和泡沫陶瓷两类,后者有闭孔型、开孔型及半开孔型3种基本类型。 多孔陶瓷的发展始于19世纪70年代,初期仅作为细菌过滤材料使用,随着控制材料的细孔结构水平的不断提高,其与玻璃纤维、金属等相比具有可控的孔结构、高的开口空隙率、均匀的透过性、机械强度高、易于再生、较低的热传导性、耐高温、抗腐蚀、使用寿命长等优良性能,给其应用开拓了广阔的前景,被广泛应用于环保、节能、化工、石油、冶炼、食品及生物医学等多个科学领域,引起全球材料科学界的密切关注。虽然目前已有较多关于多孔陶瓷的综述文献,但近些年来在技术发展推动下,新工艺新应用不断涌现,因此有必要结合一些最新文献对多孔陶瓷的制备工艺与应用进行综述。 2.多孔陶瓷的制备工艺 多孔陶瓷的性能除与组成因素相关以外,还与气孔形态、大小及分布等因素有密切关联。从制备工艺、结构和性能角度考虑,形成气孔是多孔陶瓷制备工艺

的关键步骤,也是多孔陶瓷研究的重点。本文将从介绍目前主流制备工艺着手,重点综述新型制备工艺方面取得的进展。 2.1传统制备工艺 一些研发历史较长、技术相对成熟的多孔陶瓷制备工艺已经获得了规模化的生产应用,这些工艺称为传统制备工艺,常见的有添加造孔剂法、有机泡沫浸渍法、发泡法、挤压成型技术、颗粒堆积法等。它们具有工艺流程简单、制备周期短、易于实现规模生产等优点。表1比较了这几种工艺方法的特点。 表1

相关主题