搜档网
当前位置:搜档网 › 锅炉引风机振动原因分析及对策

锅炉引风机振动原因分析及对策

锅炉引风机振动原因分析及对策
锅炉引风机振动原因分析及对策

引风机振动的原因

首先应该判断出是引风机风机在振动,还是由于拖动它的电机震动引起风机共振。 如果是由于电动机震动引起的则要检查电机: (1 )机械磨擦(包括定子、转子扫膛)。 (2 )单相运行,可断电再合闸,如不能起动,则可能有一相断电。 (3 )滚动轴承缺油或损坏。 (4 )电动机接线错误。 (5 )绕线转子异步电动机转子线圈断路。 (6 )轴伸弯曲。 (7 )转子或传动带轮不平衡。 (8 )联轴器松动。 (9 )安装基础不平或有缺陷。 如果是由于风机震动引起的则应检查: ①风机轴与电机轴不同心,联轴器装歪 ②机壳或进风口与叶轮摩擦 ③基础的钢度不牢固 ④叶轮铆钉松动或叶轮变形 ⑤叶轮轴盘与轴松动,或联轴器螺栓松动 ⑥机壳与支架、轴承箱与支架、轴承箱盖于座等联接螺栓松动 ⑦风机进出气管道安装不良 ⑧转子不平衡,引风机叶片磨损 风机振动原因分析及防治 工艺和维护几方面分析了可能导致风机振动的因素,提出多种措施,改善了风机作业状况、工作环境,有效的解决了风机振动问题,延长了风机 目前,安阳钢铁集团公司烧结厂四台28m2烧结机所配备的抽风机型号为D2800—11。由于设备老化、漏风率高,导致设备故障频繁。随着厚料层烧结生产操作的推广,为提高风量,1995年底经过对风机局部改造,使其抽风能力由原来的2500m3/min提高到2800m3/min,但未对大烟道、水封、除尘器等配套设施实施同步扩容改造,没有达到整个抽风系统的优化配置。由于受设备系统现状、工艺操作水平、风机维修维护多种因素影响,由风机振动引起的非计划检修频度直线上升,影响了整个烧结生产;由风机振动造成轴瓦、转子的频繁损坏,导致生产成本的增加。价值21万元(修旧转子10万元)的转子使用寿命仅为3-4个月,1998年最严重时4台风机一年更换了28个转子18对轴瓦。为此,从改善风机作业环境到风机本身的维护、安装多方面入手查找振动原因并进行了有效防治。 2 风机振动原因分析 根据风机的结构和作业特点,从理论上建立风机振动原因分解图,见图1。 通过对检修备案记录的分析并对照上面的原因分解图,不难得出造成风机振动的五个主要因素有:进入风机人口的粉尘量大、风温低、磨损、安装精度低、风机进入喘振区域。 2.1 风机入口的粉尘量大

引风机振动增大原因的诊断与处理示范文本

文件编号:RHD-QB-K6229 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 引风机振动增大原因的诊断与处理示范文本

引风机振动增大原因的诊断与处理 示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1台300 MW机组锅炉配备2台型号为 AN25eb、静叶可调轴流式引风机。该风机自投运以来,因振动超标等问题采取过一些措施,但风机振动特性仍表现在空载或低负荷运行时振动小,在高负荷、满负荷时振动增大现象,且多次被迫降负荷或停风机处理,振动威胁着机组安全经济运行。 1 振动诊断 1.1 原因分析 (1) 引风机振动,一般来说其振动源应该来自风机本身,如转动部件材料的不均匀性;制造加工误差

产生的转子质量不平衡;安装、检修质量不良;锅炉负荷变化时引风机运行调整不良;转子磨损或损坏,前、后导叶磨损、变形;进出口挡板开度调节不到位;轴承及轴承座故障等,都可使引风机在很小的干扰力作用下产生振动。 但由于采取了一系列相应的处理措施,如风机叶轮和后导叶进行了防磨处理,轴承使用进口优质产品,轴承箱与芯筒端板的连接高强螺栓采取了防松措施,对芯筒的支承固定进行了改进,还增加了拉筋;严格检修工艺质量,增加引风机运行振动监测装置等,解决了一些实际问题,风机低负荷运行良好,但高负荷振动增大现象仍未能解决。 (2) 该风机在冷态下启动升至工作转速和低负荷时振动小,说明随转速变化由转子质量不平衡引起振动的问题影响不大;从风机振动频谱分析看出风机振

风机产生振动的原因及处理方法

风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是中国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,风力发电机。那么风机会出现振动的原因和解决办法有哪些呢? 风机产生振动的原因及解决方法 1.叶轮与主轴配合间隙过大引起的振动,其主要原因是叶轮在制作加工过程中加工精度有误差,轴头出现椭圆,导致配合接触面减少,有原来的面接触变成了点接触。还有在修复过程中检修人员用细砂纸打磨轴头,多次修复后,导致主轴头与叶轮配合间隙过大。 解决方法:叶轮与主轴配合间隙过大引起的振动,对于新轴要依据图纸进行校核,确保达到叶轮与轴的配合间隙,叶轮轴孔与轴之间为过盈配合,紧力为0.01-0.05mm。另外风机正常运行期间尽量减少检修次数,由于每次检修对于风机主轴都存在一定的磨修,这样一来多次的修复会造成主轴的累积磨损,使主轴轴颈明显变细,达不到

孔与轴的过盈配合要求。还有叶轮与主轴安装完毕后,轴头用于锁紧叶轮的锁母必须紧固到位,一旦出现松动会造成风机振动加剧上升。 2.叶轮本身不平衡所引起的振动,其产生的原因有:叶轮上的零部件松动、变化、变形或产生不均匀的腐蚀、磨损;工作介质中的固体颗粒沉积在转子上;检修中更换的新零部件重量不均匀;制造中叶轮的材质不绝对匀称;加工精度有误差、装配有偏差等。叶轮本身不平衡,叶轮不平衡可分为动不平衡(力偶不平衡)和静不平衡(力矩不平衡)两种。 解决方法:消除动不平衡的方法是:拆除风机转子,利用动平衡机对转子进行平衡找平,通过平衡机找平的转子,动、静不平衡基本可以得到根除。静不平衡可在现场利用三点平衡法进行找平。 3.主轴发生弯曲,其主要原因是风机长期处于停用状态,主轴叶轮在自重的作用下,发生弯曲变形。这种情况经常出现在正常运转的风机停用后,,再次启机时,出现风机振动超标的现象。再者主轴局

引风机振动大分析

1B、2A引风机电机轴向振动分析 我厂引风机采用成都电力机械厂的Y A15236-8Z型静叶可调轴流风机,电机为湘潭电机厂的YKK710-6W型空冷电机,电机功率为2240KW,额定电流为267A 转速为980rpm。2012年4月份发现2A引风机电机和1B引风机电机轴向间歇性振动大,最大达20S。 2012年6月份将风机振动测点安装至电机轴向进行实时监测,根据监测数据分析显示电机轴向振动波动频繁。 联系热控从DCS画面中调取了11日至24日1B及2A轴向振动、负荷、电流、风机静叶开度、排烟温度、引风机入口压力、空预器进出口烟气压差曲线图,由生技部电气、锅炉配合分析。从调取的曲线中未发现振动与运行工况变化有明显的关系。以下是几个振动波动明显的曲线图: 1B曲线图 图1 图1:2012.06.11 14:30-16:00 1B引风机轴向振动,其他工况正常。排烟温度:137℃。

图2 图3 图2,3:2012.06.11 21:38-06.12 23:14 1B引风机长时间轴向振动大,其他 工况无明显异常。排烟温度:135摄氏度。

图4 图4:2012.06.13 22:20 1B引风机轴向振动突然减小后又增大,从曲线分析由于功率波动导致引风机电流波、引风机烟气入口压力、空预器进出口压差、引 风机静叶反馈波动。排烟温度132℃。 图5 图5:2012.06.19 09.40.00左右轴向震动从4mm/S在缓慢下降至3mm/S 后突升至6mm/S,然后开始缓慢下降。此时空预器烟气压差、引风机电流、负荷从小到大,随后下降。但电机轴向震动在此点出现缓降突升趋势。此时排烟温度 为137℃。

风机振动原因分析

电站风机振动故障的几种简易诊断 2009-11-18 11:20:44 来源:中国化工仪器网 风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。文中所述振动基于电厂离心式送风机、引风 机和排粉机。1 轴承座振动 1.1 转子质量不平衡引起的振动 在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2 动静部分之间碰摩引起的振动 如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装置之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动 如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成 局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动 滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位置和损坏程度,在此不加阐述。表1列出滚动轴承异常现象的检测,可以看出各种缺陷所对应的异常现象中,振动是最普遍的现象,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机

锅炉引风机振动分析及处理

锅炉引风机振动分析及处理 摘要:风机振动是运行中常见的现象,只要在振动控制范围内,不会造成太大 的影响。但是风机的振动超标后,会引起轴承座或电机轴承的损坏、电机地脚螺 栓松动、风机机壳、叶片和风道损坏、电机烧损发热等故障,使风机工作性能降低,甚至导致根本无法工作。严重的可能因振动造成事故,危害人身健康及工作 环境。所以查找风机振动超标的原因,并针对不同的现象分析原因采取恰当的处 理办法,往往能起到事半功倍的效果。本文针对锅炉引风机振动分析及处理开展 分析。 关键词:锅炉风机;振动故障;要因分析 引风机作为火力发电厂不可缺少的一部风,其运行状况的好坏直接关系到火 力发电厂的经济效益。对造成引风机振动故障的主要原因进行分析排查。 1、概述 按照国家2011年7月29日发布的最新标准《火电厂大气污染物排放标准》(GB13223-2011)要求,自2014年7月1日起,某企业将执行新标准规定的大 气污染物排放浓度限值,烟尘排放限值为30mg/m3、SO2排放限值为400mg/m (3某区)、NOX排放限值为200mg/m3,我企业投建了电站锅炉烟气除尘脱硫 脱硝项目,从而烟气风阻增大,需提高风机风压。更换成QAY-5D-21.5D型锅炉引风机,流量165174m3/h,压力7000Pa,无负荷单机试车运行发现当风机调节门 开度在50%-60%之间,电流逐步接近额定电流35.5A,风机传动组振动值最高达 到0.223mm,风机机壳及烟道大幅度振动,噪音过大,电机侧振动正常。当风机 调节门开度超过60%,风机传动组振动值逐步正常,噪音减轻,机壳及烟道振动 减小。根据对锅炉引风机运行当中出现的故障看出,风机振动一般归纳为以下几 方面:(1)由基础不牢、连接坚固不够、支承动刚度不足引起振动;(2)风机 转速接近临界转速产生的共振;(3)气流不稳定,调节挡板开度不一致、挡板 销子脱落或损失严重引起;(4)轴承本身损坏或轴承装配不良;(5)部件松动 引起的冲击力;(6)联轴器故障、转子不同心、不平直和轴径本身不圆;(7) 转子不平衡量产生的离心力;(8)电机轴承故障。排除法分别对以上8方面进 行试验数据分析对比发现有可能因气流不稳定,调节挡板开度不一致、挡板销子 脱落或损失严重引起的风机振动。联系厂家技术售后人员,经厂家技术人员对现 场判断,怀疑风机调节门开度在50%-60%之间,使风机气流产生共振,导致振动 情况。按照厂家人员指导在风机入口喇叭口处增加导流板(图1),使风机在进 风的过程中,风向均匀一致,不会发生紊乱,消除风机气流产生的共振。工作完 成后,开始试机,现场测振值结果稍有改变,机壳及烟道振动幅度仍偏大,调节 门开度达到60%以上,电机额定电流超标(35.5A),无法满足锅炉生产负荷要求。 2、振动产生的原因分析 (1)电动机的振动;电动机转子通过二支点的滚动轴承来旋转,轴承的轴向和径向的间隙很小,在润滑状态下磨损产生的振动和扫膛引起的振动极小,一般 不会给引风机造成太大的影响。(2)引风机轴承箱的振动;轴承箱主轴承损坏 和主轴弯曲、地脚螺栓松动和基础下沉会引起振动。(3)联轴器的振动;联轴 器磨损、连接不良、两轴中心线偏差均会引起振动。(4)风机壳体的振动;风 机壳体是由4mm薄钢板焊接而成,本身体型较大,运行中烟气流动使壳体产生 共振。同时,水膜除尘器在处理烟气的过程中,因水膜的不均匀等原因,烟气湿 度极度不均引起的振动。(5)叶轮的振动;烟气携带的灰尘颗粒粘附在叶轮上

大型轴流风机各类振动原因分析及处理措施

大型轴流风机各类振动原因分析及处理措施 轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取 代离心风机成为主流。轴流风机有动叶和静叶2种调节方式。动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。 随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴 露,这些问题在离心式风机上则不存在或不常见。本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。 一、动叶调节结构导致振动 动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。 (一)单级叶轮部分叶片开度不同步 单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。 单级叶轮部分叶片开度不同步引起的振动主要特点如下: 1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高

关于引风机振动的分析

关于引风机振动的分析 摘要:本文作者对造成火力发电厂引风机振动故障的原因及其基本特征进行了分析,介绍了如何运用这些振动故障的基本特征对引风机常见振动故障进行简易诊断,判断振动故障产生的根源。 关键词:引风机振动;分析 火力发电厂引风机的振动问题是很复杂的,但只要掌握各种振动的原因和基本特征,加上在平时工作中多积累经验,就能迅速和准确地判断引风机振动故障的根源所在,进而采取有效的措施,提高引风机在火力发电中的安全可靠性。引风机是一种将原动机的机械能转化为输送气体、给予气体能量的机械,它是火力发电厂中不可少的机械设备。在火力发电厂的实际运行中,引风机由于运行条件比较恶劣,发生故障率较高,特别是引风机的振动是一类对生产和运行产生很大影响的故障。一方面振动故障的诊断比较复杂,处理时间也比较长;另一方面振动故障一旦发生并酿成事故,所造成的影响和后果是十分严重的。 1 引风机振动原因分析 1.1 叶轮不平衡引起的振动 叶轮在使用中产生不平衡的原因可简要分为两种:叶轮的磨损和叶轮的结垢。造成这两种情况和引风机前接的除尘装置有关,这在平时的工作中深有体会,开滦林西电厂2#、3#、4#锅炉采用的电除尘为干法除尘装置引起的叶轮不平衡的原因以磨损为主,而1# 锅炉采用的文丘里水膜除尘为湿法除尘装置影响叶轮不平衡的原因以结垢为主。 1.1.1 引风机叶轮磨损及处理对策。干式除尘装置虽然可以除掉烟气中绝大部分颗粒的粉尘,但少量大颗粒和许多微小的粉尘颗粒随同高温、高速的烟气一起通过引风机,使叶片遭受连续不断地冲刷。长此以往,在叶片出口处形成刀刃状磨损。由于这种磨损是不规则的,因此造成了叶轮的不平衡。此外,叶轮表面在高温下很容易氧化,生成厚厚的氧化皮。这些氧化皮与叶轮表面的结合力并不是均匀的,某些氧化皮受振动或离心力的作用会自动脱落,这也是造成叶轮不平衡的一个原因。 1.1.2 引风机叶轮结垢及处理对策。经湿法除尘装置(文丘里水膜除尘器)净化过的烟气湿度很大,未除净的粉尘颗粒虽然很小,但粘度很大。当它们通过引风机时,在气体涡流的作用下会被吸附在叶片非工作面上,特别在非工作面的进口处与出口处形成比较严重的粉尘结垢,并且逐渐增厚。当部分灰垢在离心力和振动的共同作用下脱落时,叶轮的平衡遭到破坏,整个引风机都会产生振动。 解决叶轮结垢的方法很多,其中有喷水除垢方法,将喷水系统装在引风机的

风机振动原因分析

1 轴承座振动 转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。 动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 滚动轴承异常引起的振动 轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 | 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;④如果径向振动大则为两轴心线平行,轴向振动大则为两轴心线相交#

大型风机震动分析及解决方法

大型风机震动分析及解决方法 摘要:基于我厂某台瓦斯排送机一直震动较大,影响设备运行,本文就其震动原因进行初步分析,并提出解决方法,以使检修人员高度重视关键设备,提高设备安全运行效率。 关键词:排送机叶轮动平衡 Abstract: There is a gas exhauster has greater vibrations in our factory, that effect the equipment’s operation. This article analysis the vibratio ns, and puts forward the solving methods, in order to make the maintenance personnel to pay more attention to the key equipment, and improve safe efficiency. Key words: Exhauster,Impeller, Dynamic balance. 引言 页岩炼油厂是我公司战略转型的重点,主要生产页岩油。衡量其生产能力的首先是页岩的处理量,属于干馏炉自身原因;其次就是回收系统的能力大小,在回收系统中瓦斯排送机是这个系统的心脏。作为回收系统的瓦斯动力来源--瓦斯排送机能力的大小直接影响到页岩的处理量能否进一步提升。 1、现有瓦斯排送机状态 页岩炼油厂共有四个部,每部两台瓦斯排送机,一台运行,一台备用,在2004年以前,各台排送机风量为140000M3/h,各台排送机都已经满负荷工作,不能满足生产需要,基于此原因厂决定对各部其中一台进行修改,以提高风量,具体方法为将风机叶轮由原来八片增加到十二片。改造后各部运行改造完的排送机,其能力均有不同能力的提升,从而直接提高页岩油产量。 而C部2号排送机从2004年运行以来,在接近满负荷的情况下震动很剧烈,使得叶轮轴的轴瓦数次被震坏,到2006年末,一共损坏轴瓦达到4次,导致轴头基础螺栓断3次。不得不停机维修,使用排量较小的1号排送机。1号排送机风量为140000M3/h,2号为150000M3/h。 2 对生产的直接影响 直接降低风量影响了产量,因降低风量约7%从而降低处理量7%,直接造成产量的被迫减产。每次维修时间为换瓦5天,维修基础15天。仅此一项,直接减产以每天产100吨计算,100×7%×(5×4+15×3)=455吨,以目前原油每吨

风机震动原因分析

电站风机振动故障简易诊断 摘要:分析了风机运行中几种振动故障的原因及其基本特征,介绍了如何运用这些振动故障的基本特征对风机常见振动故障进行简易诊断,判断振动故障产生的根源。 关键词:风机;振动;诊断 风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。文中所述振动基于电厂离心式送风机、引风机和排粉机。 1轴承座振动 1.1转子质量不平衡引起的振动 在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承

处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2动静部分之间碰摩引起的振动 如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3滚动轴承异常引起的振动 1.3.1轴承装配不良的振动 如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2滚动轴承表面损坏的振动 滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,在此不

引风机振动原因及处理方法

论文发表 投稿邮箱:lwfb2008@https://www.sodocs.net/doc/47632757.html, 咨询QQ:393377508 主页博客相册|个人档案 |好友 查看文章 火力发电厂引风机振动的原因及处理方法 2009-10-19 23:08 王绍正(唐山开滦热电有限责任公司,河北唐山 063103) 摘要:随着科技的进步,火力发电厂的单机装机容量也越来越大,而引风机作为火力发电厂不可缺少的一部分,其运行状况的好坏直接关系到火力发电厂的经济效益。文章对造成火力发电厂引风机振动故障的原因及其基本特征进行了分析,介绍了如何运用这些振动故障的基本特征对引风机常见振动故障进行简易诊断,判断振动故障产生的根源。 关键词:引风机振动;故障分析;烟风道;机组振动 中图分类号:TH432 文献标识码:A 文章编号: 1009-2374(2009)20-0192-02 引风机是一种将原动机的机械能转化为输送气体、给予气体能量的机械,它是火力发电厂中不可少的机械设备。在火力发电厂的实际运行中,引风机由于运行条件比较恶劣,发生故障率较高,特别是引风机的振动是一类对生产和运行产生很大影响的故障。一方面振动故障的诊断比较复杂,处理时间也比较长;另一方面振动故障一旦发生并酿成事故,所造成的影响和后果是十分严重的。 随着火力发电厂的不断发展,对引风机性能要求也在提高,引风机设计和制造技术也在不断提高,所以出现的振动故障也越来越复杂,这就要求我们利用先进的检测、诊断仪器,采取科学有效的技术方法分析造成机组振动的原因,并制定行之有效的处理方法。 一、振动原因分析 (一)叶轮不平衡引起的振动 叶轮在使用中产生不平衡的原因可简要分为两种:叶轮的磨损和叶轮的结垢。造成这两种情况和引风机前接的除尘装置有关,这在平时的工作中深有体会,开滦林西电厂2#、3#、4#锅炉采用的电除尘为干法除尘装置引起的叶轮不平衡的原因以磨损为主,而1#锅炉采用的文丘里水膜除尘为湿法除尘装置影响叶轮不平衡的原因以结垢为主。 1.引风机叶轮磨损及处理对策。干式除尘装置虽然可以除掉烟气中绝大部分颗粒的粉尘,但少量大颗粒和许多微小的粉尘颗粒随同高温、高速的烟气一起通过引风机,使叶片遭受连续不断地冲刷。长此以往,在叶片出口处形成刀刃状磨损。由于这种磨损是不规则的,因此造成了叶轮的不平衡。此外,叶轮表面在高温下很容易氧化,生成厚厚的氧化皮。这些氧化皮与叶轮表面的结合力并不是均匀的,某些氧化皮受振动或离心力的作用会自动脱落,这也是造成叶轮不平衡的一个原因。 2.引风机叶轮结垢及处理对策。经湿法除尘装置(文丘里水膜除尘器)净化过的烟气湿度很大,未除净的粉尘颗粒虽然很小,但粘度很大。当它们通过引风机时,在气体涡流的作用下会被吸附在叶片非工作面上,特别在非工作面的进

引风机振动增大原因的诊断与处理详细版

文件编号:GD/FS-4278 (安全管理范本系列) 引风机振动增大原因的诊断与处理详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

引风机振动增大原因的诊断与处理 详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1台300 MW机组锅炉配备2台型号为 AN25eb、静叶可调轴流式引风机。该风机自投运以来,因振动超标等问题采取过一些措施,但风机振动特性仍表现在空载或低负荷运行时振动小,在高负荷、满负荷时振动增大现象,且多次被迫降负荷或停风机处理,振动威胁着机组安全经济运行。 1 振动诊断 1.1 原因分析 (1) 引风机振动,一般来说其振动源应该来自风机本身,如转动部件材料的不均匀性;制造加工误差产生的转子质量不平衡;安装、检修质量不良;锅炉

负荷变化时引风机运行调整不良;转子磨损或损坏,前、后导叶磨损、变形;进出口挡板开度调节不到位;轴承及轴承座故障等,都可使引风机在很小的干扰力作用下产生振动。 但由于采取了一系列相应的处理措施,如风机叶轮和后导叶进行了防磨处理,轴承使用进口优质产品,轴承箱与芯筒端板的连接高强螺栓采取了防松措施,对芯筒的支承固定进行了改进,还增加了拉筋;严格检修工艺质量,增加引风机运行振动监测装置等,解决了一些实际问题,风机低负荷运行良好,但高负荷振动增大现象仍未能解决。 (2) 该风机在冷态下启动升至工作转速和低负荷时振动小,说明随转速变化由转子质量不平衡引起振动的问题影响不大;从风机振动频谱分析看出风机振动主要是工频振动,可以排除旋转失速,喘振等影

引风机振动增大原因的诊断与处理

简介: 在历次处理引风机故障经验的基础上,通过分析、现场检测、诊断,认为其基础支持刚度不足是风机高负荷振动增大超标的主要原因,采用加固基础解决了问题。 关键字:引风机支持刚度;振动;诊断;处理 1台300 MW机组锅炉配备2台型号为AN25eb、静叶可调轴流式引风机。该风机自投运以来,因振动超标等问题采取过一些措施,但风机振动特性仍表现在空载或低负荷运行时振动小,在高负荷、满负荷时振动增大现象,且多次被迫降负荷或停风机处理,振动威胁着机组安全经济运行。 1 振动诊断 1.1 原因分析 (1) 引风机振动,一般来说其振动源应该来自风机本身,如转动部件材料的不均匀性;制造加工误差产生的转子质量不平衡;安装、检修质量不良;锅炉负荷变化时引风机运行调整不良;转子磨损或损坏,前、后导叶磨损、变形;进出口挡板开度调节不到位;轴承及轴承座故障等,都可使引风机在很小的干扰力作用下产生振动。但由于采取了一系列相应的处理措施,如风机叶轮和后导叶进行了防磨处理,轴承使用进口优质产品,轴承箱与芯筒端板的连接高强螺栓采取了防松措施,对芯筒的支承固定进行了改进,还增加了拉筋;严格检修工艺质量,增加引风机运行振动监测装置等,解决了一些实际问题,风机低负荷运行良好,但高负荷振动增大现象仍未能解决。 (2) 该风机在冷态下启动升至工作转速和低负荷时振动小,说明随转速变化由转子质量不平衡引起振动的问题影响不大;从风机振动频谱分析看出风机振动主要是工频振动,可以排除旋转失速,喘振等影响。 (3) 用锤击测量风机叶片的自振频率,该风机工作频率(叶片防磨后)为16.5 Hz,叶片一阶频率已大于K=7,故对第一类激振力是安全的;该风机进口导叶24片,第二类激振力频率为16.5×24=396 Hz,但频谱分析中,未发现有400 Hz左右的频率,可以认为第二类激振力对叶片振动和风机振动的影响不大。 (4) 风机振动主要是高负荷或满负荷振动增大,且振动不稳,出现波动或周期性振动。 ①振动不稳可能与锅炉燃烧调整、烟气流速、两台并联运行风机的流量分配等有关,同时也反映了风机支承刚度差、可能有局部松动等问题。风机进入高负荷发生振动增大现象,若在此情况下继续长时间运行,主轴承可能受损,其基础、台板、叶轮与主轴联接部件就有可能被振松,进而使振动更加恶化,最终导致停运风机解体检修。 ②从风机运行承力情况看,高负荷时,风机出力增大,根据作用力与反作用力原理,结果使支承转子的作用力增大和风机支承基础负荷增大,如果风机支承基础刚度或相关连接刚度不足,其承载抗扰性能就差。风机振动尽管振源来自风机本身,由于风机结构特点,空载或低负荷存在振动,但没超标;当风机支承刚度不足又在高负荷运行时,会使风机原存在但没超标的振动提供放大振动的条件,出现上述高负荷振动增大特征,故分析认为风机高负荷振动增大由支承刚度不足引起。 1.2 现场检测与诊断

轴承震动原因

轴承震动原因: 1、风机是离心式的吧?检查一下进风口,是否有进风量不足的问题,只有消除了其他工艺方面的原因,才能更好地查找设备方面的故障。我曾经遇到过类似的问题,风机的轴承老是向一边跑(内圈挤外圈,结果将保持架挤裂,滚珠掉出来),原因就是进风口的过滤层太厚,积尘过.多,导致了进风量不足,轴向振动偏大。 2、检查轴承座是否有松动 3、增压风机轴承振动大的原因? 电机和风机的对轮中心不符合有关规定。或者轴承有缺陷,用听针听听就清楚了。 原因很多啦,叶片积灰,动叶开度调整不当等都可引起振动 两侧风机压差偏差大,风机发生喘振造成轴承振动 增压风机振动大的原因? 1、风机轴与电机轴不同心 2、机壳与叶轮磨檫 3、叶轮变形或黏灰 4、基础刚度不够或不牢固 5、叶轮与轴松动,联轴器螺栓松动 6、机壳与支架,轴承箱盖与座等连接螺栓松动 7、风机进出气管道安装不良 8、风机叶轮不平衡 了上面原因外,还有可能是测振装置松动引起轴承振动大.我们厂曾经发生过由于测振装置松动引起轴承振动大,风机跳机现象。 增压风机运行是时轴承振动大主要原因有:喘振;出口阻力增大(即除雾器发生堵塞现象时)、叶轮结灰严重、测振装置松动、轴承磨损等 风机叶轮不平衡占得多! 风机运行中常见故障原因和处理方法

发表时间:2009-11-16 点击量:55 一、风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,它是火电厂中不可少的机械设备,主要有送风机、引风机、一次风机、密封风机和排粉机等,消耗电能约占发电厂发电量的1.5%~3.0%。在火电厂的实际运行中,风机,特别是引风机由于运行条件较恶劣,故障率较高,据有关统计资料,引风机平均每年发生故障为2次,送风机平均每年发生故障为0.4次,从而导致机组非计划停运或减负荷运行。因此,迅速判断风机运行中故障产生的原因,采取得力措施解决是发电厂连续安全运行的保障。虽然风机的故障类型繁多,原因也很复杂,但根据调查电厂实际运行中风机故障较多的是:轴承振动、轴承温度高、动叶卡涩、保护装置误动。 二、风机轴承振动超标 风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。 1、不停炉处理叶片非工作面积灰引起风机振动 这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。 在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从而减少风机的振动。在实际工作中,通常的处理方法是临时停炉后打开风机机壳的人孔门,检修人员进入机壳内清除叶轮上的积灰。这样不仅环境恶劣,存在不安全因素,而且造成机组的非计划停运,检修时间长,劳动强度大。经过研究,提出了一个经实际证明行之有效的处理方法。如图1所示,在机壳喉舌处(A点,径向对着叶轮)加装一排喷嘴(4~5个),将喷嘴调成不同角度。喷嘴与冲灰水泵相连,将冲灰水作为冲洗积灰的动力介质,降低负荷后停单侧风机,在停风机的瞬间迅速打开阀门,利用叶轮的惯性作用喷洗叶片上的非工作面,打开在机壳底部加装的阀门将冲灰水排走。这样就实现了不停炉而处理风机振动的目的。用冲灰水作清灰的介质,和用蒸汽和压缩空气相比,具有对喷嘴结构要求低、清灰范围大、效果好、对叶片磨损小等优点。 2、不停炉处理叶片磨损引起的振动 磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片磨损,平衡破坏后造成的。此时处理风机振动的问题一般是在停炉后做动平衡。根据风机的特点,经过多次实践,总结了以下可在不停炉的情况下对风机进行动平衡试验工作。 (1)在机壳喉舌径向对着叶轮处(如图1)加装一个手孔门,因为此处离叶轮外圆边缘距离

关于风机叶片振动的检测与分析

关于风机叶片振动的检测与分析 摘要:鉴于发电机的工作环境通常都比较恶劣,极易出现损坏或者故障的情况,故而对于发电机的运行状态监测和故障判断极为关键。研究设计风机叶片振动检 测方法是极其重要的,它对于降低发电机的故障几率、延长发电机的工作寿命以 及减少发电量的损失等具有重要意义。据此,通过研究风机故障频谱的分析,并 加以总结各种特点。 关键词:风机叶片;振动;监测 1引言 发电的处所大多处于较为偏僻的地区或者海上,且一些零件的更换过程极为 繁琐,所以日常的维护和检修进行起来较为困难,而又因为风机叶片因振动所引 发的故障极其严重,所以现阶段研究其振动的监测方法极其重要。 2造成风机振动的原因 可能会造成振动的原因有许多,就比如在加工生产的时候可能存在的误差、 安装误差、载荷、润滑状态等原因。而叶片的刚度是载荷的非线性函数,故而在 处理持续运转的时候,叶片可能会受到的作用力为周期性变化。啮合刚度产生的 改变会被付氏变换,引发多频激励。假如叶片存在开裂或者点蚀的状况,那么叶 片的弯曲刚度就会降低,而存有裂纹的叶片或者存在点蚀的叶片在进行啮合的过 程当中的综合啮合刚度就会较以往偏低,造成啮合冲击的振动特征发生变化[1]。 (1)由机械问题引发的振动:可能由于转子在最开始制作的过程中或者安装的时候存在的一些误差,致使转子产生弯曲变形、部件松动等问题致使转子不平衡。也有可能是在安装原动机和工作机的时候为准确连接,致使其温升不等等问 题引发振动。 (2)由于工作介质造成的振动:可能由于进入风机的气流压力、流量的改变产生气流激振力,或者气流当中的粉尘密度不均匀,使得转子的受力不均匀,有 可能造成风机振动。 (3)由于润滑系统的问题导致的振动:润滑系统如果出现问题,将会导致轴承在运转过程当中出现发生振动。 3叶片磨损的原因及措施 导致风机叶片出现磨损情况的原因呈现出多样性的特点,当锅炉风机运行过 程中没有针对工况状态进行设计时,叶片进口圆弧切线与叶轮中进气方向则会无 法保持一致,会有进气冲角产生。同时当风机运行过程中其气流粒会对叶片进口 位置带来一定的磨损和冲刷作用。在实际锅炉机组中,通常会将旋风除尘设备设 置在引风机进气口位置处,这种设备防尘效果较好,但当针对除尘设备清理不及时,引风机容易出现灰尘积聚的情况,风机在运行过程中产生的气流会将粉尘粒 带至叶片附近,其所产生的作用与锉刀叶片相同,导致叶片磨损加剧。另外,当 风机叶片焊缝或是构成材料硬度达不到标准要求时,进入的粉尘硬度较高的情况下,也会加剧叶片的磨损。针对于叶片磨损问题进行具体处理时,宜采取以下几 方面的处理措施。 第一,在实际工作中需要做好除尘工作,针对于除尘设备和叶片上的杂物和 灰尘要及时进行清量,尽可能的降低烟气和粉尘量。严格控制锅炉运行过程中使 用的煤质。一般情况下在风机运行过程中,间隔两小时宜进行一些灰尘清理,这 样可以有效的降低叶片的磨损度。 第二,叶片运行时要降低排气阻力,即在叶片进口处需要保证切线弧度及气

风机振动的原因及案例

风机振动的原因及案例 1风机轴承振动超标 风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。 1.1不停炉处理叶片非工作面积灰引起风机振动 这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。 在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从而减少风机的振动。在实际工作中,通常的处理方法是临时停炉后打开风机机壳的人孔门,检修人员进入机壳内清除叶轮上的积灰。这样不仅环境恶劣,存在不安全因素,而且造成机组的非计划停运,检修时间长,劳动强度大。经过研究,提出了一个经实际证明行之有效的处理方法。如图1所示,在机壳喉舌处(A点,径向对着叶轮)加装一排喷嘴(4~5个),将喷嘴调成不同角度。喷嘴与冲灰水泵相连,将冲灰水作为冲洗积灰的动力介质,降低负荷后停单侧风机,在停风机的瞬间迅速打开阀门,利用叶轮的惯性作用喷洗叶片上的非工作面,打开在机壳底部加装的阀门将冲灰水排走。这样就实现了不停炉而处理风机振动的目的。用冲灰水作清灰的介质,和用蒸汽和压缩空气相比,具有对喷嘴结构要求低、清灰范围大、效果好、对叶片磨损小等优点。 1.2不停炉处理叶片磨损引起的振动 磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片磨损,平衡破坏后造成的。此时处理风机振动的问题一般是在停炉后做动平衡。根据风机的特点,经过多次实践,总结了以下可在不停炉的情况下对风机进行动平衡试验工作。 1)在机壳喉舌径向对着叶轮处(如图1)加装一个手孔门,因为此处离叶轮外圆边缘距离最近,只有200 mm多,人站在风机外面,用手可以进行内部操作。风机正常运行的情况下手孔门关闭。 2)振动发生后将风机停下(单侧停风机),将手孔门打开,在机壳外对叶轮进行试加重量。 3)找完平衡后,计算应加的重量和位置,对叶轮进行焊接工作。在实际工作中,用三点法找动平衡较为简单方便。试加重量的计算公式为 P<=250×A0×G/D(3000/n)2(g) 为了尽快找到应加的重量和位置,应根据平时的数据多总结经验。根据经验,Y4-73-11-22D的风机振动0.10mm时不平衡重量为2000 g;M5-29-11-18D的排粉机振动0.10mm时不平衡重量120g;轴流ASN2125/1250型引风机振动为0.10 mm时不平衡重量只有80 g左右。为了达到不停炉处理叶片磨损引起的振动问题的目的,平时须加强对风门挡板的维护,减少风门挡板的漏风,在单侧风机停运时能防止热风从停运的送风机处漏出以维持良好的工作环境。 1.3空预器的腐蚀导致风机振动间断性超标 这种情况通常发生在燃油锅炉上。燃油锅炉引风机前一般没有电除尘,烟、风道较短,

相关主题