搜档网
当前位置:搜档网 › 近世代数第3讲

近世代数第3讲

近世代数第3讲
近世代数第3讲

第 3 讲

§7—9 一一映射,同态及同构(2课时)

(Bijection Homomorphism and Osomorphism )

本讲教学目的和要求:通过了解双射,同态及同构的理论,为后继课程中学习群同态,群同构(群第一、二同构定理)环同态,环同构理论做准备。具体要求:

1、在第一讲的基础上,对各类映射再做深入的研究。

2、充分了解双射(一一映射)的特性以及由此引导出的逆映射。

3、两个代数系统的同态的概念,尤其是同态的满射所具有的性质。

4、掌握同构映射的实质,为以后教学内容奠定基础,

本讲的重点和难点:本讲的重点在于对同态映射定义的了解;由同态满射引导的一系列性质及同构映射本质的掌握。而对双射及自身的逆映射之间的关系学生不易把握,需要认真对待。

本讲的教法和教具:在多媒体教室使用投影仪。在教学活动中安排时间让学生展开讨论。

本讲思考题及作业:本讲思考题将随教学内容而适当地展开。作业布置在本讲结束之后。

一、一一映射

在第1讲中,已对各类映射作了系列性的介绍,这里只对重要的

一一映射作重点的讨论。

定义1、设?是集合A 到A 的映射,且?既是单的又是满的,则称?是一个一一映射(双射)。

例1:},4,2,0,2,4,{2},2,1,0,1,2,{: --=→--=Z Z ?,

其中Z n n n ∈?=,2)(?,可知?显然是一个双射。

注意:Z 与偶数集Z 2之间存在双射,这表明:Z 与它的一个真子集Z 2一样“大”。

思考题:从例1中得知:一个无限集与其的某个真子集一样“大”。这是否可作为无限集都有的特性?即我们是否有如下的结论:A 为无限集的充要条件是A 与其某个真子集之间存在双射。

定理1:设?是A 到A 的一个双射,那么由?可诱导出(可确定出)A 到A 的一个双射1-?(通常称1-?是?的逆映射)

证明:由于?是A 到A 的双射,那么就A 中任一个元素a ,它在A 中都有逆象a ,并且这个逆象a 是唯一的。利用?的这一特点,则可确定由A 到A 的映射1-?:

a a A a A A =∈?→--)(,,:11??,如果a a =)(?,由上述说明,易知1-?是映射。

1-?是满射:A a ∈?,因?是映射a a A a =∈??)(,?使,再由1-?的定义知a a =-)(1?,这恰说明,a 是a 在1-?下的逆象。由a 的任意性,知1-?是满射。

1-?是单射:2121,,a a A a a ≠∈?若由?是满射21a a 及?的逆象分别是

22111121)(,)(,a a a a a a ==--??即及,又?是单射21a a ≠?,

这说明)()(2111a a --≠??,所以1-?是单射。

综合上述讨论知:1-?是A 到A 的一个双射。

结论:设A A →:?是映射,那么:

(1)?是双射??可唯一的确定一个逆映射A A →-:1?,使得: ? 1-?是双射;

? A A 1,111==--????;

? ?也是1-?的逆映射,且??=--11)(;

(2)?是双射A A 与?同时是有限集或同时是无限集。

二、变换

定义2:设A A →:?是映射,那么习惯上称为是A 的变换。

当?是双射(单射,满射)时,也称?为一一变换(单射变换,满射变换)

例2 19P

三、同态(本目与高代中的线性变换类似)——对代数系统的比较。 例3、设}1,1{:-=→A Z ?,其中},{ Z 中的代数运算 就是Z 中的加法,而},{ A 中的代数运算 为数中的乘法。

)3()2()32(,111)1()1()1()1()3()2(,

1)5()32()32(,1)3(,1)2(,,1)(??????????? ≠-≠?=-?-=--=-==+=-=-=∈?-=即

而那么

现设Z n n

定义3:设集合A A ,都各有代数运算 ,(称},{ A 及},{ A 为代数系统)

而A A →:?是映射,且满足下面等式:

)()()(,,b a b a A b a ??? =∈?(习惯上称?可保持运算)

那么称?是A 到A 的同态映射。

例4、设},{ Z 与},{ A 同例3,今设Z n n A Z ∈?=→,1)(:ττ为,那么

的同态映射到是即A Z n m n m n m n m Z n m ττττττ),()()(1

11)()(,1)(,, =∴=?==∈?

例5、},{ Z 与},{ A 同上,而??

?-=

11)(为奇数为偶数n n n σ Z m n ∈?, (1) 若m n ,均为偶数时m n +?为偶数,

)()()(111)()(,1)()(m n m n m n m n m n σσσσσσσ =?=?==+=∴而

(2)若m n ,均为奇数时m n +?为偶数,

)()()(1)1()1()()(,1)()(m n m n m n m n m n σσσσσσσ =?=-?-==+=∴而

(3)若n 奇而m 偶时m n +?为奇数,则

)()()(11)1()()(,1)()(m n m n m n m n m n σσσσσ =?-=?-=-=+=而

(4)若n 偶而m 奇时同理知)()()(m n m n σσ =.

由(1)~(4)知,σ是Z 到A 的同态映射.

如果同态映射?是单射(满射),那么自然称?是同态单射(同态满射),而在近世代数中,同态满射是尤其重要的。

定义4:若?是},{ A 到},{ A 的同态满射,那么习惯上称A A 与同态,并记为A ~A ;习惯上称A 是A 的同态象.

定理2. 如果?是},{ A 到},{ A 的同态满射,那么

(1) 若 满足结合律 ?也适合结合律;

(2) 若 满足交换律 ?也适合交换律.

证明:(1)任取?因,,,A c b a ∈是满射b b a a A c b a ==∈??)(,)(,,,??使,又因为A 中 的满足结合律c b a c b a )()(=?

即))(())((c b a c b a ??=,但是?是同态映射。

)()]()([)()()())((c b a c b a c b a c b a ===??????

c b a c b a c b a c b a )()()]()([)()()))((===?????? 所以c b a c b a )()(=

同理可以证明(2)

定理3、设},,{⊕?A 和},,{⊕?A 都是代数系统,而映射A A →:?关于⊕?,以及⊕?,都是同态满射,那么:

(1) 若⊕?,满足左分配律?⊕?,也适合左分配律;

(2) 若⊕?,满足右分配律?⊕?,也适合右分配律。

证明:(1)?因,,,A c b a ∈?是满射c c b b a a A c b a ===∈??)(,)(,)(,,,???使. 又因为?是关于⊕?,及⊕?,的同态映射?

)()()]()([)]()([)()()]()[()]([))()(()()(c a b a c a b a c a b a c a b a c b a c b a c b a ?⊕?=?⊕?=?⊕?=

?⊕?=⊕?=⊕?=⊕??????????? 即)()()(c a b a c b a ?⊕?=⊕?.

同理可证明(2)。

思考题1:在定理2及定理3中,都要求映射?是满射,似乎当?是同态满射时,才能将A 中的代数性质(结合律、交换律及分配律)“传递”到A 中,那么:

(1) 当?不是满射时,“传递”还能进行吗?(即定理2,3成立吗?)

(2) 即使?是满射,“传递”的方向能改变吗?(即A 中的性质能“传

递”到A 中去吗?)

(3) 依照定理2,3的思路,若将?换成同态单射后,能获得什么结

论?

四、同构

定义4、设?是},{ A 到},{ A 的同态映射,若?是个双射,那么称?是同构映射,或称A 与A 同构,记为A A ?。

例6、设 与而},,3,2,1{},,3,2,1{---====-+Z A Z A 都是整数中通常的加法“+”,现作A n n n A A ∈?-=→,)(},{},{:??其中 ,那么?是同构映射. 事实上,

(1)?是单射:当???∴=-≠-=≠∈)()(,,m m n n m n A m n 时且是单射.

(2)?是满射:??∴∈=--=-∈-∈?A t t t A t A t )()(,,且则是满射.

(3)?是同态映射:

)()()()

()()()()()()(,,m n m n m n m n m n m n m n A m n ?????? =∴=-+-=+-=+=∈?

由(1),(2),(3)知,?是同构映射,即A A ?。

定理4、设?是},,{+ A 到},,{+ A 的同构映射,那么

(1)“ ”适合结合律?“ ”也适合结合律;

(2)“ ”适合交换律?“ ”也适合交换律;

(3)“ ”和“+”满足左(右)分配律?“ ”和“+”满足 左(右)分配律。

注意:由上述表明,同构的两个代数体系由运算所带来的规律性是相

同的,因此,同构的两个代数体系尽管可能有这样或那样的差别,但从近世代数的宗旨来看,我们自然认为:它们的差别是表面上的,次要的,而它们的共同点——运算所体现的规律性则是本质的,主要的。于是,我们需要阐明近世代数的观点是:凡同构的代数体系都认为是(代数)相同的。

在上述的观点下,一个代数体系经同构映射而保持不变的性质叫做它的代数性质。于是,由代数运算所表述的任意一个性质都是代数性质。我们将代数体系的代数性质的总合统称为它的代数结构。因此,同构的代数体系由于完全相同的代数结构。研究代数体系的首要目的就是确定所有互不同构的代数体系以及它们的代数结构。而为了确定一个代数体系的代数结构,只须让它与一个代数结构已经清楚的代数体系同构则可。

课堂练习:设},3,2,1{},,3,2,1,0{ ==*N N ,那么,},{},{++*N N 与不可能同构.

证明:(反证法)若N N ?

?*,那么?是同构映射。设 推出矛盾中没有但而,00)1()0()1(,110,)1(,)0(N n m n m m N n =?+=+==∴=+=∈=????? 思考题2:

试证:(1)},{},{??*N N 与不同构(为普通乘法)。

(2)},{},{?+Z Z 与不同构.

(3)},{},{?+*Q Q 与不同构(其中*Q 为非零有理数集).

思路:

(1)(反证法)若N N ?*,且?是*N 到N 的同构映射。则 推出矛盾令,1)0()0()00()0(),1()0(,1)1(2=∴==?==∴≠∴==a a a a a ??????

(2)(反证法)若Z Z ?,且?是Z 到Z 的同构映射。则

推出矛盾令),(2)()()()0(12)(,1)0(n n n n n n -=-=-==∴==???????.

(3)(反证法)若*?Q Q ,且?是Q 到*Q 的同构映射。则 推出矛盾令,0,02)()()()1)(1(11)(,1)0(=∴=?+==--=∴-==q q q q q q q ?????

五、自同构

定义5、设},{ A 是一个代数体系,若?是A 到A 的一个同构映射,那么称?为A 的一个自同构。

例7(26P )

思考题3

(1) 两个代数体系如果同构了,那么它们之间的同构映射是唯一的

吗?

(2) 设F 为数域,44321}),,,{(F F a a a a a A i =∈=

)(24321F M F x x x x x A i =?

?????∈???? ??= 试证:},{},{++A A 与是同构的。(其中“+”为数组间的加法,“+”为矩阵的加法)

作业:19P ①② 23P ② 26P ②

近世代数 第17讲

第17 讲 §交换律、单位元、零因子、整环. (Commutatine Law,unity,divisor of zero and integral domain) 讲本讲教学目的和要求:由环的定义,环{}?+,,R是在某集合R上定义了两种代数运算,而这二个运算是通过分配律建立了彼此的联系.很明显,环中的这两种运算立法机关的要求是很不平衡的.特别是环中的乘法只要求满足半群—乘法封闭和结合律.所以为环在乘法方面留下了很大的余地,一旦某些乘法方面再满期点头其它一些条件,则变成了一些特殊的类型的环.本节主要介绍交换环有单位元的环,没有零因子的环和整环,扩大环论的知识面.在学习方面要求掌握: 1、交换环仅是对乘法而言,可交换的一种环.由此可得到什么新结果. 2、有单位元的环(习惯上称心内幺元)具有的一些重要性质. 3、零因子的概念以及没有零因子与满足消去律的等价性. 4、什么是整环,什么是除环和域,它们之间的差别和联系. 本讲的重点和难点:零因子是一个新的概念,要真正了解并掌握它不是件易事.而”没有零因子”与”有消去律”之间的等价性的证明是难点. 一.交换环

设},;{?+R 为环,已知R 关于加法”+”而言,已可以交换,至于对于乘法”·”,R 也有满足交换律的可能(比如数环,多项式环等),所以我们有 定义1.如果环},;{?+R 关于乘法满足交换律:R b a ∈?, 都有ba ab =,那么称此环是交换环. 例1.易知,在§1中所介绍的所有数环,一元多项式][x F ,和剩余类环m Z 都分别是变换环.但n 价矩阵环)(F M n 不是变换环. 例2.设环},;{?+R 的加法群是循环群,那么环F 必是变换环. 证明: };{+R 是循环群,即}|{)(R n na a R ∈== ∴,,,ma y na x R y x ==?∈? ∴))((ma na xy = 22][)]([nma ma n ma a n ===, 而 ))((na ma yx = 222][)]([nma mna na m na a m ==== ∴yx xy =. 明示1.在第二章中已知:每个阶5≤的群必是交换群.而一旦环R 中元素个数3≤,那么R 必是变换环. 交换环的性质:设R 是交换环.R b a ∈?,.那么 (1)n n n b a ab N n =∈?)(, (2) R 中满足:222 2)(b ab a b a +±=±,))((22b a b a b a -+=- ))(()(2233b ab a b a b a +±=± (3) R 中满足二项式公式: n n n n n n n n n n b ab C b a C b a C a b a +++++=+----1122211)( 二. 无零因子环

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

近世代数9

题 号 一 二 三 四 五 六 是否缺考 题 分 15 20 15 10 20 20 得 分 《近世代数》试卷 一、填空题(每空2分,共20分) 1、设G =)(a 是15阶循环群,则G 的子群的个数为_________. 2、整数加群Z 是一个循环群,它有且仅有两个生成元是______和_____. 3、4次对称群4S 的阶是___,在4S 中,(134)(12)=_______,(1324)1 =_______,元素(1234)的阶 是______. 4、在剩余类环18Z 中,[11]+[8]=_______,[5][6]=_______. 5、整数环Z 上的一元多项式环][x Z 中的理想_______不是一个主理想. 6、_______是整数环Z 的一个商域. 二、判断题(对打“√”,错打“×”,不说明理由,每小题2分,共20分) 1、( )一个阶是13的群只有两个子群。 2、( )交换群的子群是不变子群。 3、( )全体整数的集合对于普通减法构成一个群。 4、( )无零因子环的特征不可能是2007。 5、( )群G 的指数是2的子群一定是不变子群。 6、( )模15的剩余类环15Z 是域。 7、( )在一个环中,若左消去律成立,则右消去律成立。 得分 评卷人 复查人 得分 评卷人 复查人

8、( )除环的中心是域。 9、( )欧氏环一定是主理想整环。 10、( )无零因子环的同态象无零因子。 三、解答题(第1题15分,第2,3题各10分,共35分) 1、设)}13(),1{( H 是3次对称群3S 的子群,求H 的所有左陪集和右陪集,试问H 是否是 3S 的不变子群?为什么? 得分 评卷人 复查人

近世代数初步_习题解答(抽象代数)

《近世代数初步》 习题答案与解答

引 论 章 一、知识摘要 1.A 是非空集合,集合积A A b a b a A A 到},:),{(∈=?的一个映射就称为A 的一个代数运算(二元运算或运算). 2. 设G 非空集合,在G 上有一个代数运算,称作乘法,即对G 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的积,记为c=ab.若这个运算还满足:,,,G c b a ∈? (1),ba ab = (2)),()(bc a c ab = (3)存在单位元e 满足,a ae ea == (4)存在,'G a ∈使得.''e a a aa =='a 称为a 的一个逆元素. 则称G 为一个交换群. (i)若G 只满足上述第2、3和4条,则称G 为一个群. (ii) 若G 只满足上述第2和3条,则称G 为一个幺半群. (iii) 若G 只满足上述第2条,则称G 为一个半群. 3.设F 是至少包含两个元素的集合,在F 上有一个代数运算,称作加法,即对F 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的和,记为c=a+b.在F 上有另一个代数运算,称作乘法,即对F 中任意两个元素a,b,有唯一确定的元素d 与之对应,d 称为a 与b 的积,记为d=ab.若这两个运算还满足: I. F 对加法构成交换群. II. F*=F\{0}对乘法构成交换群. III..)(,,,ac ab c b a F c b a +=+∈? 就称F 为一个域. 4.设R 是至少包含两个元素的集合,在R 上有加法和乘法运算且满足: I. R 对加法构成交换群(加法单位元称为零元,记为0;加法单位逆元称为负元). II. R *=R\{0}对乘法构成幺半群(乘法单位元常记为1). III. .)(,)(,,,ca ba a c b ac ab c b a R c b a +=++=+∈? 就称R 为一个环. 5.群G 中满足消去律:.,,,c b ca ba c b ac ab G c b a =?==?=∈?且 6.R 是环,),0(00,,0,==≠∈≠∈ba ab b R b a R a 或且若有则称a 是R 中的一个左(右)零因子. 7.广义结合律:半群S 中任意n 个元a 1,a 2,…,a n 的乘积a 1a 2…a n 在次序不变的情况下可以将它们任意结合. 8.群G 中的任意元素a 及任意正整数n,定义: 321个 n n a aa a ...=,43421个 n n a a a a e a 1 110...,----==. 则由广义结合律知,,,Z n m G a ∈?∈?有 .)(,)(,1m m mn n m n m n m a a a a a a a --+=== (在加法群中可写出相应的形式.)

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( c )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、{} 3 ,,a a e 2、下面的代数系统(G ,*)中,( D )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( B ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、1 2σ B 、1σ2σ C 、2 2 σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( A )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----变换群------同构。 2、一个有单位元的无零因子-交换环----称为整环。 3、已知群G 中的元素a 的阶等于50,则4 a 的阶等于----25--。 4、a 的阶若是一个有限整数n ,那么G 与---模n 剩余类加群----同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。 6、若映射?既是单射又是满射,则称?为----双射-------------。

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数习题与答案

近世代数习题与答案 Prepared on 22 November 2020

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

近世代数 第11讲

第11 讲 §8 子群(Subgroups) 本讲教学目的和要求:对于群这个新的教对象,应该如何入手,从哪几个方面去研究它,这一直是我们所关心的问题。概括些说,对群的研究,可分为互相联系的两个方面:群的结构和群的表示。与集合比较,群就是多了一个运送(正是这个运算才给群带来了生命力),所以群论研究的初步可以仿照集合论去讨论,只是关系群的一切讨论都要围绕这个运送展开,子群是非常重要的概念,了解子群是了解群的结构的一个重要渠道,本讲中要求: 1、能判断子群的构成和掌握彼此等价的判断条件 2、有限群的判断定理 3、子群(集)的乘积和生成子群的概念 4、循环群的子群所具有的特性 本讲的重点和难点:为了更好的学习下一讲内容,本讲中增添了部分内容(也都是群论中最基本的内容)。循环群的子群的性质;子群之积的性质,…都是本讲中的要点和难点,通过这方面的训练可使我们对子群有一个更深入的了解。生成子群的概念在本教材中谈的很少,本讲中也作了适当地加强。结合高等代数中生成子空间的理论,会使我们有一种温故而知新的感觉。此外,本讲中还引入了中心,中心化子,正规化子等概念,以便拓宽知识量。

一、 子群的定义及判定条件 定义1、设G 是一个群,而φ≠?H G H ,,如果H 关于G 中的运算本身也能作成群,则称H 是G 的一个子群记为 例 1 设G 为任意一个群,那么由G 的单位元组成子集}{e ,自然有G e ≤}{,另外G 本身也有G G ≤,所以G 一般有两个子群,统称它们为的G 平凡子群。如果G 除了平凡子群外还有其他子群,那就称为G 的真子群,记为G H <。 例2 Z 是整数加群,而一切偶数构成的集合为Z 2,其中: },4,2,0,2,4,{2 --=Z ,那么关于整数的加法有Z Z ≤2 明示1:任取一个整数m ,那么}|{Z n n m mZ ∈??=为一切m 的倍数构成的集合,可知Z mZ ≤. 例3 设}0|||)({≠∈=A R M A L n 表示一切可逆n 阶方阵组成的集合,用 矩阵通常的乘法可知: ? L 中方阵对乘法封闭(任二个n 阶可逆阵之积仍可逆) ? L 中方阵满足乘法结合律 ?单位元为E ?A L A ?∈.的逆元为A A —1-的逆阵 所以L 是个群。 若????? ???????= k k k kE 令为L 中的n 阶数乘阵,那么}0,|{≠∈?=k R k kE K 是L 的非空子集,且必有L K ≤。 例4 设)}132(),123(),23(),13(),12(),1{(3=S 为三次对称群,令)} 12(),1{(=H

《近世代数》模拟试题2及答案

近世代数模拟试题 一、单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个就是单位元( )。 A 0 B 1 C -1 D 1/n,n就是整数 2、下列说法不正确的就是( )。 A G只包含一个元g,乘法就是gg=g。G对这个乘法来说作成一个群 B G就是全体整数的集合,G对普通加法来说作成一个群 C G就是全体有理数的集合,G对普通加法来说作成一个群 D G就是全体自然数的集合,G对普通加法来说作成一个群 3、下列叙述正确的就是( )。 A 群G就是指一个集合 B 环R就是指一个集合 C 群G就是指一个非空集合与一个代数运算,满足结合律,并且单位元,逆 元存在 D 环R就是指一个非空集合与一个代数运算,满足结合律,并且单位元,逆 元存在 4、如果集合M的一个关系就是等价关系,则不一定具备的就是( )。 A 反身性 B 对称性 C 传递性 D 封闭性 S的共轭类( )。 5、下列哪个不就是 3 A (1) B (123),(132),(23) C (123),(132) D (12),(13),(23) 二、计算题(每题10分,共30分) S的正规化子与中心化子。 1、求S={(12),(13)}在三次对称群 3

2、设G ={1,-1,i,-i},关于数的普通乘法作成一个群,求各个元素的阶。 3、设R 就是由一切形如??? ? ??0,0,y x (x,y 就是有理数)方阵作成的环,求出其右零因子。

三、证明题(每小题15分,共45分) 1、设R 就是由一切形如??? ? ??0,0,y x (x,y 就是有理数)方阵作成的环,证明??? ? ??0,00,0就是其零因子。 2、设Z 就是整数集,规定a ·b =a +b -3。证明:Z 对此代数运算作成一个群,并指出其单位元。

《近世代数》模拟试题及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213, ,0101c d cd ?? ??== ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

近世代数习题与答案

近世代数习题与答案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

2.3近世代数

§2.3循环群和生成群、群的同构 §2.3.1 循环群和生成群 设G 是群,,令 G a ∈ H ={ | } k a Z k ∈此时,称H 为由a 在G 中生成的子群。 注:1°易验证H 确实为G 的子群,1 2 1()k k a a H ?∈。 2°记H =< a >,a 称为它的生成元;若G =< a >,则称群G 为循环群。 定义1 (生成子群)设S 是群G 中的一个非空子集,G 的含有S 的最小子群称为由S 生成的子群,记为< S >,S 称为它的生成元集。 注:1°< S >可表示为 < S >={ …| 2 1 21ε εa a k k a εZ S a i i ∈∈ε,, k=1,2,3…} 这个表达式是合理的:设右式为H ,易见H ?S ,并且H ≤G ;要证明任何包含S 的子群K 必然包含H 。由于S K ,而K 为群G 的子群,所以;这也就是说H =< S >。 ?K a k i i i ∈∏=1 ε 2)如果群G =< S >,且K S ??,>≠,它的极

小生成元集为{a , b }。 (2) (Z ,+)=<1>=<-1>,它是可由1或-1生成的无限阶的循 环群。 (3) (,+)≌,它们都为n 阶循环群。 n Z n U (,+)=< [1] >;= < n Z n U ξ >。 (4) 二面体群>=<0,πρn D =ρ ???????1...22110n ??? ??????11 (2211) 0n n n n=6时: 不难证明,()2k i k n i π=+? (mod n ) k π, 上下均模n 。 l k l ?=ρπ较复杂的例子: P56 例1、设??????=?∈? ? ????=1,,,,)(2bc ad Z d c b a d b c a Z SL 证明: >?? ? ?????????=<1011,1101)(2Z SL 证明: , ??????=1101A ?? ? ???=1011B 有: ,,??????=101k A k ?? ????=101k B k Z k ∈ ? ? ?????=??????????????=????????????????????==??011010110111101111011011 11AB B Q

近世代数第3讲

第 3 讲 §7—9 一一映射,同态及同构(2课时) (Bijection Homomorphism and Osomorphism ) 本讲教学目的和要求:通过了解双射,同态及同构的理论,为后继课程中学习群同态,群同构(群第一、二同构定理)环同态,环同构理论做准备。具体要求: 1、在第一讲的基础上,对各类映射再做深入的研究。 2、充分了解双射(一一映射)的特性以及由此引导出的逆映射。 3、两个代数系统的同态的概念,尤其是同态的满射所具有的性质。 4、掌握同构映射的实质,为以后教学内容奠定基础, 本讲的重点和难点:本讲的重点在于对同态映射定义的了解;由同态满射引导的一系列性质及同构映射本质的掌握。而对双射及自身的逆映射之间的关系学生不易把握,需要认真对待。 本讲的教法和教具:在多媒体教室使用投影仪。在教学活动中安排时间让学生展开讨论。 本讲思考题及作业:本讲思考题将随教学内容而适当地展开。作业布置在本讲结束之后。 一、一一映射 在第1讲中,已对各类映射作了系列性的介绍,这里只对重要的

一一映射作重点的讨论。 定义1、设?是集合A 到A 的映射,且?既是单的又是满的,则称?是一个一一映射(双射)。 例1:},4,2,0,2,4,{2},2,1,0,1,2,{: --=→--=Z Z ?, 其中Z n n n ∈?=,2)(?,可知?显然是一个双射。 注意:Z 与偶数集Z 2之间存在双射,这表明:Z 与它的一个真子集Z 2一样“大”。 思考题:从例1中得知:一个无限集与其的某个真子集一样“大”。这是否可作为无限集都有的特性?即我们是否有如下的结论:A 为无限集的充要条件是A 与其某个真子集之间存在双射。 定理1:设?是A 到A 的一个双射,那么由?可诱导出(可确定出)A 到A 的一个双射1-?(通常称1-?是?的逆映射) 证明:由于?是A 到A 的双射,那么就A 中任一个元素a ,它在A 中都有逆象a ,并且这个逆象a 是唯一的。利用?的这一特点,则可确定由A 到A 的映射1-?: a a A a A A =∈?→--)(,,:11??,如果a a =)(?,由上述说明,易知1-?是映射。 1-?是满射:A a ∈?,因?是映射a a A a =∈??)(,?使,再由1-?的定义知a a =-)(1?,这恰说明,a 是a 在1-?下的逆象。由a 的任意性,知1-?是满射。 1-?是单射:2121,,a a A a a ≠∈?若由?是满射21a a 及?的逆象分别是 22111121)(,)(,a a a a a a ==--??即及,又?是单射21a a ≠?,

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个就是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 就是生成元,则G 的子集( )就是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G,*)中,( )不就是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算就是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、 2σ、3σ就是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能就是群 B 、不一定就是群 C 、一定就是群 D 、 就是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若就是一个有限整数n,那么G 与-------同构。 5、A={1、2、3} B={2、5、6} 那么A ∩B=-----。 6、若映射?既就是单射又就是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得 010=+++n n a a a ααΛ。 8、a 就是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为

近世代数 读书报告

题目1:设群G 中每个非幺元的阶都是2,证明G 为Abel 群. 题目1出处:南开大学资源共享课《抽象代数》 题目1的解答:?a≠e 且a∈G,a 2=e,所以1a -=a,b=1b -,a 2b 2=e 4=b 2a 2=e,另一方面,由于ab 1b -1a -=ba 1a -1b -,,所以abba=baab=e,即ab=(ab)1-=ba=b 1-a 1-,所以ba=ab,由a、b 的任意性,群G 满足交换律,为Abel 群. 选题目1的理由:老师上课提到此题,是群论部分Abel 群的经典例题. 题目2:(1)(群的单边定义)设G 为一个半群,如果: (a)G 中含左(右)幺元e,即?a∈G,ea=a; (b)G 中每个元有左(右)逆元1a -,使1a -a(a 1a -)=e. (2)(群的除法定义)设G 为半群,若?a、b∈G,方程xa=b 及ay=b 在G 内有解,则G 为群. (3)(有限群的另一定义)设G 为有限半群,如果在G 内左、右消去律均成立,则G 为群.题目2出处:冯克勤章璞《近世代数三百题》 题目2的解答:(1)?a∈G,设(a 1-)1-为a 1-的左逆元,则aa 1-=e (aa 1-)=(a 1-)1-a 1-aa 1-=(a 1-)1-ea 1-=(a 1-)1-a 1-=e,说明a 的左逆元也满足aa 1-=e,故a 1-为a 的逆元.而ae=a (a 1-a)=ea=a,故左幺元e 也是G 的右幺元,即为G 的单位元,所以G 为群. (2)由于G 非空,所以a∈G,则xa=a 有解e,?b∈G,存在y∈G 使得ay=b.于是eb=eay=ay=b,所以e 为G 左单位元,而xb=e 有解则意味着b 有左逆元,所以由b 的任意性及(1)可知G 为群. (3)设G={1a ,…n a },由消去律可知,{1a i a ,…,n a i a }={i a 1a ,…,i a n a },?i a ∈G,故存在e∈G 使得i a =e i a .于是?j a ∈G,存在k a ∈G 使得j a =i a k a .从而e j a =e i a k a =i a k a =j a .这说明e 为左单位元,又因为e ∈G=G j a ,以j a 有左逆元,因此由j a 的任意性知,G 为群. 选题目2的理由:此处将群的几种定义方式进行总结,在不同条件下可以利用群的不同定义.题目3:令b a ,?:x ax+b(a、b ∈R 且a ≠0)为实直线上的一个仿射变换,将它们的集合记为1A (R ),在1A (R )中定义乘法b a ,?d c ,?=b ad ac +,?,证明1A (R )为一个群.又设1H (R )={b 1,?:x x+b,b ∈R },证明它是1A (R )的一个子群,并证明1A (R )/1H (R )~{*R ;·}.题目3出处:柯斯特利金《代数学引论(第1卷)》第4章习题 题目3的解答:显然,任一伸缩和平移仿射变换都在1A (R )中,即对于上面定义的乘法,1A (R )是封闭的,可以验证01,?为1A (R )的幺元.?b a ,?∈1A (R ),当a≠0时,其上述定义下的逆元为a b a 1 -,?,综上所述,1A (R )为群. 显然01,?∈1H (R ),故1H (R )中有幺元,?b 1,?∈1H (R ),其上述定义下的逆元为b 1-,?,所以1H (R )<1A (R ). 1A (R )/1H (R )={0a ,?:x ax,a ∈R 且a ≠0},设双射f:1A (R )/1H (R )→*R , 由于a ∈*R 且遍历*R 内所有元素,所以1A (R )/1H (R )与* R 之间的f 可定义为1A (R )/1H

韩士安 近世代数 课后习题解答

习题1-1(参考解答) 1. (1)姊妹关系 (2)()(),P S ? (3) (),{1},1a b Z a b ∈?≠,.例如(2 ,6 )2,(3 ,6 )3,==但()2,31=. 2. 若b 不存在,则上述推理有误.例如{}{~~~~}S a b c R b c c b b b c c =,,,:,,,. 3. (1)自反性:,(),,n A M E GL R A EAE ?∈?∈=~A A ∴ 对称性: 1111,,~,,(),,,,().~.n n A B M A B P Q GL R A PBQ B P AQ P Q GL R B A ?????∈?∈==∈∴ 传递性: 12211221212,,~,~,,,,(),,,,n A BC M A B B C P Q P Q GL R A PBQ B P CQ A PP CQ Q ?∈?∈===1212,(),~.n PP Q Q GL R A C ∈∴ (2) 自反性:1,(),,~.n A M E GL R A E AE A A ??∈?∈=∴ 对称性: ()11,,~,(),,,(),~.T T n n A B M ifA B T GL R A T BT B T BT T GL R B A ???∈?∈=∴=∈∴ 传递性: 121122,,,~,~,,(),,,T T n A B C M ifA B B C T T GL R A T BT B T CT ?∈?∈== ()12211221,T T T A T T CT T TT CT T ∴==12(),~.n TT GL R A C ∈∴ (3) 自反性:()1,,,~.n n A GL E GL R A E AE A A ??∈?∈=∴ 对称性: 1,(),~,(),,n n A B GL R ifA B T GL R A T BT ??∈?∈= () 1 1 111,(),~n B TAT T AT T GL R B A ?????∴==∈∴. 传递性: 11121122,,(),~,~,,(),,,n n A B C GL R A B B C T T GL R A T BT B T CT ???∈?∈== ()()1 1112212121,A T T CT T T T C T T ???∴==21(),~.n T T GL R A C ∈∴ 4. 证明: (1) 反身性:,()(),~a A a a a a φφ?∈=∴Q (2)对称性: ,,~,()(),()(),.a b A ifa b a b b a b a φφφφ∈=∴==

近世代数第9讲

置换群(pormutation group) 本讲的教学目的和要求:置换群是一种特殊的变换群。换句话说,置换群就是有限集上的变换群。由于是定义在有限集上,故每个置换的表现形式,固有特点都是可揣测的。这一讲主要要求: 1、弄清置换与双射的等同关系。 2、掌握置换—轮换—对换之间的联系和置换的奇偶性。 3、置换的分解以及将轮换表成对换之积的基本方法要把握。 4、对称群与交错群的结构以及有限群的cayley定理需要理解。 本讲的重点与难点:对于置换以及置换群需要侧重注意的是:对称群和交错群的结构和置换的分解定理(定理2)。 注意:由有限群的cayley定理可知:如把所有置换群研究清楚了。就等于把所有有限群都研究清楚了,但经验告诉我们,研究置换群并不比研究抽象群容易。所以,一般研究抽象群用的还是直接的方法。并且也不能一下子把所有群都不得找出来。因为问题太复杂了。人们的方法是将群分成若干类(即附加一定条件);譬如有限群;无限群;变换群;非变换群等等。对每个群类进行研究以设法回答上述三个问题。可惜,人们能弄清的群当今只有少数几类(后面的循环群就是完全解决了的一类群)大多数还在等待人们去解

决。 变换群是一类应用非常广泛的群,它的具有代表性的特征—置换群,是现今所研究的一切抽象群的来源,是抽象代数创始人E.Galais(1811-1832)在证明次数大于四的一元代数方程不可能用根号求解时引进的。 一. 置换群的基本概念 定义1.任一集合A 到自身的映射都叫做A 的一个变换,如果A 是有限集且变换是一一变换(双射),那么这个变换为A 的一个置换。 有限集合A 的若干个置换若作成群,就叫做置换群。 含有n 个元素的有限群A 的全体置换作成的群,叫做n 次对称群。通常记为n S . 明示:由定义1知道,置换群就是一种特殊的变换群(即有限集合上的变换群)而n 次对称群n S 也就是有限集合A 的完全变换群。 现以{}321 , , a a a A =为例,设π:A →A 是A 的一一变换。 即π: 1a α2a ,2a α3a , 3a α1a ,利用本教材中特定的表示方法有:21a a =π ,32a a =π,13a a =π . 由于映射中只关心元素之间的对称关系.而不在乎元素 的具体内容.故可证{}3 , 2 , 1  =A .故此. π:1α2,2α3,3α1.稍做修改: π:2 1↓ 32↓ 1 3 ↓ ? π=??? ? ??132321 .用π=??? ? ??132321 来描述A

相关主题