搜档网
当前位置:搜档网 › 2020高考理科数学大题专项练习:统计与概率问题

2020高考理科数学大题专项练习:统计与概率问题

2020高考理科数学大题专项练习:统计与概率问题
2020高考理科数学大题专项练习:统计与概率问题

大题专项:统计与概率问题

一、解答题

1.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.

(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;

(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 解:(1)由已知,有P (A )=

C 22C 32+C 32C 3

2C 8

4=6

35.

所以,事件A 发生的概率为6

35.

(2)随机变量X 的所有可能取值为1,2,3,4. P (X=k )=

C 5k C 3

4-k C 8

4(k=1,2,3,4).

所以,随机变量X 的分布列为

随机变量X 的数学期望E (X )=1×1

14+2×3

7+3×3

7+4×1

14=5

2.

好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.

(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,用“ξk =0”表示第k 类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D (ξ1),D (ξ2),D (ξ3),D (ξ4),D (ξ5),D (ξ6)的大小关系.

解:(1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A ,

第四类电影中获得好评的电影为200×0.25=50(部). P (A )=50

140+50+300+200+800+510=50

2 000=0.025.

(2)设“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”为事件B,P(B)=0.25×0.8+0.75×0.2=0.35.

(3)由题意可知,定义随机变量如下:

ξk={0,第k类电影没有得到人们喜欢, 1,第k类电影得到人们喜欢,

则ξk显然服从两点分布,则六类电影的分布列及方差计算如下:

第一类电影:

ξ110

P0.40.6

D(ξ1)=0.4×0.6=0.24;

第二类电影:

ξ210

P0.20.8

D(ξ2)=0.2×0.8=0.16;

第三类电影:

ξ310

P0.150.85

D(ξ3)=0.15×0.85=0.127 5;

第四类电影:

ξ410

P0.250.75

D(ξ4)=0.25×0.75=0.187 5;

第五类电影:

ξ510

P0.20.8

D(ξ5)=0.2×0.8=0.16;

第六类电影:

ξ610

P0.10.9

D(ξ6)=0.1×0.9=0.09.

综上所述,D(ξ1)>D(ξ4)>D(ξ2)=D(ξ5)>D(ξ3)>D(ξ6).

3.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

设该险种一续保人一年内出险次数与相应概率如下:

(1)求一续保人本年度的保费高于基本保费的概率;

(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;

(3)求续保人本年度的平均保费与基本保费的比值.

解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.

(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.

又P(AB)=P(B),

故P(B|A)=P(AB)

P(A)=P(B)

P(A)

=0.15

0.55

=3

11

.

因此所求概率为3

11

.

(3)记续保人本年度的保费为X,则X的分布列为

E(X)=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.

因此续保人本年度的平均保费与基本保费的比值为1.23.

4.(2019北京,理17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;

(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1 000元的人数,求X的分布列和数学期望;

(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2 000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2 000 元的人数有变化?说明理由.

解:(1)由题意知,样本中仅使用A的学生有18+9+3=30人,仅使用B的学生有

10+14+1=25人,A,B两种支付方式都不使用的学生有5人.

故样本中A,B两种支付方式都使用的学生有100-30-25-5=40人.

所以从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率估计为40

100

=0.4.

(2)X的所有可能值为0,1,2.

记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1 000元”,事件D为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1 000元”.

由题设知,事件C,D相互独立,

且P (C )=9+3

30=0.4,P (D )=

14+125

=0.6.

所以P (X=2)=P (CD )=P (C )P (D )=0.24, P (X=1)=P (C ∪C D ) =P (C )P ()+P (C )P (D )

=0.4×(1-0.6)+(1-0.4)×0.6=0.52, P (X=0)=P (=P (C )P ()=0.24. 所以X 的分布列为

故X 的数学期望E (X )=0×0.24+1×0.52+2×0.24=1.

(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2 000元”.

假设样本仅使用A 的学生中,本月支付金额大于2 000 元的人数没有变化,则由上个月的样本数据得P (E )=1C 30

3=1

4 060.

答案示例1:可以认为有变化.理由如下:

P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2 000元的人数发生了变化.所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下:

事件E 是随机事件,P (E )比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.

5.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为1

2,且各次击鼓出现音乐相互独立.

(1)设每盘游戏获得的分数为X ,求X 的分布列;

(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?

(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 解:(1)X 可能的取值为10,20,100,-200. 根据题意,

P (X=10)=C 31

×(12)1×(1-12)2

=3

8; P (X=20)=C 3

2

×(12)2

×(1-12)1

=3

8; P (X=100)=C 3

3

×(12)3

×(1-12)0

=1

8;

P (X=-200)=C 3

×(12)0

×(1-12)3

=1

8.

所以X 的分布列为

(2)设“第i 盘游戏没有出现音乐”为事件A i (i=1,2,3),则P (A 1)=P (A 2)=P (A 3)=P (X=-200)=1

8. 所以,“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-(18)3

=1-1

512=511

512.

因此,玩三盘游戏至少有一盘出现音乐的概率是511

512. (3)X 的数学期望为E (X )=10×3

8+20×3

8+100×1

8-200×1

8=-5

4.

这表明,获得分数X 的均值为负,因此,多次游戏之后分数减少的可能性更大.

6.某汽车公司拟对甲款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入x (单位:亿元)与科技改造直接收益y (单位:亿元)的数据统计如下:

当0

,建立了y 与x 的两个回归模型:

模型①:y ^=4.1x+11.8;模型②:y ^

=21.3√x -14.4;当x>17时,确定y 与x 满足的线性回归方程为y ^

=-0.7x+a.

(1)根据下列表格中的数据,比较当0

( 附:相关指数R 2

=1-∑i=1n

(y i -y ^

i )2

∑i=1

n

(y i -y )2

,√17≈4.1)

(2)为鼓励科技创新,当科技改造投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入17亿元与20亿元时公司实际收益的大小.

附:用最小二乘法求线性回归方程y ^=b

^x+a

^的系数公式b ^=∑i=1

n

x i y i -nx ·y ∑i=1

n

x i 2

-nx

2

=

∑i=1

n

(x i -x )(y i -y )

∑i=1n (x i -x )2;a

^=y ?b ^

x (3)科技改造后,甲款汽车发动机的热效率X 大幅提高,X 服从正态分布N (0.52,0.012),公司

对科技改造团队的奖励方案如下:若发动机的热效率不超过50%,则不予奖励;若发动机的热效率超过50%但不超过53%,则每台发动机奖励2万元;若发动机的热效率超过53%,则每台发动机奖励5万元.求每台发动机获得奖励的数学期望.

(附:随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)≈0.682 7,P (μ-2σ<ξ<μ+2σ)≈0.954 5) 解:(1)由表格中的数据,可知

182.4

∑i=1

7

(y i -y )

2

>79.2

∑i=1

7

(y i -y )

2

.

所以模型①的R 2小于模型②的R 2,说明回归模型②拟合的效果更好.

所以当x=17亿元时,科技改造直接收益的预测值为y ^

=21.3×√17-14.4=21.3×4.1-14.4=72.93(亿元). (2)由已知可得x -20=1+2+3+4+5

5

=3,所以x =23.

又y -60=

8.5+8+7.5+6+6

5

=7.2,

所以y =67.2.

b ^

=∑i=15

x i y i -5x y

∑i=15

x i

2-5x 2=

7 721-5×23×67.22 655-5×23×23

=-7

10=-0.7,

故a ^

=y +0.7x =67.2+0.7×23=83.3.

当x>17亿元时,y 与x 满足的线性回归方程为y ^

=-0.7x+83.3. 当x=20亿元时,科技改造直接收益的预测值y ^

=-0.7×20+83.3=69.3. 当x=20亿元时,实际收益的预测值为69.3+10=79.3亿元>72.93亿元.

所以科技改造投入20亿元时,公司的实际收益更大. (3)因为P (0.52-0.020.50)≈

1+0.954 5

2

=0.977 25,P (X ≤0.50)≈

1-0.954 5

2

=0.022 75,

因为P (0.52-0.010.53)≈1-0.682 7

2

=0.158 65,

则P(0.50

设每台发动机获得的奖励为Y万元,则Y的分布列为:

所以每台发动机获得奖励的数学期望为

E(Y)=0×0.022 8+2×0.818 6+5×0.158 65=2.430 45(万元).

高中理科数学概率大题专项习题

1、如图,A、B两点之间有6条网线连接,它们能通过的最大信息量分别为1,1,2,2,3,4、从中 任取三条线且使每条网线通过最大信息量,设这三条网线通过的最大信息量之与为ζ。(1)当ζ≥6时,则保证线路信息畅通,求线路信息畅通的概率; (2)求ζ的分布列与数学期望。 2、某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润 (单位:元)如表1,从这批产品中随机抽取1件产品,该件产品为不同等级的概率如表2。若从这批产品中随机抽取出1件产品的平均利润(即数学期望)为4、9元。 (1)求a,b的值; (2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率。 m)表示每立方米空气中可入肺颗粒物的含量,这个值越3、空气质量指数PM2、5(单位:μg/3 高,就代表空气污染越严重。 某市2012年3月9日~4月7日(30天)对空气质量指数PM2、5进行检测,获得数据后得到如下条形图: (1)估计该城市一个月内空气质量类别为良的概率; (2)在上述30个监测数据中任取2个,设X为空气质量类别为优的天数,求X的分布列。

4、某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间就是: [)[)[)[)[)[] 40,50,50,60,60,70,70,80,80,90,90,100。 (1)求图中x的值; (2)从成绩不低于80分的学生中随机选取2人,该2人中成 绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望。 5、某食品厂为了检查一条自动包装流水线的生产情况,随 机抽取该流水线上的40件 产品作为样本称出它们的重量(单位:克),重量的分组区 间为(490,495],(495,500],……, (510,515],由此得到样本的频率分布直方图,如图4 (1)根据频率分布直方图,求重量超过505克的产品数量, (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列; (3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。 6、一射击运动员进行飞碟射击训练, 每一次射击命中飞碟 p与运动员离飞碟的距离s(米)成反比, 每一个 的概率 飞碟飞出后离运动员的距离s(米)与飞行时间t(秒)满足 ()() =+≤≤ 15104 s t t , 每个飞碟允许该运动员射击两 次(若第一次射击命中,则不再进行第二次射击)、该运动员 在每一个飞碟飞出0、5秒时进行第一次射击, 命中的概率 为0、8, 当第一次射击没有命中飞碟, 则在第一次射击后0、5秒进行第二次射击,子弹的飞行时间忽略不计、 (1) 在第一个飞碟的射击训练时, 若该运动员第一次射击没有命中, 求她第二次射击命中飞碟的概率; (2) 求第一个飞碟被该运动员命中的概率; (3) 若该运动员进行三个飞碟的射击训练(每个飞碟就是否被命中互不影响), 求她至少命中两个飞碟的概率、 7、为了解某班学生喜爱打篮球就是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

高考数学之概率大题总结

1(本小题满分12分)某赛季, 甲、乙两名篮球运动员都参加了7场比赛, 他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分, 求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=, 236112136472222222=++++++) 2在学校开展的综合实践活动中, 某班进行了小制作评比, 作品上交时间为5月1日至30日, 评委会把同学们上交作品的件数按5天一组分组统计, 绘制了频率分布直方图(如图), 已知从左到右各长方形的高的比为2:3:4:6:4:1, 第三组的频数为12, 请解答下列问 题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?共有多少件? (3)经过评比, 第四组和第六组分别有10件、2件作品获奖, 问这两组哪组获奖率高? 3已知向量()1,2a =-r , (),b x y =r . (1)若x , y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次时第一次、第二次出现的点数, 求满足1a b =-r r g 的概率; (2)若实数,x y ∈[]1,6, 求满足0a b >r r g 的概率.

4某公司在过去几年内使用某种型号的灯管1000支, 该公司对这些灯管的使用寿命(单位:小时)进行了统计, 统计结果如下表所示: (1)将各组的频率填入表中; (2)根据上述统计结果, 计算灯管使用寿命不足1500小时的频率; (3)该公司某办公室新安装了这种型号的灯管2支, 若将上述频率作为概率, 试求恰有1支灯管的使用寿命不足1500小时的概率. 5为研究气候的变化趋势, 某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度, 如下表: (1)若第六、七、八组的频数t 、m 、 n 为递减的等差数列, 且第一组与第八组 的频数相同, 求出x 、t 、m 、n 的值; (2)若从第一组和第八组的所有星期 中随机抽取两个星期, 分别记它们的平均 温度为x , y , 求事件“||5x y ->”的概率. 6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5 所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人? (2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率. 频率 分数 90100110120130 0.05 0.100.150.200.250.300.350.4080 70

2019届理科数学高考中的概率与统计问题

2019届理科数学 高考中的概率与统计问题 一、选择题(每小题5分,共15分) 1.某市园林绿化局在名贵树木培埴基地种了一批红豆杉树苗,为了解这批红豆杉树苗的生长状况,随机抽取了15株进行检测,这15株红豆杉树苗的高度(单位:cm)的茎叶图如图6-1所示,利用样本估计总体的思想,求培埴基地种植的这批红豆杉树苗的高度在(140,145)内的概率为 () 图6-1 A.0.3 B.0.4 C.0.2 D.0.1 2.如图6-2,正方形BCDE和正方形ABFG的边长分别为2a和a,连接CE和CG,现将一把芝麻随机地撒在该图形中,则芝麻落在阴影部分的概率是() 图6-2 A. B. C. D. 3.日常生活中,常听到一些谚语、俗语,比如“三个臭皮匠,顶个诸葛亮”,这句话有没有道理呢?我们假设三个臭皮匠中的老大、老二、老三能独立解出同一道问题的概率依次是0.6,0.5,0.4,而诸葛亮能独立解出同一道问题的概率是0.9,则三个臭皮匠与诸葛亮解出同一道问题的概率较大的是() A.三个臭皮匠 B.诸葛亮 C.一样大 D.无法确定 二、填空题(每小题5分,共10分) 4.已知函数f(x)=log2x+2log4x,其中x∈(0,4],若在[,4]上随机取一个数x0,则f(x0)≤0的概率 为. 5.第十三届全运会于2017年8月27日在天津举行,在自由体操比赛中,5位评委给甲、乙两位体操运动员打分(满分为30分)的茎叶图如图6-3所示,则甲、乙两位体操运动员中,得分的方差较大的是.(填甲或乙) 图6-3

三、解答题(共36分) 6.(12分)已知鸡的产蛋量与鸡舍的温度有关.为了确定某一个时段鸡舍的控制温度,某企业需要了解鸡舍的时段控制温度x(单位:℃)对某种鸡的时段产蛋量y(单位:t)和时段投入成本z(单位:万元)的影响.为此,该企业选取了7个鸡舍的时段控制温度x i和产蛋量y i(i=1,2,…,7)的数据,对数据初步处理后得到了如图6-4所示的散点图及一些统计量的值.其中k i=ln y i,=k i. 图6-4 (1)根据散点图判断,y=bx+a与y=c1(e为自然对数的底数)哪一个适宜作为该种鸡的时段产蛋量y关于鸡舍的时段控制温度x的回归方程类型?(给出判断即可,不必说明理由) (2)根据(1)的判断及表中的数据,建立y关于x的回归方程; (3)已知时段投入成本z与x,y的关系为z=e-2.5y-0.1x+10,当鸡舍的时段控制温度为28 ℃时,鸡的时段产蛋量及时段投入成本的预报值是多少? 附:对于一组具有线性相关关系的数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=βu+α的斜率和截 距的最小二乘估计分别为=(-)(-) (-) , ^ =-. 参考数据:

全国统考2022高考数学一轮复习高考大题专项六概率与统计学案理含解析北师大版

高考数学一轮复习: 概率与统计 高考大题专项(六) 概率与统计 考情分析 一、考查范围全面 概率与统计解答题对知识点的考查较为全面,近五年的试题考点覆盖了概率与统计必修与选修的各个章节内容,考查了抽样方法、统计图表、数据的数字特征、用样本估计总体、回归分析、相关系数的计算、独立性检验、古典概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法. 二、考查方向分散 从近五年的高考试题来看,对概率与统计的考查主要有四个方面:一是统计与统计案例,其中回归分析、相关系数的计算、独立性检验、用样本的数字特征估计总体的数字特征是考查重点,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查;二是统计与概率分布的综合,常与抽样方法、茎叶图、频率分布直方图、频率、概率以及函数知识、概率分布列等知识交汇考查;三是期望与方差的综合应用,常与离散型随机变量、概率、相互独立事件、二项分布等知识交汇考查;四是以生活中的实际问题为背景将正态分布与随机变量的期望和方差相结合综合考查. 三、考查难度稳定 高考对概率与统计解答题的考查难度稳定,多年来都控制在中等或中等偏上一点的程度,解答题一般位于试卷的第18题或第19题的位置.近两年有难度提升的趋势,位置有所后调. 典例剖析 题型一相关关系的判断及回归分析 【例1】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了100天.得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图. x50100150200300400 t906545302020

高中数学概率大题经典一

高中数学概率大题(经典一) 一.解答题(共10小题) 1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望; (2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案? 2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分 (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望. 3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行. (1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张? (2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值. 4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球. (1)当m=4时,求取出的2个球颜色相同的概率; (2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望; (3)如果取出的2个球颜色不相同的概率小于,求m的最小值. 5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖. (Ⅰ)求一次抽奖中奖的概率; (Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X). 6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2. (Ⅰ)若该硬币均匀,试求P1与P2; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小. 7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

高三文科数学统计概率总结

高三文科数学统计概率 总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对 甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为() 02、A、101 B、808 C、1212 D、2012 03、某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽 取一个容量为280的样本,则此样本中男生人数为____________. 04、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样的方法抽取若 干人,若抽取的男运动员有8人,则抽取的女运动员有______人。 05、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人 按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为() 06、A.11 B.12 C.13 D.14 07、将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取 一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营 区,三个营区被抽中的人数依次为() 08、A.26, 16, 8B.25,17,8 C.25,16,9 D.24,17,9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间, 频率分布直方图所示. 02、(I)直方图中x的值为________; 100,250内的户数为_____. 03、(II)在这些用户中,用电量落在区间[) 04、下图是样本容量为200的频率分布直方图。根据样本的 频率分布直方图估计,样本数据落在[6,10]内的频数 为,数据落在(2,10)内的概率约为

题 高考数学概率与统计知识点

题高考数学概率与统计 知识点 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

高考数学第18题(概率与统计) 1、求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.

第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 2.离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值 i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表. 机变量ξ的概率分布,简称ξ的分布列. 为随由概 率的性质可知,任一离散型随机变量的 分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布

【精品】2007——2017年高考数学全国卷概率统计大题(教师版)

【精品】2007——2017年高考数学全国卷概率统计大题 2007某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2 ()(10.6) 0.064 P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.30()0.60.216P B ==,12 13()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=. 2008 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解:记A 1、A 2分别表示依方案甲需化验1次、2次,B 表示依方案乙需化验3次,A 表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A 2与B 独立,且 B A A A 21+=, 5 1C 1)A (P 15 1= = ,5 1A A )A (P 25 142= = ,5 2) (1 3 3 51224= ??= C C C C B P 。 P(A )=P(A 1+A 2·B) =P(A 1)+P(A 2·B)=P(A 1)+P(A 2)·P(B) =5 25 15 1? += 25 7 所以 P(A)=1-P(A )= 25 18=0.72 2009 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;

高考理科数学概率题型归纳与练习(含答案)

专题三:高考理科数学概率与数学期望 一.离散型随机变量的期望(均值)和方差 1. 其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称112 2...n n x p x p x p +++为随机变量 X 的均值或X 的数学期望,记为()E X 或μ. 数学期望 ()E X =1122...n n x p x p x p +++ 性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数) 2. 2221122()()...()n n x p x p x p μμμ-+-++-,(其中120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值μ的平均偏离程度,我们将其称为离散型随机变量 X 的方差,记为()D X 或 2σ. 方差2221122()()...()n n DX x p x p x p μμμ=-+-++- 2.方差公式也可用公式22221()()n i i i D X x p EX EX μ==-=-∑计算. 3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()D X 的算术平方根称为X 的标准差,即σ 1.设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX 。

P 9 5 二.超几何分布 对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,X 0 1 2 … l P 0n M N M n N C C C - 11n M N M n N C C C -- 22n M N M n N C C C -- … l n l M N M n N C C C -- 其中min(,)l n M = 一般地,若一个随机变量X 的分布列为()r n r M N M n N C C P X r C --==, 其中0r =,1,2,3,…,l ,min(,)l n M =,则称X 服从超几何分布,记为 (,,)X H n M N :,并将()r n r M N M n N C C P X r C --==记为(;,,)H r n M N . 1.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同.现一次从中摸出5个球, (1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率. (2)若至少摸到3个红球就中奖,求中奖的概率. X 0 1 2 3 4 5

(完整版)高中数学概率大题(经典二)

高中数学概率大题(经典二) 一.解答题(共10小题) 1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ.3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (II)求使P(X=m)取得最大值的整数m. 4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数. (Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ; (Ⅱ)求概率P(ξ≥Eξ). 5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时): A班 6 6.5 7 7.5 8 B班 6 7 8 9 10 11 12 C班 3 4.5 6 7.5 9 10.5 12 13.5 (Ⅰ)试估计C班的学生人数; (Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明) 6.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1 商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润. (Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);

高考理科数学《概率与统计》题型归纳与训练

高考理科数学《概率与统计》题型归纳与训练 【题型归纳】 题型一 古典概型与几何概型 例1、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 . 【答案】 【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为 . 例2、市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示: (1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同; (2)现从样本中月收入在)20,10[和)70,60[的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率. 【答案】(1)详见解析;(2) 20 11 . 【解析】(1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,故赞成人数的频率为 52,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,故赞成人数的频率为75 64, ∵ 5 2 7564>,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高. (2) 将月收入在)20,10[内,不赞成的3人记为321,,a a a ,赞成的2人记为54,a a ,将月收入在)70,60[内,不赞成的1人记为1b ,赞成的3人记为,,,432b b b 从月收入在)20,10[和)70,60[内的人中各随机抽取1人,基本事件总数20=n ,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有 5840155 408 -=

2019年高考理科数学知识点总结:概率与统计

2019年高考理科数学知识点总结:概率与统计 概率与统计 109算法初步的常见题型及解题策略 (1)已知程序框图,求输出的结果.可按程序框图的流程依次执行,最后得出结果.可以在条件判断框的入口处列表判定此时各变量的取值情况 (2)完善框图添加条件问题。结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.注意临界点的变量值的分析 110、随机抽样需借助于随机数表(先对总体逐一编号),分层抽样的关键是“按比例”:总体中各层的比例等于样本中各层的比例。在所有的抽样中,每一个个体被抽到的概率相等。系统抽样要注重等距性的理解 111、“读懂”样本频率分布直方图:直方图的高=频率/组距,直方图中小矩形框的面积是频率;频率×样本个数=频数。由频率分布直方图计算中位数时要根据中位数两侧频率各为0.5计算横坐标值。由频率分布直方图计算平均数时可以用每个小组的中位数乘上本组频率的累加和得出 112、线性回归方程 线性回归方程:a bx y +=∧(最小二乘法)其中,1221n i i i n i i x y nx y b x nx a y bx ==?-??=??-??=-??∑∑ 注意:线性回归直线经过定点),(y x . 113.相关系数(判定两个变量线性相关性):∑∑∑===----=n i n i i i n i i i y y x x y y x x r 112 21)()() )(( 注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关; ⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。 114、独立性检验(分类变量关系) 统计量χ2的计算公式χ2=n (ad -bc )2 (a +b )(c +d )(a +c )(b +d ) 115、互斥事件:(A 、B 互斥,即事件A 、B 不可能同时发生,A ∩B 为不可能事件)。计算公式:P (A +B )=P (A )+P (B )。 116、对立事件:(A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生, A ∩B 为不可能事件,A ∪B 为必然事件)。计算公式是:P (A )+ P(B)=1;P (A )=1-P (A ); 117、独立事件:(事件A 、B 的发生相互独立,互不影响)P(A?B)=P(A) ? P(B) 。 118、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。 (2)古典概型的解题步骤;:①标记元素②列出总的基本事件数③定义事件④列出事件所包含的基

高三理科数学一轮单元卷:第二十四单元统计概率综合B卷

11 11 12 一轮单元训练金卷?高三?数学卷(B ) 第二十四单元统计概率综合 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形 码粘贴在答题卡上的指定位置。 2 .选择题的作答: 每小题选出答案后, 用2B 铅笔把答题卡上对应题目的答案标号涂黑, 写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3 .非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草 稿纸和答题卡上的非答题区域均无效。 4 .考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本大题共 12小题,每小题 5分,共60分,在每小题给出的四个选项中,只有一项是 符合题目要求的) 1.如下图是2017年第一季度五省 GDP 情况图,则下列陈述中不正确的是( ) A . 2017年第一季度GDP 增速由高到低排位第 5的是浙江省. B .与去年同期相比,2017年第一季度的GDP 总量实现了增长. C .去年同期河南省的 GDP 总量不超过4000亿元. D . 2017年第一季度GDP 总量和增速由高到低排位均居同一位的省只有 1 个. 2. 2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏 发生在19时48分,20时51分食既,食甚时刻为 21时31分,22时08分生光,直至23时12分复 圆?全食伴随有蓝月亮和红月亮,全食阶段的 红月亮”将在食甚时刻开始,生光时刻结東,一市民准 备在19:55至21: 56之间的某个时刻欣赏月全食,则他等待 C . 151 红月亮”的时间不超过30分钟的概率是

高考数学概率大题专项题型

高考数学概率大题专项题型 一.解答题 1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上 午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程. (1)求这两个班“在星期一不同时上综合实践课”的概率; (2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E (X). 2.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没 猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求: (I)“星队”至少猜对3个成语的概率; (II)“星队”两轮得分之和为X的分布列和数学期望EX. 3.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别 为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会. (1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;

(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望. 4.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的. (Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率; (Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望. 5.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的 概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少 有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率; (Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的

高三理科数学复习题《概率统计》

C D B A E 概率与统计专项训练 一、选择题: 1、4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A . 13 B . 12 C . 23 D . 34 2、调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表: 你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90% C.95% D.99% 3、在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( ) (A ) 51 1 (B ) 68 1 (C )3061 (D )4081 4、某一批花生种子,如果每1粒发牙的概率为4 5 ,那么播下4粒种子恰有2粒发芽的概率是 ( ) A. 256625 B. 192625 C. 96625 D. 16625 5、已知样本7,8,9,,x y 的平均数是8,标准差是2,则xy 的值为( ) A、8 B、32 C、60 D、80 6、把一根匀均匀木棒随机地按任意点拆成两段,则“其中一段的长度大于另一段长度的2倍”的概率为( ) (A)2 3 (B)25 (C)35 (D)13 7、如图,四边形ABCD 为矩形,3= AB ,1=BC ,以A 为圆心,1为半径作四分之 一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是( ). (A)31 (B)23 (C)25 (D)35 8.某学生通过计算初级水平测试的概率为2 1 ,他连续测试两次, 则恰有1次获得通过的概率为 ( ) 4 3.4 1.2 1.3 1.D C B A 9.下面事件①若a 、b ∈R ,则a·b=b·a ;②某人买彩票中奖;③6+3>10;④抛一枚硬币出现 正面向上,其中必然事件有 ( ) A .① B .② C .③④ D .①② 10.在4次独立重复实验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率的范围是 ( ) A .[O .4,1] B .(O ,0.4] C .(O ,0.6] D .[0.6,1)

高三数学-2018高考概率试题集锦 精品

2018年高考概率统计试题集 [河南、河北、山东、山西、安徽、江西理科] 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位 数字之和等于9的概率为 ( D ) A . 125 13 B . 12516 C . 125 18 D . 125 19 18.(本小题满分12分) 一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问 题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.18. P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3 P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22 C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.18 所以E ξ=0×0.18+1×0.3+2×0.37+3×0.2+4×0.18=1.8. [河南、河北、山东、山西、安徽、江西文科] 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 (C ) A . 9 5 B . 9 4 C . 21 11 D . 21 10 20.(本小题满分12分) 从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概

2008年高考数学理科试题汇编--概率与统计

2008年高考数学试题分类汇编 概率与统计 一.选择题: 1.(安徽卷10).设两个正态分布2111()(0)N μσσ>,和2 222()(0)N μσσ>,的密度函数图像如图所示。 则有( A ) A .1212,μμσσ<< B .1212,μμσσ<> C .1212,μμσσ>< D .1212,μμσσ>> 2.(山东卷7)在某地的奥运火炬传递活动中,有编为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编能组成3为公差的等差数列的概率为B (A ) 511 (B )681 (C )3061 (D )408 1 3.(山东卷8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 (A )304.6 (B )303.6 (C)302.6 (D)301.6 4.(江西卷11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为C A . 1180 B .1288 C .1360 D .1 480 5.(湖南卷4)设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( B ) A.1 B.2 C.3 D.4 6.(重庆卷5)已知随机变量ζ服从正态分布N (3,a 2 ),则P (3)ζ<=D (A) 15 (B) 14 (C) 13 (D) 12 7.(福建卷5)某一批花生种子,如果每1粒发牙的概率为 4 5 ,那么播下4粒种子恰有2粒发芽的概率是B

2020年高考理科数学原创专题卷:《概率》

原创理科数学专题卷 专题概率 考点47:古典概型、几何概型(1-6题,13,14题,17题,18题) 考点48:事件的独立性与条件概率(7-9题,15题,19题) 考点49:独立重复试验与二项分布、正态分布(10题,20题) 考点50:离散型随机变量的分布列、期望与方差(11,12题,16题,21,22题) 试时间:120分钟满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是最符合题目要求的。) 1.【2017课标1,理】考点47 易 如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是() A.1 4 B. π 8 C. 1 2 D. π 4 2.【2017山东,理8】考点47 易 从分别标有1,2, ,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是() (A)5 18(B) 4 9 (C) 5 9 (D) 7 9 3.【来源】2017届淮北市高三第二次模拟考试考点47中难 五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若

硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没有相邻的两 个人站起来的概率为( ) A. 516 B. 1132 C. 1532 D. 12 4.【来源】江西省2017届高三下学期调研考试 考点47 中难 如图,在三棱锥S ABC -中, SA ⊥平面ABC , AB BC ⊥,现从该三棱锥的6条棱中任选2条,则这2条棱互相垂直的概率为 ( ) A. 13 B. 14 C. 25 D. 29 5.【来源】陕西省渭南市2017届高三下学期第二次教学质量检测 考点47 中难 已知函数()[] 2log ,1,8f x x x =∈,则不等式()12f x ≤≤成立的概率是 ( ) A. 17 B. 27 C. 37 D. 47 6.【来源】安徽省安庆市2017届高三模拟考试 考点47 中难 2的弦AB ,动点P 在圆内,则使得2AP AB ?≥u u u r u u u r 的概率为( ) A. 24ππ- B. 2ππ- C. 324ππ- D. 2 π 7.【来源】甘肃省2017年高三第二次高考诊断考试 考点48 易 抛掷两枚骰子,记事件A 为“朝上的2个数之和为偶数”,事件B 为“朝上的2个数均为偶数”,则(|)P B A =( ) A. 18 B. 14 C. 25 D. 1 2 8.【来源】江西省鹰潭市2017届高三第二次模拟考试 考点48 易 余江人热情好客,凡逢喜事,一定要摆上酒宴,请亲朋好友、同事高邻来助兴庆贺.欢度佳节,迎亲嫁女,乔迁新居,学业有成,仕途风顺,添丁加口,朋友相聚,都要以酒示意,借酒表达内心的欢喜.而凡有酒宴,一定要划拳,划拳是余江酒文化的特色.余江人划拳注重礼节,形式多样;讲究规矩,蕴含着浓厚的传统文化和淳朴的民俗特色.在礼节上,讲究“尊老尚贤敬远客”一般是东道主自己或委托桌上一位酒量好的划拳高手来“做关”,——就是依次陪桌上会划拳的划一年数十二拳(也有半年数六拳).十二拳之后晚辈还要敬长辈一杯酒. 再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他还要敬他叔叔一杯,规则如下:前两拳只有小明猜叔赢叔叔,叔叔才会喝下这杯敬酒,且小明也要陪喝,如果第一拳小明没猜到,则小明喝下第一杯酒,继续猜第二拳,没猜到继续喝第二杯,但第三拳不管谁赢双方同

相关主题