搜档网
当前位置:搜档网 › 缓蚀剂见解

缓蚀剂见解

缓蚀剂见解
缓蚀剂见解

缓蚀剂见解

能防止或减缓腐蚀性介质对金属侵蚀的物质称做缓蚀剂,主要用于水处理、油田、炼油、润滑剂、锅炉供水等。水处理缓蚀剂有三种类型。⑴钝化膜型缓蚀剂,在金属表面上进行氧化,生成具有抗腐蚀性的钝化薄膜,可在邻近地区扩散而达到缓蚀目的。这类缓蚀剂有:①铬酸盐、重铬酸盐。能与铁铝等生成稳定的钝化膜;②亚硝酸盐。作用与重铬酸盐的缓蚀性能相似,特别适用于铝和铝合金;③钼酸盐。毒性较小,价格低廉,但钝化作用较差;④钨酸盐和钨杂多酸盐。这类盐有发展前途,性能优于钼系。⑵沉淀膜型缓蚀剂,在金属表面上形成沉淀薄膜。这类缓蚀剂有:①聚磷酸盐。它是目前世界上最广泛使用的缓蚀剂,一般与其他缓蚀剂配合使用。聚磷酸盐与钙、锌、锰及其他二价金属离子共存时,能提高缓蚀性能,但在高温时易水解,发生点蚀;②硅酸盐。多作为饮用水处理缓蚀剂,对铜、镍等缓蚀剂效果较好,对铝、锌、铁等则较差;③锌盐。在冷却水处理中,常用为阴极缓蚀剂;④硼酸盐。是新型缓蚀剂,毒性小,化学稳定性好,有发展前途;⑤有机磷酸盐。主要优点是毒性小,化学稳定性好,不易水解,缓蚀性能好,并有阻垢作用。⑥肌氨酸。与金属作用生成五环或六环状络合物,缓蚀效果较好。⑶有吸附基和疏水基的有机吸附膜缓蚀剂:①有机胺类,吸附基是胺基,疏水基是烷基,如十六胺、十八胺、吗啉、乙基哌嗪、三亚乙基二胺、季铵盐等;②硫醇类,多用于铜和铜合金,巯基和金属起化学吸附作用而成保护膜。有巯基苯并噻唑,β-巯基丙酸、巯基马来酸、巯基琥珀酸等;③木质素,一种天然纤维素,被吸附在金属表面上起缓蚀作用,木质素钠的溶解性和分散性较好,价格便宜,可与其他有机化合物混合使用;④葡萄糖酸盐。葡萄糖酸钠对钙、镁等阴离子有较好的络合作用,价格便宜,常与钼酸锌、水杨酸、聚丙烯酸混合使用,以提高缓蚀性能;⑤磺酸盐。从石油副产品制成磺化石油,再制成钾、钙、钡、铵盐作为缓蚀剂;

⑥磺酰胺化合物,用于高浓氯离子的冷却水处理,效果较好;⑦羟酸基类,对铁的缓蚀有明显效果。如用二聚酸和脂肪酸酯,在氟化硼催化剂作用下制成二聚环状脂肪酸化合物,可作铁的缓蚀剂;⑧多氨基的羟基化合物,采用C5~C18的脂肪醛和乙胺进行聚合,制成的多氨基的羟基化合物,可作酸洗缓蚀剂,缓蚀率达到98%。

用于其他用途的缓蚀剂有磺酸盐、伯胺类、磷酸酯类、丙酸酯类、二乙醇胺类等。

近几年世界对水处理缓蚀剂的需求呈上升趋势,1992年世界水处理缓蚀剂的总销售额为9.8亿美元,其中美国6.2亿美元,西欧1.78亿美元,日本1.80亿美元。预计到1996年世界的总销售额14.8亿,美国8.0亿美元,西欧2.0亿美元,日本2.25亿美元。

在世界水处理缓蚀剂技术中发展最迅速的是聚合物类产品,若干家公司已推出了用于废水处理(工业及城市)的新型聚合物缓蚀剂。美国的FMC公司最近买下了Ciba-Geigy公司的水处理业务,研究工作也转向聚合物化学,主要产品是马来酸和膦羟酸型的阻垢聚合物及羟膦乙酸缓蚀剂。该公司现向市场提供膜处理用的Flocaon丙烯酸类聚合物。FMC公司

同时也提供terbutylacine杀藻剂。

铬化合物过去只在生活用水系统中禁用,现在也禁止在其他系统中使用,转向使用磷

酸盐来抑制管道的腐蚀。一个新的动向是Nalco公司开发了生物工程处理的方法。

烷基磺酸钡(石油磺酸钡)

性能及用途本品为灰分9%~11%。无氯根。

用作防锈缓蚀剂——防锈油的原料。

安全注意事项本品低毒。

包装及贮运按SY2000-625执行。

亚硝酸二环己胺

性能及用途无色或黄色结晶粉末。溶于水、甲醇和乙醇,不溶于醚。在酸性和碱性介质中分解,加热至175℃时分散并放出氨气。堆密度0.35g/cm3。含量≥95%。

本品主要用于金属缓蚀保护和阻止金属锈蚀的继续进行,如汽车、内燃机、机床工具、刀具、零部件的保护,也用于武器、雷达等设备的金属保护。

安全注意事项小鼠灌胃LD5080mg/kg,大鼠灌胃LD50325mg/kg,生产设备应密闭,操作间应彻底隔开。操作人员应戴防护面具,防毒口罩,穿工作服。如溅到皮肤或眼内时,应立即用水冲洗。公共场所最高允许浓度0.5mg/m3。

包装及贮运铁桶内衬塑料袋包装。贮于阴凉、干燥、通风处。防止受热、受潮。按一

般固体化学品规定贮运。

苯并三唑

性能及用途淡褐色至白色结晶粉末。熔点90~95℃。在98100℃升华,沸点201~204℃(2.0kPa)。易溶于热水、醇、苯及其他有机溶剂,微溶于冷水。水溶液呈弱碱性。PH5.5~6.5。对酸、碱、氧化、还原都稳定。受热到100℃时亦稳定。对碱金属离子可以生成稳定

的金属盐。含量>96%。灰分<1%,水分<0.5%。堆密度0.35~0.5g/cm3。

广泛用于铜、银质设备的缓蚀剂。用于防锈油脂、净水剂、水质稳定剂的制备,亦可用于

照相防灰的防雾剂、气相防锈剂等的合成。

安全注意事项小白鼠(口服)LD50为937mg/kg。

包装及贮运内衬两层塑料袋的编织袋包装。净重2kg或10kg。

N-油酰肌氨酸十八胺盐

性能及用途黄色蜡状固体。加热熔化成为油状液体。不溶于水,溶于油。无毒。

本品为油溶性防锈添加剂,用作军工封存用油。机械械业防锈渍或防锈滑润两用油。亦可食品机械工业装置的缓蚀油组分。在10#机械油中一般添加量为2%。

包装及贮运 25kg或50kg塑料桶装,密闭保存在阴凉、通风、干燥处。

六偏磷酸钠

性能及用途无色透明玻璃片状或白色粒状结晶。密度2.484g/cm3(20℃)。熔点616℃(分解)。易溶于水,不溶于有机溶剂。吸湿性很强,露置于空气中能逐渐吸收水分而呈粘胶状物。与钙、镁等金属离子能生成可溶性络合物。用作锅炉用水和工业用水的软水剂,工业循环冷却水的水处理剂;还用作缓蚀剂,浮选剂,分散剂,高温结合剂,染色助剂,金属表面处理剂,防锈剂,洗涤剂助剂,水泥硬化促进剂,铜版纸生产用作浆料扩

散剂等。

包装及贮运内衬塑料袋的胶合板桶包装,每桶净重20kg,或用内衬塑料袋、外套塑料编制袋包装,每袋净重50kg。贮运注意事项参见食用六偏磷酸钠。

缓蚀剂原理

缓蚀剂原理 -------冀衡药业酸洗缓蚀剂产品部 在电解质溶液中,金属的腐蚀过程服从电化学过程,因此腐蚀的发生存在着阴极反应和阳极反应。阴极反应对应的是去极化剂接受电子的过程,最常见的两种去极化剂为氢质子和氧气,而阳极反应对应的是金属的溶解过程。从腐蚀电化学原理分析,缓蚀剂加入后使得腐蚀反应的阳极过程或者阴极过程受到抑制,有些缓蚀剂可以同时抑制腐蚀反应的阴极和阳极过程。 大多数无机型缓蚀剂主要使用在中性或偏碱性的介质环境中,它们通常对电极的阳极过程有显著的抑制 作用,通过使金属表面钝化或者在金属表面形成沉积膜进而起到缓蚀作用。随着缓蚀剂使用的发展,无机缓蚀剂的使用并未局限在中性或碱性介质中,如在酸性介质中添加碘化物、亚铜、亚锑盐后,能显著增强有机缓蚀剂的作用效果。有机缓蚀剂在酸性介质中的使用非常广泛,它们通过物理或化学作用力吸附在金属表面,通过改变双电层结构,提高腐蚀反应活化能以及将腐蚀介质和金属基体隔离,进而抑制腐蚀速率,有机缓蚀剂在中性介质中也取得了成功的使用,如有机磷酸盐、苯钾酸盐、咪唑啉在工业水和油田污水处理的使用。 1.无机缓蚀剂作用机理 根据腐蚀电化学原理,通过考察无机缓蚀剂对电极阴阳极的抑制效果,无机缓蚀剂的作用机理可以归纳为阴极型、阳极型、混合型。 (1)阳极抑制机理 图1.2阳极抑制型缓蚀剂作用曲线图

图1.2为阳极抑制型钝化剂作用原理图,当介质中存在阳极抑制型缓蚀剂时,极化曲线阳极部分从活化区转为钝化区,使得腐蚀电流密度显著降低,而极化曲线的阴极部分并没有显著的改变。 (2)阴极型缓蚀剂 图l-1(a)所示的极化曲线阐明了阴极型缓蚀剂的作用机理,从图中可以发现,介质中有阴极型缓蚀剂存在时,极化曲线的阴极部分塔菲尔斜率明显增加,而阳极部分塔菲尔斜率却没有改变,这说明阴极型缓蚀剂主要增加了电极的阴极极化过程,这使得金属的开路电位以及腐蚀电流密度均下降。阴极型缓蚀剂可以通过在金属表面的阴极区成膜来增加阴极极化过程,也可以通过提高阴极反应的过电位从而抑制阴极反应,而在中性介质中,阴极过程主要为氧去极化过程为,因此也可以通过吸收体系中的氧来增加阴极反应的极化,根据阴极型缓蚀剂的不同作用原理,其可以进一步细分为以下几种: A.成膜类阴极型缓蚀剂。这类阴极缓蚀剂通过和介质中的物质反应或者自身吸附,在金属的阴极区间成膜,形成的膜能有效地抑制阴极去极化剂如O2、H+等向界面扩散,使得阴极去极化作用受到有效抑制,进而减缓了腐蚀速率。 B.提高阴极反应过电位缓蚀剂。腐蚀反应的阴极过程大多为氢质子或氧的还原反应,这些阴极反应发生的电位均高于其理论的平衡电位,即存在过电位。特别是在酸性介质中,氢质子的还原反应在不同金属上存在显著的差异,而当介质中存在铋、汞、锑等重金属离子时,将会显著提高氢质子的还原过电位,从而使阴极过程受到抑制,降低腐蚀反应速度。 C.耗氧型阴极缓蚀剂。在中性介质中,腐蚀反应的阴极过程多为氧去极化过程,因此在介质中加入可以和氧发生反应的物质,则可降低介质中的氧含量,使阴极反应受到抑制,进而抑制腐蚀速率。 (3)混合型缓蚀剂 混合型缓蚀剂作用示意图见图1.1(c),该类型缓蚀剂对腐蚀的阴阳极反应均有明显的抑制作用,由于加入混合型缓蚀剂后电极的阴阳极塔菲尔斜率同时增加,因此自腐蚀电位没有显著改变,但是腐蚀电流密度显著降低,使得金属腐蚀速度受到抑制。 2.有机缓蚀剂作用机理 有机缓蚀剂分子中通常同时具有极性基团和非极性基团,极性基团中存在氮、氧、磷、硫等元素,这些元素均含有孤对电子,而且电负性大,有机缓蚀剂通过极性基团牢固地吸附在金属表面上,而非极性基团排列在介质中,这样一方面有效地隔离了金属和腐蚀介质的接触,阻碍了腐蚀反应产物的扩散,同时还改变了双电层结构,提高了腐蚀反应的活化能,最终抑制了腐蚀反应的进行。有机缓蚀剂的缓蚀性能有赖于

金属缓蚀剂及其研究进展

金属缓蚀剂及其研究进展 课程:腐蚀与材料保护 主讲老师: 陈存华 院系:化学学院 专业:应用化学 学号: 2010214131 姓名:张伟 华中师范大学化学学院 2012年12月

金属缓蚀剂及其研究进展 摘要:金属的缓蚀一直是人们极为关注的重要课题,本文综合近十年来文献简述了缓蚀剂的机理,常见的分类,重点叙述了金属缓蚀剂的前沿发展和技术缓蚀剂的应用,总结了缓蚀剂的研究意义,并对未来缓蚀剂的发展方向做展望。 关键词:金属缓蚀剂分类前沿应用意义 一、前言: 金属腐蚀,就是指金属在外界环境的作用下引起的破坏或变质。它不仅影响了原有金属的光泽,而且带来了很大的经济损失。据报道2000年美国由于金属腐蚀造成的直接经济损失约为1300 多亿美元,在2005年我国由于腐蚀所造成的直接经济损失约占国民经济总产值的2%-4%,而间接损失几乎无法估量。金属腐蚀不但限制了科学技术的发展,破坏了工艺过程和生产节奏,而且污染环境,影响人类的身体健康。所以,怎样防止金属腐蚀已成为世界性的问题。 缓蚀剂(Corrosion Inhibitor)是一种无机物或有机物,加到腐蚀介质中,借助于这种物质在金属和腐蚀介质的界面上的物理和化学作用,可以防止或降低金属的腐蚀速度,减少金属在所在介质中的腐蚀。缓蚀剂在金属防护中的应用,是腐蚀科学与表面工程学科发展的一项重要成就。百余年来,缓蚀剂的开发、应用在化工、石油、电力、机械、金属加工、交通运输、核能及航天等领域中,起着极其重要的作用。近半个世纪以来,缓蚀剂的品种、质量得到了进一步扩大和提高。30年代以前,缓蚀剂的品种只有百余种。到80年代中期,仅酸性介质缓蚀剂的品种就已超过5000 余种。这种发展速度是其他化学助剂、添加剂类无以伦比的。当前,世界各国相关的科技界、企业界对它的开发和应用前景极为关注。 二、缓蚀剂的机理研究简述 金属的缓蚀有多种机理,其中主要的作用有:(1) 屏蔽效应。这主要是由于缓蚀剂的存在阻碍了金属颜料与腐蚀介质的接触,降低了腐蚀速度,同时也可能因为缓蚀剂分子上的基团与腐蚀介质的分子基团形成了螯合作用,减低了腐蚀介质对金属颜料的侵害。(2) 电化学防护:当缓蚀剂、金属颜料与腐蚀介质之间由于电化学反应形成了一层保护膜,这层膜的形成减少了介质对颜料的腐蚀,从而保护了金属颜料。大多数的有效保护作用都是这些效应相互结合得到的。 三、金属缓蚀剂的分类 1.按化学组成分类 (1)无机缓蚀剂—无机化合物。多用于氧作为腐蚀物质的中性水介质体系中,也叫中性缓蚀剂。如铬酸盐,磷酸盐,硝酸盐,硅酸盐等。无机缓蚀剂的特征是能是金属表面氧化,并是金属的腐蚀电位向高电位方向移动,即具有是金属钝化的作用。 (2)有机缓蚀剂—有机化合物。多用于酸性腐蚀介质中,化合物种类很多。有机缓蚀剂对腐蚀电位几乎无影响,主要是以分子状态在金属表面进行吸附,从

金属缓蚀剂

第十一讲金属缓蚀剂 陈旭俊徐瑞芬 缓蚀剂是一种在低浓度下能阻止或减缓金属在环境介质中腐蚀的物质。缓蚀剂又叫作阻蚀剂、阻化剂或腐蚀抑制剂等。 缓蚀剂保护技术已经发展为一项重要的防腐蚀技术,广泛用在石油、冶金、化工、机械制造、动力和运输等部门。 一、缓蚀剂的分类 缓蚀剂的品种繁多,常用的如亚硝酸钠、铬酸盐、磷酸盐、石油磺酸钡、亚硝酸二环已胺等,至今尚难以有统一的分类方法。常见到的分类方法有以下几种。 1.按缓蚀剂作用的电化学理论分类 (1)阳极型缓蚀剂通过抑制腐蚀的阳极过程而阻滞金属腐蚀的物质。这种缓蚀剂通常是由其阴离子向金属表面的阳极区迁移,氧化金属使之钝化,从而阻滞阳极过程。例如,中性介质中的铬酸盐与亚硝酸盐。一些非氧化型的缓蚀剂,例如苯甲酸盐、正磷酸盐、硅酸盐等在中性介质中,只有与溶解氧并存,才起到阳极抑制剂的作用。 (2)阴极型缓蚀剂通过抑制腐蚀的阴极过程而阻滞金属腐蚀的物质。这种缓蚀剂通常是由其阳离子向金属表面的阴极区迁移,或者被阴极还原,或者与阴 离子反应而形成沉淀膜,使阴极过程受到阻滞。例如ZnSO 4、Ca(HCO 3 ) 2 、As3+、Sb3+ 可以分别和OH-生成Zn(OH) 2、Ca(OH) 2 沉淀和被还原为As、Sb覆盖在阴极表面, 以阻滞腐蚀。 (3)混合型缓蚀剂这种缓蚀剂既可抑制阳极过程,又可抑制阴级过程。例如含氮和含硫的有机化合物。 2.按化学成分分类 (1)无机缓蚀剂,如铬酸盐、亚硝酸盐、磷酸盐等。 (2)有机缓蚀剂,如胺、硫脲、乌洛托品等。 3.按缓蚀剂所形成保护膜的特征分类 (1)氧化膜型缓蚀剂通过使金属表面形成致密的、附着力强的氧化膜而阻滞金属腐蚀的物质。例如,铬酸盐、重铬酸盐、亚硝酸钠等。由于它们具有钝化作用,故又称为钝化剂。 (2)沉淀膜型缓蚀剂由于与介质中的有关离子反应并在金属表面生成有一定保护作用的沉淀膜,从而阻滞金属腐蚀的物质。例如在中性介质中的硫酸锌、聚磷酸钠、碳酸氢钙等。 (3)吸附膜型缓蚀剂能吸附在金属表面形成吸附膜从而阻滞金属腐蚀的物质。例如酸性介质中的许多有机化合物。 上述缓蚀剂所形成的三种保护膜的不同特征比较见表1。

缓蚀剂研究进展

缓蚀剂的研究、开发与应用经历了不同阶段。最初, 由于冶金工业的发展, 为钢铁材料酸洗除锈和设备的除垢, 研制了酸洗缓蚀剂。随后, 因石油工业油井酸化技术的需要, 研究开发了油井酸化缓蚀剂和油气田缓蚀剂。此后, 随着石油化工、电力、交通运输工业的发展, 海水、工业用水等冷却系统用的中性介质无机缓蚀剂迅速发展。二次世界大战期间和战后, 由于武器军械的防锈, 促进了气相和油溶性缓蚀剂的迅猛发展。19 43 年美国S hel lDev el o pmen t C o . 研制生产了亚硝酸二环己胺, 次年又推出亚硝酸二异丙胺产品, 用于军事工业, 取得很好的防锈效果。5 0 年代初, 苯三唑( BT A ) 对铜及其合金的优异防锈性能, 引起科技界和企业人员广泛重视, 缓蚀剂研究引起人们极大兴趣和关心。随着工业技术和高新技术的迅猛发展, 缓蚀剂得到较快发展。 6 0 年代是腐蚀科学技术发展最活跃的时期, 重要的腐蚀与防护方面的国际学术会议( 世界金属腐蚀会议、欧洲缓蚀剂会议等) 均在6 0 年代初举行首届会议; 一批腐蚀专业刊物( M at er i alPer f or man ce ( 美) , C or r os i o n S ci en ce ( 英) , Br i t i s h C o rr os i o nJ ou rn al ( 英) , !? # ?? % %& ?( 俄) , 材料保护( 中) , C o rr os i o nA bs t r act s ( 美) , ! ?# ?% & ?() ! % ?+ . ! ?# . 66 . ! ?# ! ? # ??# % % # & !! ( 俄) ) 亦均于60 年代创刊发行。这些学术活动及专业刊物的出版发行, 对促进缓蚀剂学科的学术交流和发展起着重要的作用。 Hacker man . N 在第一届欧洲缓蚀剂会议( 1 96 1) 上宣读了关于“软硬酸碱( HS A B ) 原则”的论文, 对缓蚀剂分子设计、筛选和应用有重要意义, 引起参会各国代表的重视和兴趣。日本荒牧国次等人对软硬酸碱理论在缓蚀剂研究中的应用做了系统的工作, 取得了卓有成效的成绩, 推动了缓蚀剂理论发展。 Br oo k M于19 62 年, 收集整理了3 0 ~5 0 年代期间, 海外期刊、专利上发表的约15 0 种缓蚀剂的名称、组成及应用范围( 金属及腐蚀介质) 等资料, 其中大部分为单一组分。 同年, M err i ck . R . D 等人在美国国家腐蚀工程师协会( N A C E ) 主办的学术年会上, 详尽地介绍了美国投放市场的一批商品缓蚀剂( 如: Ro di n e- 93 、Ro di n e- 1 15、Ro di ne- 21 3、Ar mo hi t -25 、Ar moh i b - 28 、DoW el l - A 1 2、DoW el l - A 73 、……) 的牌号、组成、物化性质及在几种酸溶液( H2S O 4、HC l 、HN O 3、H3PO 4、……) 中的缓蚀剂效果。 吉野努于1 96 3 年采用有机化合物与无机化合物复配, 有效地解决了盐酸、硫酸、氨基磺酸等对低碳钢的腐蚀问题。这种复合型缓蚀剂由硫脲- 乌洛托品- C u2+三组分组成。 加藤正义于196 4 年研究了阿拉伯胶、可溶性淀粉、琼脂等高分子多糖类化合物作为碱液中铝用缓蚀剂的问题, 试验结果表明, 大多数试样的缓蚀效率在80 % 以上。但多糖类一旦水解为单糖类时, 则会促进铝的腐蚀。 60 ~70 年代, 印度的Des ai . M . N 教授等先后在A nt i c o r ro si on 及其他专业刊物上, 连续发表数十篇论文, 阐述有关铜、铝及其合金在工业冷却水、盐酸、硫酸、硝酸、碱液及盐类溶液中, 各种有机缓蚀剂的缓蚀性能的研究结果。缓蚀剂的品种涉及广泛, 有硫脲、苯胺、苯甲酸、苯酚、醛类及其各种衍生物。此外,还有天然高分子化合物等。 Wal k er . R指出苯三唑( BT A ) 在一定条件下, 可以作为铜在盐酸、硝酸、硫酸、磷酸及盐类溶液中的缓蚀剂。J . V os t a对氢氟酸用缓蚀剂进行了试验研究, 提出苄基亚砜、二苯基硫脲、二苯胍等 1 0 余种有机化合物可以作为氢氟酸用缓蚀剂的有效成分。中国科学院长春应用化学研究所为引进的大型电厂锅炉氢氟酸酸洗缓蚀剂提

绿色缓蚀剂的研究现状及举例

绿色缓蚀剂的研究现状及举例 总结国内外缓蚀剂的发展不难发现,虽然各种介质中缓蚀剂的研究成果层出不穷,但其在实际运用中却不够完善和成熟。尤其是绿色环保型缓蚀剂研究仍处于实验探索阶段,在该领域仍需要在提高缓蚀作用效果、机理研究和低成本低污染等方面做得更深入的研究。 我国近10年对各类缓蚀剂的研究和应用发展很快,部分产品性能达到国际领先水平, 但总体水平与国外还有很大差距。研究人员认为今后应着重从以下几个方面探索绿色缓蚀剂的发展: 1从天然植物、海产植物中,提取、分离、加工新型绿色缓蚀剂有效成分的方法。 2利用医药、食品、工农业副产品提取有效缓蚀剂组成,并进行复配或改性处理,开发新型绿色缓蚀剂。 3运用量子化学理论、灰色关联分析、人工神经网络方法等科学技术合成高效低毒多功能新工艺型绿色缓蚀剂和低聚体新型绿色缓蚀剂。 4对钼酸盐、钨酸盐、稀土元素金属等无机缓蚀剂深入进行研究,研制出新型高效绿色缓蚀剂。 5利用先进的分析测试仪器和新的研究方法,研究缓蚀剂的作用机理及协同作用机理,指导新型绿色缓蚀剂的开发。 以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓材料的化学物质或复合物. (1)根据产品化学成分,可分为无机缓蚀剂、有机缓蚀剂、聚合物类缓蚀剂。 ①无机缓蚀剂无机缓蚀剂主要包括铬酸盐、亚硝酸盐、硅酸盐、钼酸盐、钨酸盐、聚磷酸盐、锌盐等。 ②有机缓蚀剂有机缓蚀剂主要包括膦酸(盐)、膦羧酸、琉基苯并噻唑、苯并三唑、磺化木质素等一些含氮氧化合物的杂环化合物。 ③聚合物类缓蚀剂聚合物类缓蚀剂只要包括聚乙烯类,POCA,聚天冬氨酸等一些低聚物的高分子化学物。 (2)根据缓蚀剂对电化学腐蚀的控制部位分类,分为阳极型缓蚀剂,阴极型缓蚀剂和混合型缓蚀剂。 ①阳极型缓蚀剂阳极型缓蚀剂多为无机强氧化剂,如铬酸盐、钼酸盐、钨酸盐、钒酸盐、亚硝酸盐、硼酸盐等。它们的作用是在金属表面阳极区与金属离子作用,生成氧化物或氢氧化物氧化膜覆盖在阳极上形成保护膜。这样就抑制了金属向水中溶解。阳极反应被控制,阳极被钝化。硅酸盐也可归到此类,它也是通过抑制腐蚀反应的阳极过程来达到缓蚀目的的。阳极型缓蚀剂要求有较高的浓度,以使全部阳极都被钝化,一旦剂量不足,将在未被钝化的

缓蚀剂及其发展现状

缓蚀剂及其发展现状 在很久以前,人们就发现往腐蚀介质中添加少到不至于改变介质性质的某化学物质能够明显抑制腐蚀的发生。这就是缓蚀剂(英文:Corrosioninhibitor)。按照其应用的环境,缓蚀剂可分为酸性介质缓蚀剂、中性介质缓蚀剂。本论文主要研究中性盐水介质中的缓蚀剂,故仅对中性介质用缓蚀剂的发展作以回顾和展望。中性介质中使用的缓蚀剂又分为无机缓蚀剂、有机缓蚀剂、聚合物缓蚀剂等。 1.3.1无机缓蚀剂 较早应用的无机缓蚀剂有铬酸盐、重铬酸盐、硅酸盐、亚硝酸盐、钼酸盐、锌盐、磷酸盐。这些无机缓蚀剂在应用中被证明是有效的,而今有的仍被广泛的应用,后来又发展应用了聚磷酸盐。但是,无机缓蚀剂的应用有很多缺点。例如,无机缓蚀剂的用量一般较大,这就增加了应用的成本。并且,多数无机缓蚀剂对环境是不友好的,其应用从而受到制约。目前,无机缓蚀剂的使用多数是与有机缓蚀剂复配。这样,不但大大减少了其用量,而且由于两者之间的协同效应也提高了其缓蚀效果。 1.3.2有机缓蚀剂 有机缓蚀剂是含N 、P 、S 等杂原子的有机化合物。根据所含杂原子的不同有机缓蚀剂又可分为以下几类。 (1)含氮类有机缓蚀剂 这类缓蚀剂应用最早,最广。盐水体系中常用的是有机胺类吸附型缓蚀剂,该类缓蚀剂是通过氮原子吸附到钢铁表面而疏水基团伸展于水相形成一种致密的物理膜,阻挡介质与钢铁表面的接触,从而降低腐蚀速度。正是由于起作用的是物理膜,其应用有很大的局限性。如高温会发生物理膜脱附而失去缓蚀效果,它也阻挡不了氯离子的穿透。这类缓蚀剂的代表是季 铵盐、胺类、酰胺类。包括直链及环状化合物。 (2)含硫类缓蚀剂 作为盐水体系用的含硫类缓蚀剂的发展是近十几年的事情。这类缓蚀剂的代表是硫氰酸盐及硫脲类化合物。据资料介绍,该类缓蚀剂主要应用在高温环境中,而在低温(低于120"C)盐水中,其缓蚀效果不超过50%。该类缓蚀剂的作用机理尚不清楚。一般认为,硫原子在一定的温度下与金属发生化学反应(是腐蚀过程)。形成一层致密的保护膜。这层保护膜较致密,在高温条件下稳定性很好,所以,在高温下才能显示其优良的缓蚀效果。但是,硫的化合物对环境的影响也是不用忽视的问题。例如,含硫的化合物排放到土壤中,能使土壤酸化结块影响植物的生长。

缓蚀剂的作用原理、研究现状及发展方向

缓蚀剂的作用原理、研究现状及发展方向 1 缓蚀剂概述 在美国材料与实验协会《关于腐蚀和腐蚀试验术语的标准定义》中,缓蚀剂是“一种以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓腐蚀的化学物质或几种化学物质的混合物”。 缓浊剂是具有抑制金属锈蚀性质的一类无机物质和有机物质的总称。某些有机物质,被有效地吸附在金属的表面上,从而明显地影响表面的电化学行为。其作用机理有抑制表面的阳极反应和抑制阴极反应两种,结果都是使腐蚀电流降低。 缓蚀剂的作用不仅如此,它作为金属的溶解抑制剂还有许多实用价值。如用在化学研磨、电解研磨、电镀和电解冶炼中的阳极解、刻蚀等。总之,在同时发生金属溶解的工业方面,或县为了抑制过度溶解或是为了防止局部浸蚀使之均匀溶解。缓蚀剂都起着重要的作用。另外,电镀中的整平剂,从其本来的定义备不属于缓蚀剂的畴;但是,其作用机理(吸附)和缓蚀剂的机理类似。具有整平作用的物质,同时有效地作为该金属的缓蚀剂的情况也是常的。下图给出了有无缓蚀剂的不同效果:

图1 缓蚀剂的效果 2 不同类型的缓蚀剂及其作用原理 2.1 阳极型缓蚀剂及其作用原理 阳极型缓蚀剂也称阳极抑制型缓蚀剂,主要是抑制阳极过程而使腐蚀速度减缓。如中性介质中的亚硝酸盐、铬酸盐、磷酸盐、硅酸盐、苯甲酸钠等,它们能增加阳极极化,从而使腐蚀电位正移。通常是缓蚀剂的阴离子移向金属阳极使金属钝化。该类缓蚀剂属于“危险型”缓蚀剂,用量不足会加快腐蚀。 作用过程:(a)具有强氧化作用的缓蚀剂,使金属钝化(亚硝酸钠,高铬酸等);(b)具有阴极去极化性的钝化剂,在阴极被还原,加大阴极电流,使体系的氧化还原电位向正方移动,超过钝化电位,而使腐蚀电流达到很低的值。(亚硝酸盐、硝酸盐与高价金属盐属于此类;铬酸盐、磷酸盐、钼酸盐、钨酸盐等在酸性溶液中也属于此类。) 图2 阳极型缓蚀剂作用原理 2.2 阴极型缓蚀剂及其作用原理 阴极型缓蚀剂也称阴极型抑制,其主要包括:酸式碳酸钙、聚磷酸盐、硫酸

有机缓蚀剂的作用机理修订稿

有机缓蚀剂的作用机理 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

有机缓蚀剂的作用机理 ----冀衡酸洗缓蚀剂产品部 有机缓蚀剂分子中通常同时具有极性基团与非极性基团,极性基团中存在氮、氧、磷、硫等元素,这些元素均含有孤对电子,而且电负性大,有机缓蚀剂通过极性基团牢固地吸附在金属表面上,而非极性基团排列在介质中,这样一方面有效地隔离了金属与腐蚀介质的接触,阻碍了腐蚀反应产物的扩散,同时还改变了双电层结构,提高了腐蚀反应的活化能,最终抑制了腐蚀反应的进行。有机缓蚀剂的缓蚀性能有赖于其极性基团在金属表面吸附的强度,而极性基团的吸附可以是物理吸附也可以是化学吸附,或者两种吸附共同存在。 (1)有机缓蚀剂极性基团的物理吸附 关于的物理吸附行为,Mann最早做了深入的研究,他指出在酸性溶液中,吡啶(C5H5N)、烷基胺(RNH2)、硫醇(RSH)及三烷基磷等的中心原子(N、S、P等)含有孤对电子,这些中心原子与酸性溶液中的氢质子结合,最终形成阳离子: RNH2+H+=(RNH3)+ 形成的缓蚀剂与金属之间存在的范德华力使缓蚀剂吸附在金属表面,这就是物理吸附。物理吸附速度很快,是可逆过程,容易脱附,吸附过程产生的热小,受温度影响小,而且金属和缓蚀剂间没有特定组合。 物理吸附会受到金属表面过剩电荷的显着影响,如上所述,大多有机缓蚀剂在酸性介质中都以阳离子形式存在,如果金属表面带有过剩负电荷,那么金属表面与缓蚀剂之间就会存在强烈的静电引力作用,使得缓蚀剂更容易吸附在金属表面,而且吸附作用力也更强;相反,金属表面如果存在过剩的正电荷,则会一定程度上抑制缓蚀剂向金属表面的吸附。金属表面究竟携带何种过剩电荷,可以通过零电荷电位(即金属表面没有电荷存在时的电位)测量进行考察,零电荷电位可以通过微分电容曲线测试进行确定,即为金属电极双电层电容最小时的电位。当金属开路电位大于零电荷电位时,金属表面带有过剩的正电荷,相反,金属表面则带有过剩的负电荷。在缓蚀剂的实际应用中可以通过改变金属表面携带的过剩电荷量来促进缓蚀剂的物理吸附,如在酸性介质中,添加少量碘化物后,有机胺的缓蚀性能将为显着提高,这主要是碘化物吸附在金属表面后,使得金属表面带有更多的过剩负电荷,促进了有机胺类缓蚀剂在金属表面的吸附;同样有机胺类缓蚀剂之所以在盐酸介质中有着卓越的缓蚀性能,也部分归因于氯离子使得金属表面带有更多的过剩电荷。 (2)有机缓蚀剂极性基团的化学吸附——供电子型缓蚀剂

缓蚀剂的作用原理、研究现状及发展方向_7942.docx

缓蚀剂的作用原理、研究现状及发展方向 1缓蚀剂概述 在美国材料与实验协会《关于腐蚀和腐蚀试验术语的标准定义》中,缓蚀剂 是“一种以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓腐蚀的 化学物质或几种化学物质的混合物” 。 缓浊剂是具有抑制金属锈蚀性质的一类无机物质和有机物质的总称。某些有 机物质,被有效地吸附在金属的表面上,从而明显地影响表面的电化学行为。其作用机理有抑制表面的阳极反应和抑制阴极反应两种,结果都是使腐蚀电流降 低。 缓蚀剂的作用不仅如此,它作为金属的溶解抑制剂还有许多实用价值。如用 在化学研磨、电解研磨、电镀和电解冶炼中的阳极解、刻蚀等。总之,在同时发 生金属溶解的工业方面,或县为了抑制过度溶解或是为了防止局部浸蚀使之均匀 溶解。缓蚀剂都起着重要的作用。另外,电镀中的整平剂,从其本来的定义备不 属于缓蚀剂的畴;但是,其作用机理( 吸附 ) 和缓蚀剂的机理类似。具有整平作 用的物质,同时有效地作为该金属的缓蚀剂的情况也是常的。下图给出了有无缓 蚀剂的不同效果:

图 1 缓蚀剂的效果 2不同类型的缓蚀剂及其作用原理 2.1阳极型缓蚀剂及其作用原理 阳极型缓蚀剂也称阳极抑制型缓蚀剂,主要是抑制阳极过程而使腐蚀速度减缓。如中性介质中的亚硝酸盐、铬酸盐、磷酸盐、硅酸盐、苯甲酸钠等,它们能 增加阳极极化,从而使腐蚀电位正移。通常是缓蚀剂的阴离子移向金属阳极使金属钝化。该类缓蚀剂属于“危险型”缓蚀剂,用量不足会加快腐蚀。 作用过程:(a)具有强氧化作用的缓蚀剂,使金属钝化(亚硝酸钠,高铬酸等);(b)具有阴极去极化性的钝化剂,在阴极被还原,加大阴极电流,使体系的氧化还原电位向正方移动,超过钝化电位,而使腐蚀电流达到很低的值。(亚硝酸盐、硝酸盐与高价金属盐属于此类;铬酸盐、磷酸盐、钼酸盐、钨酸盐等在 酸性溶液中也属于此类。) 图 2 阳极型缓蚀剂作用原理 2.2阴极型缓蚀剂及其作用原理 阴极型缓蚀剂也称阴极型抑制,其主要包括:酸式碳酸钙、聚磷酸盐、硫酸

缓蚀剂研究新进展

缓蚀剂研究新进展 摘要:近年来缓蚀剂的发展做了概况,并对缓蚀剂未来的发展方向做出了阐述,提出发展环境友好型缓蚀剂及完善缓蚀剂快速、准确、原位评价的方法和技术。 国际上缓蚀剂的研究主要集中在美国、中国、印度等国家。其中,中国是在国际学术期刊上发表缓蚀剂论文最多的国家,研究水平与世界基本保持同步。欧洲对缓蚀剂的研究也非常重视,但其重点在混凝土缓蚀剂和铝合金缓蚀剂的研究。目前,绿色天然缓蚀剂、多功能缓蚀剂以及基于分子设计的缓蚀剂开发是研究发展的趋势。 关键词:缓蚀剂硬和软酸和碱吸附型缓蚀剂抑制效率 正文: 最新进展 环境友好型缓蚀剃的开发 年来,国内外环境友好型缓蚀剂的开发主要通过合成有机化合物和从天然植物中提取两种方式。合成的有机化合物作为环境友好型缓蚀剂的种类包括:咪唑啉系列、氨基酸系列、曼尼烯碱和硫代磷酸酯类等。咪唑啉系列环境友好型缓蚀剂仍然是目前的开发热点之一。氨基酸系列环境友好型缓蚀剂的研究已开发出了全有机多元复合水处理缓蚀剂、高效的酸洗缓蚀剂。曼尼烯碱系列和硫代磷酸酯类缓蚀也剂逐步引起了国内外研究者的兴趣。 从植物中提取缓蚀剂是近年来缓蚀剂领域研究的热点之一。国内开展了对白酒糟、滇润楠叶、麻竹叶、木薯、云南甜龙竹叶等的提取物对金属的缓蚀行为研究。国外一些学者研究了特定树叶提取物在硫酸介质中对低碳钢的缓蚀行为。研究结果表明,这些植物提取物对低碳钢具有良好的缓蚀作用。另外,米糠、无花果树叶、酒耶树汁等提取物也对金属有较好的缓蚀效果。 钢筋混凝土缓蚀剂 引起混凝土内钢筋腐蚀的主要原因是碳化作用和氯离子渗透。钢筋缓蚀剂的主要功能是抑制、阻止、延缓钢筋腐蚀的电化学过程。缓蚀剂通常可作为外加剂掺加到混凝土中或涂敷在钢筋表面,优先参与并阻止腐蚀反应的阴阳极过程,从而有效地阻止钢筋的腐蚀。早期使用的钢筋混凝土缓蚀剂有亚硝酸盐、铬酸盐、苯甲酸盐等,但由于它们存在有毒或者对混凝土性能有负面影响等缺点,逐渐被淘汰。近年来新提出的迁移性缓蚀剂是含有各种胺和醇胺以及它们的盐与其它有机和无机物的复合型阻锈剂,能对钢筋表面的阴极和阳极同时产生保

有机缓蚀剂的作用机理(最新整理)

有机缓蚀剂的作用机理 ----冀衡酸洗缓蚀剂产品部 有机缓蚀剂分子中通常同时具有极性基团与非极性基团,极性基团中存在氮、氧、磷、硫等元素,这些元 素均含有孤对电子,而且电负性大,有机缓蚀剂通过极性基团牢固地吸附在金属表面上,而非极性基团排 列在介质中,这样一方面有效地隔离了金属与腐蚀介质的接触,阻碍了腐蚀反应产物的扩散,同时还改变 了双电层结构,提高了腐蚀反应的活化能,最终抑制了腐蚀反应的进行。有机缓蚀剂的缓蚀性能有赖于其 极性基团在金属表面吸附的强度,而极性基团的吸附可以是物理吸附也可以是化学吸附,或者两种吸附共 同存在。 (1)有机缓蚀剂极性基团的物理吸附 关于有机缓蚀剂的物理吸附行为,Mann最早做了深入的研究,他指出在酸性溶液中,吡啶(C5H5N)、烷基胺(RNH2)、硫醇(RSH)及三烷基磷等的中心原子(N、S、P等)含有孤对电子,这些中心原子与酸性 溶液中的氢质子结合,最终形成阳离子: RNH2+H+=(RNH3)+ 形成的缓蚀剂与金属之间存在的范德华力使缓蚀剂吸附在金属表面,这就是物理吸附。物理吸附速度很快,是可逆过程,容易脱附,吸附过程产生的热小,受温度影响小,而且金属和缓蚀剂间没有特定组合。 物理吸附会受到金属表面过剩电荷的显著影响,如上所述,大多有机缓蚀剂在酸性介质中都以阳离子形式存在,如果金属表面带有过剩负电荷,那么金属表面与缓蚀剂之间就会存在强烈的静电引力作用,使 得缓蚀剂更容易吸附在金属表面,而且吸附作用力也更强;相反,金属表面如果存在过剩的正电荷,则会 一定程度上抑制缓蚀剂向金属表面的吸附。金属表面究竟携带何种过剩电荷,可以通过零电荷电位(即金 属表面没有电荷存在时的电位)测量进行考察,零电荷电位可以通过微分电容曲线测试进行确定,即为金 属电极双电层电容最小时的电位。当金属开路电位大于零电荷电位时,金属表面带有过剩的正电荷,相反,金属表面则带有过剩的负电荷。在缓蚀剂的实际应用中可以通过改变金属表面携带的过剩电荷量来促进缓 蚀剂的物理吸附,如在酸性介质中,添加少量碘化物后,有机胺的缓蚀性能将为显著提高,这主要是碘化 物吸附在金属表面后,使得金属表面带有更多的过剩负电荷,促进了有机胺类缓蚀剂在金属表面的吸附; 同样有机胺类缓蚀剂之所以在盐酸介质中有着卓越的缓蚀性能,也部分归因于氯离子使得金属表面带有更 多的过剩电荷。 (2)有机缓蚀剂极性基团的化学吸附——供电子型缓蚀剂 相比物理吸附来说,化学吸附作用力更强,吸附更稳定,因此大多数有机缓蚀剂与金属表面的作用力主要是通过化学吸附实现的,而化学吸附实质就是缓蚀剂分子或离子与金属表面原子之间形成了配位键。 与物理吸附不同,化学吸附与金属原子类别、缓蚀剂中心原子附近基团的推电子能力等均有密切关系。以

气相缓蚀剂的研究与发展(精)

气相缓蚀剂的研究与发展 肖怀斌 摘要:介绍了国内外的气相缓蚀剂技术发展概况,阐述了气相缓蚀剂技术的应用形式,展望了该技术领域内的研究方向。 关键词:气相缓蚀剂;防锈技术;展望 分类号:TG174.42+6文献标识码:A 文章编号:1001-1560(200001-0026-02 Research and Development of Vapor Phase Inhibitor XIAO Huai-bing Abstract:Comprehensive survey of vapor phase inhibitors both at home and abroad is given. The application of VPI and the research trend are discussed.▲气相缓蚀剂作为一种挥发性缓蚀剂,在常温下自动挥发出的气体能起到抑制 金属大气腐蚀的作用。因此,在使用气相缓蚀剂时,可在不必直接接触金属表面的情况下使金属制品的表面、内腔、管道、沟槽甚至缝隙部位都能得到保护。由于其防锈期长、操作简便、成本较低等特点,近年来气相缓蚀剂和气相缓蚀技术的研究和应用都有较快的发展。 1 多效能通用气相缓蚀剂 气相缓蚀剂在近20年时间中,几乎都是用于钢铁类金属材料和制品的保护。但对多种非铁金属则有不同程度的腐蚀或不相容,以至于对多种金属组合件机械制品中的铜、锌、镉等有色金属部件,往往需采取隔离保护措施或放弃使用气相缓蚀剂技术。对黑色金属和有色金属同时具有缓蚀作用的多效能气相缓蚀剂的研究和应用,一直是气相缓蚀剂的重点发展方向之一[1]。

60年代初,苯骈三氮唑对黄铜防变色作用得到证实,从而打开了气相缓蚀剂保护铜基材料的大门。各种实验结果表明,苯三唑除了对铜及铜合金具有优良的缓蚀性能外,对银、镀银层、锌、镀锌层、镀镉层等金属也有较好的缓蚀效果。此外,近年来国内外还对苯三唑的多种衍生物如甲基苯三唑、3氨基-1.2.4苯三唑、双苯三唑、四氮唑进行了研究。结果表明,以上缓蚀剂均对锌、镉、铅、镍、锡、铜有良好的保护作用,并对钢铁、镁、铝也有一定缓蚀效果[2]。湖南大学研制的1-羟基苯三唑(一种新型的水溶性高效气相缓蚀剂,在中性或碱性水溶液中不仅对黄铜、紫铜有良好的缓蚀性能,对钢、铸铁也有较好的缓蚀作用。该缓蚀剂毒性低、污染少,其水溶液浓度在0.05%以上即有很好的缓蚀和抑制细菌生长的效果,当其与磷酸盐等其他缓蚀剂配合使用时,防锈性能还可进一步提高。除了苯三唑及其衍生物以外,铬酸盐类化合物(如铬酸环已胺、铬酸二环已胺、铬酸叔丁酯、邻硝基化合物如邻硝基酚二环已胺、邻硝基酚三乙醇胺、邻硝基酚四乙烯五胺、邻硝基苯甲酸的有机胺盐、肉桂酸盐、硼酸盐、硫脲类、噻唑、味唑类化合物对多种有色金属和镀层均有一定的缓蚀作用[3]。 目前在美日等国报道的气相缓蚀剂材料中,约有1/3以上为通用型多效能的气相缓蚀剂材料。 2 高效低毒气相缓蚀剂 在气相缓蚀剂的研究和发展过程中,亚硝酸盐曾占据着主导的位置,以致于世界各国在介绍气相缓蚀剂的文献中,仍常常以亚硝酸二环已胺为代表。由于它对钢铁制品的有效长期防锈能力和优良的抗盐雾性,使之在军械器材和外贸出口机电产品的防锈包装材料中必不可少。1990年8月我国对1964年采用亚硝酸二环已胺封存的枪械产品进行了开箱检查,长达26年仍然光亮无锈,封存地点包括温度、湿度和盐雾气氛相对较高的四川地区。 但是,对亚硝酸盐的毒性问题,也越来越引起了重视。进入21世纪,在可持续发展战略的推动下,开发低公害,无污染的气相缓蚀剂将是当务之急。国际环境系列标准ISO 14000于1996年起陆续颁布实施,现在许多国家规定在采购气相缓蚀剂材料

缓蚀剂作用机理、研究现状及发展方向

缓蚀剂作用机理、研究现状及发展方向 摘要:本文详细介绍了缓蚀剂的分类、性能指标、保护的特点、作用理论、应用实例、研究现状及发展方向。 关键词:缓蚀剂;防腐技术;发展方向 1 前言 缓蚀剂是一种在低浓度下能阻止或减缓金属在环境介质中腐蚀的物质。缓蚀剂又叫作阻蚀剂、阻化剂或腐蚀抑制剂等。缓蚀剂保护技术已经发展为一项重要的防腐蚀技术,广泛用在石油、冶金、化工、机械制造、动力和运输等部门。 2 缓蚀剂的分类 缓蚀剂的品种繁多,常用的如亚硝酸钠、铬酸盐、磷酸盐、石油磺酸钡、亚硝酸二环已胺等,至今尚难以有统一的分类方法。常见到的分类方法有以下几种。 2.1 按缓蚀剂作用的电化学理论分类 (1)阳极型缓蚀剂通过抑制腐蚀的阳极过程而阻滞金属腐蚀的物质。这种缓蚀剂通常是由其阴离子向金属表面的阳极区迁移,氧化金属使之钝化,从而阻滞阳极过程。例如,中性介质中的铬酸盐与亚硝酸盐。一些非氧化型的缓蚀剂,例如苯甲酸盐、正磷酸盐、硅酸盐等在中性介质中,只有与溶解氧并存,才起到阳极抑制剂的作用。 (2)阴极型缓蚀剂通过抑制腐蚀的阴极过程而阻滞金属腐蚀的物质。这种缓蚀剂通常是由其阳离子向金属表面的阴极区迁移,或者被阴极还原,或者与阴 离子反应而形成沉淀膜,使阴极过程受到阻滞。例如ZnSO 4、Ca(HCO 3 ) 2 、As3+、Sb3+ 可以分别和OH-生成Zn(OH) 2、Ca(OH) 2 沉淀和被还原为As、Sb覆盖在阴极表面, 以阻滞腐蚀。 (3)混合型缓蚀剂这种缓蚀剂既可抑制阳极过程,又可抑制阴级过程。例如含氮和含硫的有机化合物。 2.2 按化学成分分类 (1)无机缓蚀剂,如铬酸盐、亚硝酸盐、磷酸盐等。

缓蚀剂作用机理、研究现状及发展方向

缓蚀剂地作用机理、研究现状及发展方向 1缓蚀剂地作用机理 缓蚀剂地作用机理概括起来可以分为两种,即电化学机理和物理化学机理[1].电化学机理是以金属表面发生地电化学过程为基础,解释缓蚀剂地作用.而物理化学机理是以金属表面发生地物理化学变化为依据,说明缓蚀剂地作用.这两种机理处理问题地方式不同,但它们并不矛盾,而且还存在着某种因果关系. 1.1缓蚀剂地电化学机理 金属地腐蚀大多是金属表面发生原电池反应地结果,这也是造成浸蚀腐蚀最主要地因素,原电池反应包括阳极反应和阴极反应[1].如果缓蚀剂可以抑制阳极、阴极反应中地任何一个或两个,原电池反应将减缓,金属地腐蚀速度就会减慢.把能够抑制阳极反应地缓蚀剂称为阳极抑制型缓蚀剂;能够抑制阴极反应地缓蚀剂称为阴极抑制型缓蚀剂;而既能抑制阳极反应又能抑制阴极反应地缓蚀剂称为混合型缓蚀剂. 重铬酸钾、铬酸钾、亚硝酸钠、硝酸钠、高锰酸钾、磷酸盐、硅酸盐、硼酸盐、碳酸盐、苯甲酸盐、肉桂酸盐等都属于阳极型缓蚀剂.阳极型缓蚀剂对阳极过程地影响是:(1)在金属表面生成薄地氧化膜,把金属和腐蚀介质隔离开来;(2)因特性吸附抑制金属离子化过程;(3)使金属电极电位达到钝化电位[2]. 阴极型缓蚀剂主要通过以下作用实现缓蚀:(1)提高阴极反应地过电位.有时阴离子缓蚀剂通过提高氢离子放电地过电位抑制氢离子放电反应,例如,Na2C03、三乙醇胺等碱性缓蚀剂都可以中和水中地酸性物质,降低氢离子浓度,提高析氢过电位,使氢离子在金属表面地还原受阻,减缓腐蚀;(2)在金属表面形成化合物膜,如有机缓蚀剂中地低分子有机胺及其衍生物,都可以在金属表面阴极区形成多分子层,使去极化剂难以达到金属表面而减缓腐蚀;(3)吸收水中地溶解氧,降低腐蚀反应中阴极反应物地浓度,从而减缓金属地腐蚀. 混合型缓蚀剂对腐蚀电化学过程地影响主要表现在:(1)与阳极反应产物反应生成不溶物,这些不溶物紧密地沉积在金属表面起到缓蚀地作用,磷酸盐如Na3P04、Na2HP04对铁、镁、铝等地缓蚀就属于这一类型;(2)形成胶体物质,能够形成复杂胶体体系地化合物可作为有效地缓蚀剂,例如Na2Si03等;(3)在金属表面吸附,形成吸附膜达到缓蚀地目地,明胶、阿拉伯树胶等可以在铝表面吸附,吡啶及有机胺类可以在镁及镁合金表面吸附,故都可以起到缓蚀地作用[2].

缓 蚀 剂

缓蚀剂 缓蚀剂作用机理 内容介绍>> 对缓蚀剂作用机理的研究可以追溯到20世纪初,而今三十年来,这方面的研究更是引起了广大腐蚀科学工作者的重视。1972年Fischer对印制腐蚀电极反应的不同工作方式作了仔细的分析后,提出了界面抑制机理,电解液层抑制机理,膜抑制机理及钝化机理。Lorenz和Mansfeld也明确提出用界面抑制和相界面抑制来表达两种不同的电极反应阻滞机理。他们认为界面抑制作用发生在裸露的金属表面与电解液同时在于三维层中,该层由微溶的腐蚀产物和缓蚀剂组成。酸性溶液中有机添加机理的研究在20世纪20年代即已开始,今年来不断得到新的发展。学者们先后提出了吸附理论,修饰理论,软硬酸碱理论(SHAB),钝化理论,尖端突变理论等。当然,上述各种理论着重点及研究角度都不尽相同,一般来说,酸性介质缓蚀剂主要是吸附型的,其缓蚀作用的一个可能机理是覆盖效应,而另一个可能机理为负催化效应。所谓覆盖效应是指在缓蚀剂所吸附的金属表面,金属的阳极溶解过程和阴极析氢过程均不能进行;而复催化效应则是指缓蚀剂吸附在金属溶解的活性区,它的吸附改变了腐蚀电化学过程的阴极反应或者阳极过程的进行,甚至同时阻滞了阴、阳极反映。由于金属腐蚀和缓蚀过程的复杂性以及缓蚀剂的多样性,难以用同一种理论解释各种各样缓蚀剂的作用机理。以下是几种主要的缓蚀作用理论的要点:(1)成相膜理论成相膜理论人为缓蚀剂在金属表面形成一层难以溶解的保护膜以组织介质对金属的腐蚀。该种保护膜包括氧化物膜和沉淀膜。(2)吸附膜理论吸附膜理论认为,某些缓蚀剂通过其分子或离子在金属表面的物理吸附或化学吸附形成吸附保护膜而抑制介质对金属的腐蚀。有的缓蚀剂分子或离子表面由于静电引力和分子间作用力而发生物理吸附。另一些缓蚀剂可以与金属表面形成配位键而发生化学吸附。缓蚀剂以其亲水基团吸附于金属表面,疏水基远离金属表面,形成吸附层把金属活性中心覆盖,阻止介质对金属的侵蚀。此类缓蚀剂主要是有机缓蚀剂。(3)电化学理论电化学理论认为缓蚀剂通过加大腐蚀的阴极过程或阳极过程的阻力而减小金属的腐蚀速率。因此而分为阳极抑制型、阴极抑制型和混合抑制型缓蚀剂。 缓蚀剂简介 英文专业名词:anti-corrosive.corrosive inhibiter. 以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓材料腐蚀的化学物质或复合物,因此缓蚀剂也可以称为腐蚀抑制剂。它的用量很小(0.1%~1%),但效果显著。这种保护金属的方法称缓蚀剂保护。缓蚀剂用于中性介质(锅炉用水、循环冷却水)、酸性介质(除锅垢的盐酸,电镀前镀件除锈用的酸浸溶液)和气体介质(气相缓蚀剂)。 分类: 缓蚀剂有多种分类方法,可从不同的角度对缓蚀剂分类。

缓蚀剂的成膜机理分析

缓蚀剂的成膜机理分析 1 缓蚀剂的分类 缓蚀剂的应用广泛,种类繁多,分类方法也较多,人们常常从不同的角度对缓蚀剂进行分类,常见的分类方法有: 1) 根据化学组成分类[1 ] . 按照构成缓蚀剂的物质是无机化合物还是有机化合物可分为无机缓蚀剂和有机缓蚀剂. 2) 根据所抑制的电极过程分类. 按照缓蚀剂在电化学腐蚀过程中抑制的电极反应是阳极反应还是阴极反应或两者兼而有之,缓蚀剂可分为阳极型缓蚀剂,阴极型缓蚀剂或混合型缓蚀剂. 一般来说,阳极型缓蚀剂使金属的腐蚀电位Ec向正的方向移动,阴极型缓蚀剂使金属的腐蚀电位Ec向负的方向移动; 而混合型缓蚀剂则对腐蚀电位Ec的影响较小,故腐蚀电位的移动很小或没有移动. 3) 根据所生成保护膜的类型分类[2 ] . 按照缓蚀剂在保护金属过程中所形成的保护膜的类型,缓蚀剂可以分为钝化膜型缓蚀剂、沉淀膜型缓蚀剂和吸附膜型缓蚀剂. 其中沉淀膜型缓蚀剂又分为水中离子型和金属离子型两种. 2 缓蚀剂在金属表面形成保护膜的机理分析 2. 1 钝化膜型缓蚀剂 钝化膜型缓蚀剂简称钝化剂,为无机强氧化剂[3 ] .如铬酸盐、亚硝酸盐、钼酸盐和钨酸盐等. 在反应中比较容易被还原的强氧化剂才能作钝化剂. 以铬酸盐为例,铬酸盐包括铬酸(H2CrO4) 和重铬酸(H2Cr2O7) 的可溶性盐,如Na2Cr2O7 、Na2CrO4 、K2Cr2O7 、(NH4) 2CrO4 等, 分子结构中铬为正六价. 铬酸盐和重铬酸盐可以以任何比例混合而不影响缓蚀效果,所以一般统称为铬酸盐. 铬酸盐有很强的氧化能力,发生氧化反应时Cr6 +还原为Cr3 + . 铬酸盐在较高浓度时是十分有效的阳极钝化剂. 铬酸盐对碳钢的钝化与碳钢在H2SO4 中的电位极化相似,钝化时铁表面发生的反应为: Cr2O72 - + 8H+ + 6e →Cr2O3 + 4H2O 反应时被还原的铬酸盐以Cr2O3 的形态吸附在铁的表面和铁表面同时生成的Fe2O3 共同组成钝化膜,反应为:2Fe + 3H2O →Fe2O3 + 6H+ + 6e 用铬酸盐钝化的铁的表面那层钝化膜,充分脱水,结构致密,防腐性能好. 而其它缓蚀剂处理铁都无法得到这样的膜,甚至用KMnO4 强氧化剂也不能达到铬酸盐钝化铁的那种程度. 铬酸盐的优点是:它不仅对钢铁,而且对铜、锌、铝及其合金都能给予良好的保护;适用的pH 值范围很宽(pH = 6~11) ;缓蚀效果特别好,使用铬酸盐作缓蚀剂时,碳钢的腐蚀速度可低于0. 025 mm/ 年. 铬酸盐的缺点是:毒性大,环境保护部门对铬酸盐的排放有严格的要求;容易被还原而失效,不宜用于有还原性物质(例如硫化氢) 泄露的炼油厂的冷却系统中. 2. 2 沉淀膜型缓蚀剂

缓蚀剂的作用机理、研究现状及发展方向..

缓蚀剂的作用机理、研究现状及发展方向 1缓蚀剂的作用机理 缓蚀剂的作用机理概括起来可以分为两种,即电化学机理和物理化学机理[1]。电化学机理是以金属表面发生的电化学过程为基础,解释缓蚀剂的作用。而物理化学机理是以金属表面发生的物理化学变化为依据,说明缓蚀剂的作用。这两种机理处理问题的方式不同,但它们并不矛盾,而且还存在着某种因果关系。 1.1缓蚀剂的电化学机理 金属的腐蚀大多是金属表面发生原电池反应的结果,这也是造成浸蚀腐蚀最主要的因素,原电池反应包括阳极反应和阴极反应[1]。如果缓蚀剂可以抑制阳极、阴极反应中的任何一个或两个,原电池反应将减缓,金属的腐蚀速度就会减慢。把能够抑制阳极反应的缓蚀剂称为阳极抑制型缓蚀剂;能够抑制阴极反应的缓蚀剂称为阴极抑制型缓蚀剂;而既能抑制阳极反应又能抑制阴极反应的缓蚀剂称为混合型缓蚀剂。 重铬酸钾、铬酸钾、亚硝酸钠、硝酸钠、高锰酸钾、磷酸盐、硅酸盐、硼酸盐、碳酸盐、苯甲酸盐、肉桂酸盐等都属于阳极型缓蚀剂。阳极型缓蚀剂对阳极过程的影响是:(1)在金属表面生成薄的氧化膜,把金属和腐蚀介质隔离开来;(2)因特性吸附抑制金属离子化过程;(3)使金属电极电位达到钝化电位[2]。 阴极型缓蚀剂主要通过以下作用实现缓蚀:(1)提高阴极反应的过电位.有时阴离子缓蚀剂通过提高氢离子放电的过电位抑制氢离子放电反应,例如,Na2C03、三乙醇胺等碱性缓蚀剂都可以中和水中的酸性物质,降低氢离子浓度,提高析氢过电位,使氢离子在金属表面的还原受阻,减缓腐蚀;(2)在金属表面形成化合物膜,如有机缓蚀剂中的低分子有机胺及其衍生物,都可以在金属表面阴极区形成多分子层,使去极化剂难以达到金属表面而减缓腐蚀;(3)吸收水中的溶解氧,降低腐蚀反应中阴极反应物的浓度,从而减缓金属的腐蚀。 混合型缓蚀剂对腐蚀电化学过程的影响主要表现在:(1)与阳极反应产物反应生成不溶物,这些不溶物紧密地沉积在金属表面起到缓蚀的作用,磷酸盐如Na3P04、Na2HP04对铁、镁、铝等的缓蚀就属于这一类型;(2)形成胶体物质,能够形成复杂胶体体系的化合物可作为有效的缓蚀剂,例如Na2Si03等;(3)在金属表面吸附,形成吸附膜达到缓蚀的目的,明胶、阿拉伯树胶等可以在铝表面吸附,吡啶及有机胺类可以在镁及镁合金表面吸附,故都可以起到缓蚀的作用[2]。

相关主题