搜档网
当前位置:搜档网 › 高三数学数列总复习例题讲解

高三数学数列总复习例题讲解

高三数学数列总复习例题讲解
高三数学数列总复习例题讲解

数列专题复习

一、等差数列的有关概念:

1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 如设{}n a 是等差数列,求证:以b n =n

a a a n

+++ 21 *n N ∈为通项公式的数列{}n b 为

等差数列。

2、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。

如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:

8

33

d <≤) 3、等差数列的前n 和:1()2n n n a a S +=

,1(1)

2

n n n S na d -=+

。 如(1)数列 {}n a 中,*

11(2,)2

n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,

则1a = _,n =_(答:13a =-,10n =);

(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:

2*

2*

12(6,)1272(6,)

n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 4、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2

a b

A +=

。 提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及

n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,

即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,

2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )

5、等差数列的性质:

(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222

n n n d d

S na d n a n -=+=+-是关于n 的二次函数且常数项为0.

(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有

2m n p a a a +=.

如(1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____(答:27); (4) 若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、

*{}(,)p nq a p q N +∈、

232,,n n n n n S S S S S -- ,…也成等差数列,而{}n a

a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列.

如等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。(答:

225)

(5)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-?中(这里a 中即n a )

;()1-n :n S =偶奇:S 。 如(1)在等差数列中,S 11=22,则6a =______(答:2);

(2)项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).

(6)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且

()n

n

A f n

B =,则21

21

(21)(21)(21)n n n n n n a n a A f n b n b B ---===--.如设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若

3

41

3-+=

n n T S n n ,那么=n n b a ___________(答:6287n n --) (7)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增

等差数列中,前n 项和的最小值是所有非正项之和。法一:由不等式组

???

? ?????≥≤???≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。上述两种

方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?

如(1)等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大

值。(答:前13项和最大,最大值为169);

(2)若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ?<,则使前n 项和

0n S >成立的最大正整数n 是 (答:4006)

(3)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则( ) A 、1210,S S S 都小于0,1112,S S 都大于0 B 、1219,S S S 都小于0,2021,S S 都大于0 C 、125,S S S 都小于0,67,S S 都大于0

D 、12

20,S S S 都小于0,2122

,S S 都大于0 (答:B )

(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.

二、等比数列的有关概念:

1、等比数列的判断方法:定义法

1

(n n

a q q a +=为常数),其中0,0n q a ≠≠或11

n n n n a a

a a +-=(2)n ≥。 如(1)一个等比数列{n a }共有21n +项,奇数项之积为100,偶数项之积为120,则1n a +为____(答:5

6

);(2)数列{}n a 中,n S =41n a -+1 (2n ≥)且1a =1,若n n n a a b 21-=+ ,求证:数列{n b }是等比数列。

2、等比数列的通项:11n n a a q -=或n m n m a a q -=。

如等比数列{}n a 中,166n a a +=,21128n a a -=,前n 项和n S =126,求n 和q .(答:

6n =,1

2

q =

或2) 3、等比数列的前n 和:当1q =时,1n S na =;当1q ≠时,1(1)1n n a q S q

-=-11n a a q

q -=-。

如(1)等比数列中,q =2,S 99=77,求9963a a a +++ (答:44); (2)

)(1010

∑∑==n n

k k

n

C

的值为__________(答:2046)

特别提醒:等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分1q =和1q ≠两种情形讨论求解。

4、等比中项:若,,a A b 成等比数列,那么A 叫做a 与b 的等比中项。提醒:不是任何

两数都有等比中项,只有同号两数才存在等比中项,且有两个。如已知两个正数

,()a b a b ≠的等差中项为A ,等比中项为B ,则A 与B 的大小关系为______(答:A >B )

提醒:(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及

n S ,其中1a 、q 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,

即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…,

2

2,,,,a a a aq aq q q ...(公比为q );但偶数个数成等比时,不能设为 (33)

,,,aq aq q

a q a ,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为2

q 。如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。(答:15,,9,3,1或0,4,8,16)

5.等比数列的性质:

(1)当m n p q +=+时,则有m n p q a a a a =,特别地,当2m n p +=时,则有

2m n p a a a =.

如(1)在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___(答:512);

(2)各项均为正数的等比数列{}n a 中,若569a a ?=,则31

32

31

0l o

g l o g l o g a a a +

++

=

(答:10)。

(2) 若{}n a 是等比数列,则{||}n a 、*

{}(,)p nq a p q N +∈、{}n ka 成等比数列;若

{}{}n n a b 、成等比数列,

则{}n n a b 、{}n n

a

b 成等比数列; 若{}n a 是等比数列,且公比1q ≠-,则数列232,,n n n n n S S S S S -- ,…也是等比数列。当1q =-,且n 为偶数时,数列

232,,n n n n n S S S S S -- ,…是常数数列0,它不是等比数列.

如(1)已知0a >且1a ≠,设数列{}n x 满足1lo g 1

lo g a n a n x x +=+(*)n N ∈,且

12100100x x x +++=,则101102200x x x ++

+= . (答:100100a )

; (2)在等比数列}{n a 中,n S 为其前n 项和,若140,1330101030=+=S S S S ,则20S 的值为______(答:40)

(3)若10,1a q >>,则{}n a 为递增数列;若10,1a q <>, 则{}n a 为递减数列;若10,01a q ><< ,

则{}n a 为递减数列;若10,01a q <<<, 则{}n a 为递增数列;若0q <,则{}n a 为摆动数列;若1q =,则{}n a 为常数列.

(4) 当1q ≠时,b aq q

a

q q a S n n n +=-+--=

1111,这里0a b +=,但0,0a b ≠≠,是等比数列前n 项和公式的一个特征,据此很容易根据n S ,判断数列{}n a 是否为等比数列。

如若{}n a 是等比数列,且3n n S r =+,则r = (答:-1)

(5) m n m n m n n m S S q S S q S +=+=+.如设等比数列}{n a 的公比为q ,前n 项和为n S ,若12,,n n n S S S ++成等差数列,则q 的值为_____(答:-2)

(6) 在等比数列{}n a 中,当项数为偶数2n 时,S qS =偶奇;项数为奇数21n -时,

1S a qS =+奇偶.

(7)如果数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列,故常数数列{}n a 仅是此数列既成等差数列又成等比数列的必要非充分条件。

如设数列{}n a 的前n 项和为n S (N ∈n ), 关于数列{}n a 有下列三个命题:①若

)(1

N ∈=+n a a n n ,则{}n a 既是等差数列又是等比数列;②若()R ∈+=b a n b n a S n 、2,

则{}n a 是等差数列;③若()n

n S 11--=,则{}n a 是等比数列。这些命题中,真命题的序号是 (答:②③)

三、数列通项公式的求法

一、公式法

①???≥-==-)2()111n S S n S a n n

n (;

②{}n a 等差、等比数列{}n a 公式.

例 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为

11

3

222

n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22

n n a n =+-,进而求出数列{}n a 的通项公式。

二、累加法

例 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+

+-+-+,即得数列{}n a 的通项公式。

例 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

评注:本题解题的关键是把递推关系式1231n n n a a +=+?+转化为1231n n n a a +-=?+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,

即得数列{}n a 的通项公式。 三、累乘法

例 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为

1

2(1)5n n n

a n a +=+,

进而求出

1

32

112

21

n n n n a a a a a a a a a ---???

??,即得数列{}n a 的通项公式。 四、取倒数法

例 已知数列{n a }中,其中,11=a ,且当n ≥2时,1

211

+=

--n n n a a a ,求通项公式n a 。

解 将1

211+=

--n n n a a a 两边取倒数得:

2111=--n n a a ,这说明}1

{n a 是一个等差数列,

首项是

111=a ,公差为2,所以122)1(11

-=?-+=n n a n

,即121-=n a n . 五、待定系数法

例 已知数列{}n a 满足112356n n n a a a +=+?=,,求数列{}n a 的通项公式。

评注:本题解题的关键是把递推关系式1235n n n a a +=+?转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}n n a -的通项公式,最后再求出数列

{}n a 的通项公式。

例 已知数列{}n a 满足1135241n n n a a a +=+?+=,,求数列{}n a 的通项公式。 评注:本题解题的关键是把递推关系式13524n n n a a +=+?+转化为

115223(522)n n n n a a +++?+=+?+,从而可知数列{522}n n a +?+是等比数列,进而求

出数列{522}n n a +?+的通项公式,最后再求数列{}n a 的通项公式。 六、对数变换法

例 已知数列{}n a 满足5

123n n n a a +=??,17a =,求数列{}n a 的通项公式。

评注:本题解题的关键是通过对数变换把递推关系式5123n n n a a +=??转化为

1lg 3lg 3lg 2lg 3lg 3lg 2

lg (1)5(lg )41644164n n a n a n ++

+++=+++,从而可知数列lg 3lg 3lg 2{lg }4164n a n +++是等比数列,进而求出数列lg 3lg 3lg 2

{lg }4164n a n +++的通项

公式,最后再求出数列{}n a 的通项公式。 七、迭代法

例 已知数列{}n a 满足3(1)2115n

n n n

a a

a ++==,,求数列{}n a 的通项公式。

评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式3(1)2

1n

n n n

a a ++=两边取常用对数得1lg 3(1)2lg n

n n a n a +=+??,即

1

lg 3(1)2lg n n n

a n a +=+,再由累乘法可推知

(1)12

3!21

32

112

21

lg lg lg lg lg lg lg5lg lg lg lg n n n n n n n n n a a a a a a a a a a --??---=??

???=,从而1(1)3!2

2

5

n n n n n a --??=。

八、数学归纳法

例 已知数列{}n a 满足1122

8(1)8

(21)(23)9

n n n a a a n n ++=+

=++,,求数列{}n a 的通项公式。 解:由122

8(1)

(21)(23)n n n a a n n ++=+

++及1

89a =,得。。。。。。 由此可猜测22(21)1

(21)n n a n +-=+,往下用数学归纳法证明这个结论。

(1)当1n =时,212

(211)18

(211)9

a ?+-==?+,所以等式成立。 (2)假设当n k =时等式成立,即22

(21)1

(21)k k a k +-=+,则当1n k =+时,

122

8(1)

(21)(23)k k k a a k

k ++=+

++。。。。。。

由此可知,当1n k =+时等式也成立。

根据(1),(2)可知,等式对任何*

n N ∈都成立。 九、换元法

例 已知数列{}n a 满足111

(14116

n n a a a +=

++=,,求数列{}n a 的通项公式。

解:令n b =2

1(1)24

n n a b =- 故2111(1)24n n a b ++=

-

,代入11(1416

n n a a +=++得。。。。。。即22

14(3)n n b b +=+ 因为0n b =≥,故10n b +=≥则123n n b b +=+,即113

22

n n b b +=+, 可化为11

3(3)2

n n b b +-=

-,

所以{3}n b -

是以13332b -===为首项,以2

1

为公比的等比数列,因此1

21132()

()2

2n n n b ---==,则21()32n n b -=+

21

()32

n -=+,得 2111

()()3423

n n n a =

++。 十、构造等差、等比数列法

① q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12. 例 已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式. 【解析】∴)3(231+=++n n a a ∴.3224311-=??=++-n n n n a a 【反思归纳】递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法: ①令)(1λλ-=-+n n a p a ;

② 在q pa a n n +=+1中令p

q

x x a a n n -=

?==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a . 例 已知数列{}n a 中,n n n a a a 32,111+==+,求数列{}n a 的通项公式. 【解析】 n n n a a 321+=+,∴

n

n n n n a a )23(2211+=-+,令n n n b a =-1

2 ∴112211)()()(b b b b b b b b n n n n n +-++-+-=--- 2)2

3

(2-?=n ∴n n n a 23-=

【反思归纳】递推关系形如“n n n q pa a +=+1”通过适当变形可转化为: “q pa a n n +=+1”或“n n n n f a a )(1+=+求解. 十一、不动点法

例 已知数列{}n a 满足1172

223

n n n a a a a +-=

=+,,求数列{}n a 的通项公式。

解:令7223x x x -=

+,得2

2420x x -+=,则1x =是函数31()47

x f x x -=+的不动点。 因为17255

112323

n n n n n a a a a a +---=

-=++,所以

2111()()3423

n n n a =

++。

n b ,使得所给递推关系式转化

113

22

n n b b +=

+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式。

四、数列求和的基本方法和技巧

一、利用常用求和公式求和 1、 等差数列求和公式:d n n na a a n S n n 2

)

1(2)(11-+=+=

2、等比数列求和公式:?????≠--=--==)

1(11)1()1(111

q q q a a q q a q na S n n

n

前n 个正整数的和 2

)

1(321+=

++++n n n 前n 个正整数的平方和 6)

12)(1(3212222++=

++++n n n n

前n 个正整数的立方和 2

3333]2

)1([321+=++++n n n 公式法求和注意事项 (1)弄准求和项数n 的值;

(2)等比数列公比q 未知时,运用前n 项和公式要分类。

例 已知3

log 1log 23-=

x ,求???++???+++n

x x x x 32的前n 项和. 例 设S n =1+2+3+…+n ,n ∈N *,求1

)32()(++=

n n

S n S n f 的最大值.

∴ 1

)32()(++=

n n

S n S n f = =n n 64341++=50

)8(12+-n n 501≤

∴ 当

8

8

-

n ,即n =8时,501)(max =n f

二、错位相减法求和

这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比

q ;

然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和。

例:(2009全国卷Ⅰ理)在数列{}n a 中,1111

1,(1)2

n n n n a a a n ++==++

(I )设n n a

b n

=,求数列{}n b 的通项公式(II )求数列{}n a 的前n 项和n S

分析:(I )由已知有1112n n n a a n n +=++11

2

n n n b b +∴-=

利用累差迭加即可求出数列{}n b 的通项公式: 1122

n n b -=-(*

n N ∈)

(II )由(I )知122n n n a n -=-,∴n S =11(2)2n k k k k -=-∑111(2)2n n

k k k k

k -===-∑∑

1

(2)(1)n

k k n n ==+∑,又11

2n

k k k

-=∑

是一个典型的错位相减法模型, 易得

11

12

42

2n

k n k k n --=+=-∑ ∴n S =(1)n n +1242n n -++- 三、

倒序相加法求和

这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.

例 求证:n n

n n n n n C n C C C 2)1()12(53210+=++???+++

证明: 设n n

n n n n C n C C C S )12(53210++???+++= 0

113)12()12(n

n n n n n n C C C n C n S ++???+-++=- ∴ n n n S 2)1(?+=

四、分组法求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231

,,71,41,

1112-+???+++-n a a a n ,… 解:设)231

()71()41()11(12-++???++++++=-n a a a S n n

)23741()1

111(12-+???+++++???+++=-n a

a a S n n

当a =1时,2)13(n n n S n -+==2

)13(n

n +

当1≠a 时,2)13(11

1n n a

a S n n -+--

==2)13(11n n a a a n -+---

例:(2010全国卷2文)(18)(本小题满分12分)已知{}n a 是各项均为正数的等比数列,且1212112(

)a a a a +=+,345345

111

64()a a a a a a ++=++ (Ⅰ)求{}n a 的通项公式;(Ⅱ)设2

1()n n n

b a a =+

,求数列{}n b 的前n 项和n T 。 五、裂项法求和

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:

(1))()1(n f n f a n -+= (2)

n n n n tan )1tan()

1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))1

21

121(211)12)(12()2(2+--+=+-=n n n n n a n

(5)])

2)(1(1

)1(1[21)2)(1(1++-+=+-=n n n n n n n a n

(6)

n

n

n n n n n n S n n n n n n n n n a 2)1(1

1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++=

-则 例 求数列

???++???++,1

1,

,3

21,

2

11n n 的前n 项和.

n n n n a n -+=++=

111 则 1

13

212

11+++???++++=

n n S n =11-+n

例 在数列{a n }中,11211++???++++=

n n n n a n ,又1

2

+?=n n n a a b ,求数列{b n }的前n 项的和.

解: ∵ 2

11211n

n n n n a n =++???++++=

∴ )11

1(82

122+-=+?=

n n n n b n

)]1

1

1()4131()3121()211[(8+-+???+-+-+-=n n S n = 18+n n

六、合并法求和

针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .

例 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.

解:设S 2002=2002321a a a a +???+++

2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a

∵ 0665646362616=+++++++++++k k k k k k a a a a a a

S 2002=2002321a a a a +???+++ =46362616+++++++k k k k a a a a =5

例 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

解:设1032313log log log a a a S n +???++=

由等比数列的性质 q p n m a a a a q p n m =?+=+

)log (log )log (log )log (log 6353932310313a a a a a a S n ++???++++= =10

七、利用数列的通项求和

先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.

例 求

1

1111111111个n ???+???+++之和. 解:由于)110(9199999111111

1

-=????=???k

k k

个个 ∴

1

1111111111个n ???+???+++ = =9

110)110(1091n

n ---?

=)91010(8111n n --+

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

最全高考复习数列专题及练习答案详解

高考复习数列专题: 数 列(参考答案附后) 第一节 数列的概念与数列的简单表示 一、选择题 1.已知数列{}a n 对任意的p ,q ∈N * 满足a p +q =a p +a q ,且a 2=- 6,那么a 10=( ) A .-165 B .-33 C .-30 D .-21 2.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1 n ),则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 3.若数列{a n }的前n 项积为n 2 ,那么当n ≥2时,{a n }的通项公式为( ) A .a n =2n -1 B .a n =n 2 C .a n = n +12 n 2 D .a n = n 2n -1 2 4.在数列{a n }中,a n +1=a n +2+a n ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 5.已知数列{a n }中,a n =n -79n -80 (n ∈N *),则在数列{a n }的前50 项中最小项和最大项分别是( ) A .a 1,a 50 B .a 1,a 8 C .a 8,a 9 D .a 9, a 50 二、填空题 6.若数列{}a n 的前n 项和S n =n 2 -10n (n =1,2,3,…),则此数

列的通项公式为________;数列{}na n 中数值最小的项是第__________项. 7.数列35,12,511,37,7 17,…的一个通项公式是 ___________________________. 8.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =__________. 三、解答题 9.如果数列{}a n 的前n 项和为S n =3 2a n -3,求这个数列的通项 公式. 10.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N + )在函数y =x 2 +1的图象上. (1)求数列{a n }的通项公式; (2)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2 n +1.

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

数列·例题解析

数列·例题解析 【例1】 求出下列各数列的一个通项公式 (1)14(2)23,,,,,…,,,,…38516732964418635863 (3)(4)12--13181151242928252 ,,,,…,,,,… 解 (1)所给出数列前5项的分子组成奇数列,其通项公式为2n -1,而前5项的分母所组成的数列的通项公式为2×2n ,所以,已知数列的 通项公式为:.a =2n 12 n n+1- (2)从所给数列的前四项可知,每一项的分子组成偶数列,其通项公式为2n ,而分母组成的数列3,15,35,63,…可以变形为1×3,3×5,5×7,7×9,…即每一项可以看成序号n 的(2n -1)与2n +1的积,也即(2n -1)(2n +1),因此,所给数列的通项公式为: a n n n n =-+22121()() . (3)从所给数列的前5项可知,每一项的分子都是1,而分母所组成的数列3,8,15,24,35,…可变形为1×3,2×4,3×5,4×6,5×7,…,即每一项可以看成序号n 与n +2的积,也即n(n +2).各项的符号,奇数项为负,偶数项为正.因此,所给数列的通项公式为: a n n n n =-+()() 112·. (4)所给数列可改写为,,,,,…分子组成的数列为124292162252 1,4,9,16,25,…是序号n 的平方即n 2,分母均为2.因此所 给数列的通项公式为.a =n n 2 2 【例2】 求出下列各数列的一个通项公式.

(1)2,0,2,0,2,… (2)10000,,,,,,,, (131517) (3)7,77,777,7777,77777,… (4)0.2,0.22,0.222,0.2222,0.22222,… 解 (1)所给数列可改写为1+1,-1+1,1+1,-1+1,…可以看作数列1,-1,1,-1,…的各项都加1,因此所给数的通项公式a n =(-1)n+1+1. 所给数列亦可看作2,0,2,0…周期性变化,因此所给数列的 通项公式为奇数为偶数这一题说明了数列的通项公式不唯一.a =2(n )0(n )n ??? (2)100012345所给数列,,,,,,,…可以改写成,,,,,,…分母组成的数列为,,,,,,,…是自然13151711021304150617 67 数列n ,分子组成的数列为1,0,1,0,1,0,…可以看作是2, 02020,,,,,…的每一项的构成为,因此所给数列的通项公式为.1211211211()()-+=-+++n n n a n (3)7777777777777779所给数列,,,,,…可以改写成×,79 7979797979 79797979 79 ×,×,×,×…,可以看作×-,×-,×-,×-,×-,…因此所给数列的通项公式为-.99999999999999(101)(1001)(10001)(100001)(1000001)a = (101)n n (4)所给数列0.2,0.22,0.222,0.2222,0.22222,…可以改写 成×,×,×,×,×,…可以看作×-,×-,×-,×-,×-,…因此所给数列的通式公式为.2929292929 2929292929 291110 0.90.990.9990.99990.99999(10.1)(10.01)(10.001)(10.0001)(10.00001)a =n ()-n

数列试题及答案

新课标人教版必修5高中数学 第2章 数列单元检测试卷 1. 已知等差数列}{n a 的前n 项和为S n ,若854,18S a a 则-=等于 ( ) A .18 B .36 C .54 D .72 2. 已知{}n a 为等差数列,{}n b 为等比数列,其公比1≠q ,且),,3,2,1(0n i b i =>,若 1 1b a =, 11 11b a =,则 ( ) A .66b a = B .66b a > C .66b a < D .66b a >或66b a < 3. 在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列的前13项之和为 ( ) A .156 B .13 C .12 D .26 4. 已知正项等比数列数列{a n },b n =log a a n , 则数列{b n }是 ( ) A 、等比数列 B 、等差数列 C 、既是等差数列又是等比数列 D 、以上都不对 5. 数列{}n a 是公差不为零的等差数列,并且1385,,a a a 是等比数列{}n b 的相邻三项,若 52=b ,则n b 等于 ( ) A. 1)35(5-?n B. 1 )35(3-?n C.1)53(3-?n D. 1 )5 3(5-?n 6. 数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项的值是 ( ) A. 42 B.45 C. 48 D. 51 7. 一懂n 层大楼,各层均可召集n 个人开会,现每层指定一人到第k 层开会,为使n 位开 会人员上下楼梯所走路程总和最短,则k 应取 ( ) A. 21n B.21(n—1) C.2 1 (n+1) D.n为奇数时,k=21(n—1)或k=21(n+1),n为偶数时k=2 1 n 8. 设数列{}n a 是等差数列,26,a =- 86a =,S n 是数列{}n a 的前n 项和,则( ) A.S 4<S 5 B.S 4=S 5 C.S 6<S 5 D.S 6=S 5 9. 等比数列{}n a 的首项11a =-,前n 项和为,n S 若32 31 510=S S ,则公比q 等于 ( ) 11 A. B.22 - C.2 D.-2 10. 已知S n 是等差数列{a n }的前n 项和,若S 6=36,S n =324,S n -6=144(n >6),则n 等于 ( ) A .15 B .16 C .17 D .18 11. 已知80 79--= n n a n ,(+∈N n ),则在数列{n a }的前50项中最小项和最大项分别是 (

高中数列经典习题(含答案)讲解学习

高中数列经典习题(含 答案)

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除. 2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由. 3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值. 4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S . 5、已知数列{n a }的前n 项和3 1=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和. 6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设 2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 1 1+n m ,…也成等差数列. 7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根, 当a 1=2时,试求c 100的值. 8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.

高三数学数列专题训练(含解析)

数列 20.(本小题满分12分) 已知等差数列{}n a 满足:22,5642=+=a a a ,数列{}n b 满足n n n na b b b =+++-12122 ,设数列{}n b 的前n 项和为n S 。 (Ⅰ)求数列{}{}n n b a ,的通项公式; (Ⅱ)求满足1413<

(1)求这7条鱼中至少有6条被QQ 先生吃掉的概率; (2)以ξ表示这7条鱼中被QQ 先生吃掉的鱼的条数,求ξ的分布列及其数学期望E ξ. 18.解:(1)设QQ 先生能吃到的鱼的条数为ξ QQ 先生要想吃到7条鱼就必须在第一天吃掉黑鱼,()177 P ξ== ……………2分 QQ 先生要想吃到6条鱼就必须在第二天吃掉黑鱼,()61667535 P ξ==?= ……4分 故QQ 先生至少吃掉6条鱼的概率是()()()1166735P P P ξξξ≥==+== ……6分 (2)QQ 先生能吃到的鱼的条数ξ可取4,5,6,7,最坏的情况是只能吃到4条鱼:前3天各吃掉1条青鱼,其余3条青鱼被黑鱼吃掉,第4天QQ 先生吃掉黑鱼,其概率为 64216(4)75335P ξ==??= ………8分 ()6418575335 P ξ==??=………10分 所以ξ的分布列为(必须写出分布列, 否则扣1分) ……………………11分 故416586675535353535 E ξ????= +++=,所求期望值为5. (12) 20.∵a 2=5,a 4+a 6=22,∴a 1+d=5,(a 1+3d )+(a 1+5d )=22, 解得:a 1=3,d=2. ∴12+=n a n …………2分 在n n n na b b b =+++-1212 2 中令n=1得:b 1=a 1=3, 又b 1+2b 2+…+2n b n+1=(n+1)a n+1, ∴2n b n+1=(n+1)a n+1一na n . ∴2n b n+1=(n+1)(2n+3)-n (2n+1)=4n+3,

数列综合练习题以及答案解析

数列综合练习题 一.选择题(共23小题) 1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是() A.[,4)B.(,4)C.(2,4) D.(1,4) 2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞) 3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值() A.恒为正数B.恒为负数C.恒为0 D.可正可负 4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于() A.2 B.lg50 C.10 D.5 5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是() A.2 B.4 C.6 D.8 6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为() A.B.C.D. 7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=() A.B.C.D.

8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是() A.(π,)B.[π,]C.[,]D.(,) 9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数: ①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|, 则其中是“等比函数”的f(x)的序号为() A.①②③④B.①④C.①②④D.②③ 10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是() A.③④B.①②④C.①③④D.①③ 11.已知数列{a n}满足a1=1,a n+1=,则a n=() A.B.3n﹣2 C.D.n﹣2 12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于() A.﹣B.﹣C.﹣D.﹣ 13.如果数列{a n}是等比数列,那么() A.数列{}是等比数列B.数列{2an}是等比数列 C.数列{lga n}是等比数列D.数列{na n}是等比数列 14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D. 15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则() A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C) 16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()

数列练习题(含答案)

数列测试题(答案在底部) (本测试共18题,满分100分,时间80分钟) 日期 姓名 得分 一、填空题:(共十小题,每题4分,共40分) 1. 数列{n a }的通项公式是41n a n =-,n s 为前几项和,若数列为等差数列,则实数t=__________. 2.。的等比中项为和_______27log 4log 89 3.223233(33)(333)(3333)_____________n n n S S =+++++++++++=L L 已知,则。 4.在等差数列n a {}中,当()r s a a r s =≠时,n a {}必定是常数数列,然而在等比数列n a {}中,对某些正整数r 、s (r s ≠)时,当r s a a =时,数列n a {}不是常数列的一个例子是__________________________________________________。 5. 定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列{n a }是等和数列且1a =2,公和为5,那么这个数列的前n 项和的计算公式为n S =__________________。 6.设数列{n a }的通项公式是2n a n c =+(c 是常数),且2468102 30,a a a a a ++++=则{n a }的前n 项和的最小值为_________. 7.数列2,5,11,20,x ,47,…中x 等于___________。 8.在100以内能被3整除但不能被7整除的所有自然数的和等于_________。 9.某流感病毒是寄生在宿主的细胞内的,若该细胞开始时2个,记为02a =,它们按以下规律进行分裂,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,,3小时后分裂成10个并死去1个,……记n 小时后细胞的个数为n a ,则n a =___________(用n 表示)。 10.已知一个数列n a {}的各项是1或3两个数值。首项为1,且在第K 个1和第K+1个1之间有(2K-1)个3,即1,3,1,3,3,3,1,3,3,3,3,3,1,…….则第12个1为该数列的第_________项。 二、选择题:(共四小题,每题4分,共16分) 11.等差数列等于,则中,若8533 5,53}{S S S a n ==( )

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

(完整版)数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

2020年高考数学 大题专项练习 数列 三(15题含答案解析)

2020年高考数学 大题专项练习 数列 三 1.已知数列{a n }满足a n+1=λa n +2n (n ∈N *,λ∈R),且a 1=2. (1)若λ=1,求数列{a n }的通项公式; (2)若λ=2,证明数列{n n a 2 }是等差数列,并求数列{a n }的前n 项和S n . 2.设数列{}的前项和为 .已知=4,=2+1,.(1)求通项公式 ;(2)求数列{}的前项和. 3.已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,数列{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19. (1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n .

4.设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式; (2)设数列{b n }的通项公式为b n =,问:是否存在正整数t ,使得b 1,b 2,b m (m≥3,m an an +t ∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 5.已知数列满足:,。数列的前n 项和为,且 .⑴求数列、的通项公式;⑵令数列满足,求其前n 项和为 6.已知{a n }是递增数列,其前n 项和为S n ,a 1>1,且10S n =(2a n +1)(a n +2),n ∈N *. (1)求数列{a n }的通项a n ; (2)是否存在m ,n ,k ∈N *,使得2(a m +a n )=a k 成立?若存在,写出一组符合条件的m ,n ,k 的值;若不存在,请说明理由.

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22 n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解: 22(1)4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时 当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 三、累加法

数列例题(含答案)

1.设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2a n+1. (1)求数列{a n}的通项公式; (2)设数列{bn}的前n项和为T n且(λ为常数).令c n=b2n(n∈N*)求数列 {cn}的前n项和Rn. 【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由a2n=2a n+1,取n=1,得a2=2a1+1,即a1﹣d+1=0① 再由S4=4S2,得,即d=2a1② 联立①、②得a1=1,d=2. 所以a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1; (2)把an=2n﹣1代入,得,则. 所以b1=T1=λ﹣1, 当n≥2时,=. 所以,. R n=c1+c2+…+cn=③ ④ ③﹣④得:= 所以; 所以数列{cn}的前n项和. 2.等差数列{an}中,a2=4,a4+a7=15. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值. 【解答】解:(Ⅰ)设公差为d,则,

解得, 所以an=3+(n﹣1)=n+2; (Ⅱ)bn=2+n=2n+n, 所以b1+b2+b3+…+b10=(2+1)+(22+2)+…+(210+10) =(2+22+…+210)+(1+2+…+10) =+=2101. 3.已知数列{log2(a n﹣1)}(n∈N*)为等差数列,且a1=3,a3=9. (Ⅰ)求数列{an}的通项公式; (Ⅱ)证明++…+<1. 【解答】(I)解:设等差数列{log2(an﹣1)}的公差为d. 由a1=3,a3=9得2(log22+d)=log22+log28,即d=1. 所以log2(an﹣1)=1+(n﹣1)×1=n,即a n=2n+1. (II)证明:因为==, 所以++…+=+++…+==1﹣<1,即得证. 4.已知{a n}是正数组成的数列,a1=1,且点(,an+1)(n∈N*)在函数y=x2+1的图象上. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)若列数{bn}满足b1=1,bn+1=b n+2an,求证:b n?b n+2

相关主题