搜档网
当前位置:搜档网 › 引风机失速分析

引风机失速分析

引风机失速分析
引风机失速分析

引风机失速分析

通过对内蒙古大唐托电5号炉引风机并列运行情况下失速问题的调研和分析,确定了风机失速的原因是烟气阻力增加,造成风机运行工况点落入不稳定区,提出了防止风机失速的措施。

标签:锅炉;引风机;失速

引言

进入冬季运行以来,由于燃料市场的原因,采购煤种的不稳定等原因,致使近一段时间所燃用煤种硫份含量偏高,造成三期空预器的堵灰加剧,5号机组负荷500MW时空预器差压已增大至2.7kPa左右,随之而来引风机失速频繁的发生。

1 引风机简介

2 失速异常处理

2.1 失速前工况

2.2 事故过程及处理

3 原因分析

3.1 引风机失速机理:对引风机应用机翼理论进行分析,由图3 可见,A为前缘点,B为后缘点,AB连线为翼弦,气流方向与翼弦的夹角称为冲角,气流在翼弦以下为正冲角,反之为负冲角。正常工况下正冲角很小,叶片受到升力F 和阻力Z如图1所示,气流流过翼型叶片保持流线形。当冲角增大至临界角时,叶片背面工况开始恶化,在翼型的上表面形成较大的扩压区,引起附面层与翼型分离,翼型上下表面压差减小,背部气流产生涡流,叶片升力F大大减小,阻力Z大大增加,使气体流动受阻,风机出力迅速减小或丧失,电流下降,振动大幅增加,此为“失速”。冲角越大,此现象越为明显。对多级风机而言,其叶片的叶型不尽相同,当某一级叶片首先发生失速时,如图所示,叶片2失速导致气流受阻分别流向叶片1和叶片3,此气流的混合导致叶片1的冲角变小;而叶片3的冲角变大,加剧了叶片3的失速,如此下去,失速现象向与叶片旋转方向相反的方向蔓延,导致整个叶轮失速。

3.2 空预器堵灰,引风机电流及静叶开度较正常情况下偏大,系统阻力增大,接近风机特性曲线不稳定区域运行。

3.3 烟气挡板总开度偏低,风道的阻力系数增加,管路特性曲线变陡,进入风机特性曲线不稳定区域。

喘振原因分析及对策

离心式鼓风机喘振原因分析及对策 离心式鼓风机在使用过程中发生的喘振现象,对喘振产生的原因和影响喘振的主要因素进行了分析,提出了判断喘振的方法,并总结了几种消喘振的解决方案,如采用变频器启动、采用出风管放气、降低生物池的污泥浓度、保证管路畅通改变鼓风机的“争风”状态、加强人员技能培训、定期维护保养等。 关键词:离心式鼓风机;喘振;对策 1喘振 1.1喘振产生的原因 在鼓风机运转过程中,当流量不断减少到最小值Qmin(喘振工况)时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动。当旋转脱离扩散到整个通道,会使鼓风机出口压力突然大幅下降,而管网中压力并未马上减低,于是管网中的气体压力就大于鼓风机出口处的压力,管网中的气体倒流向鼓风机,直到管网中的压力下降至低于鼓风机出口压力才停止。接着,鼓风机开始向管网供气,将倒流的气体压出去,使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以致无法工作,这就产生了喘振。 1.2影响喘振的主要因素 ①转速 离心式压缩机转速变化时,其性能曲线也将随之改变。当转速提高时,压缩机叶轮对气体所做的功将增大,在相同的容积流量下,气体的压力也增大,性能曲线上移。反之,转速降低则使性能曲线下移。随着转速的增加,喘振界限向大流量区移动。 ②管网特性 离心式鼓风机的工作点是鼓风机性能曲线与管网特性曲线的交点,只要其中一条曲线发生变化(如将鼓风机出口阀关小),工作点就会改变。管网阻力增大,其特性曲线将变陡,致使工作点向小流量方向移动。 ③进气状态 在实际生产中,进气压力过低、背压过高、进(排)气量忽然减少、进气温度过高、鼓风机转速忽然降低、机械故障、进口风道过滤网堵塞、生物池污泥浓度过高、曝气头堵塞、喘振报警装置失灵等都会引起鼓风机喘振。 2喘振的判断及消除 2.1喘振现象的判断 ①鼓风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也会发生很大的波动。

一次风机失速现象原因分析及处理措施

一次风机失速现象原因分析及处理措施 [摘要]本文对轴流式风机失速的机理进行了较为详细的探讨,阐述了实际运行中产生失速的原因,介绍了河北大唐王滩发电厂#1、#2机组锅炉一次风机的失速特性、失速原因,并从运行管理的角度提出了失速的相关预防措施和紧急处理方案。 [关键词]冲角;失速特性;现象;处理措施 风机的失速现象主要发生于轴流式风机。而一般情况下,大型火电机组锅炉的三大风机均为轴流式风机,失速时常常会引起振动,严重时威胁到机组的安全运行。河北大唐王滩发电厂#1、#2机组锅炉的吸风机为静叶可调轴流风机,送风机及一次风机为动叶可调式轴流风机,下面对风机在运行过程中的失速问题作简要分析。 1 失速产生的机理 1.1 失速的过程及现象 轴流风机的叶片均为机翼型叶片。风机处于正常工况时,叶片的冲角很小(气流方向与叶片叶弦的夹角即为冲角),气流绕过机翼型叶片而保持流线状态,如图1(a)所示。当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1(b)所示。冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。 风机的叶片在加工及安装过程中由于各种原因使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。如图2中,u是对应叶片上某点的周向速度,w是气流对叶片的相对速度,α为冲角。假设叶片2和3间的叶道23首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道12和34,从而改变了原来的气流方向,使流入叶道12的气流冲角减小,而流入叶道34的冲角增大。可见,分流结果使叶道12绕流情况有所改善,失速的可能性减小,甚至消失;而叶道34内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。这种现象继续进行下去,使失速所造成的堵塞区沿着与叶轮旋转相反的方向推进,即产生所谓的“旋转失速”现象。风机进入到不稳定工况区运行,叶轮内将产生一个到数个旋转失速区。叶片每经过一次失速区就会受到一次激振力的作用,从而可使叶片产生共振。此时,叶片的动应力增加,致使叶片断裂,造成重大设备损坏事故。 1.2 影响冲角大小的因素 王滩电厂的一次、送、吸风机都是定转速运行的,即叶片周向速度u是一定

引风机振动的原因

首先应该判断出是引风机风机在振动,还是由于拖动它的电机震动引起风机共振。 如果是由于电动机震动引起的则要检查电机: (1 )机械磨擦(包括定子、转子扫膛)。 (2 )单相运行,可断电再合闸,如不能起动,则可能有一相断电。 (3 )滚动轴承缺油或损坏。 (4 )电动机接线错误。 (5 )绕线转子异步电动机转子线圈断路。 (6 )轴伸弯曲。 (7 )转子或传动带轮不平衡。 (8 )联轴器松动。 (9 )安装基础不平或有缺陷。 如果是由于风机震动引起的则应检查: ①风机轴与电机轴不同心,联轴器装歪 ②机壳或进风口与叶轮摩擦 ③基础的钢度不牢固 ④叶轮铆钉松动或叶轮变形 ⑤叶轮轴盘与轴松动,或联轴器螺栓松动 ⑥机壳与支架、轴承箱与支架、轴承箱盖于座等联接螺栓松动 ⑦风机进出气管道安装不良 ⑧转子不平衡,引风机叶片磨损 风机振动原因分析及防治 工艺和维护几方面分析了可能导致风机振动的因素,提出多种措施,改善了风机作业状况、工作环境,有效的解决了风机振动问题,延长了风机 目前,安阳钢铁集团公司烧结厂四台28m2烧结机所配备的抽风机型号为D2800—11。由于设备老化、漏风率高,导致设备故障频繁。随着厚料层烧结生产操作的推广,为提高风量,1995年底经过对风机局部改造,使其抽风能力由原来的2500m3/min提高到2800m3/min,但未对大烟道、水封、除尘器等配套设施实施同步扩容改造,没有达到整个抽风系统的优化配置。由于受设备系统现状、工艺操作水平、风机维修维护多种因素影响,由风机振动引起的非计划检修频度直线上升,影响了整个烧结生产;由风机振动造成轴瓦、转子的频繁损坏,导致生产成本的增加。价值21万元(修旧转子10万元)的转子使用寿命仅为3-4个月,1998年最严重时4台风机一年更换了28个转子18对轴瓦。为此,从改善风机作业环境到风机本身的维护、安装多方面入手查找振动原因并进行了有效防治。 2 风机振动原因分析 根据风机的结构和作业特点,从理论上建立风机振动原因分解图,见图1。 通过对检修备案记录的分析并对照上面的原因分解图,不难得出造成风机振动的五个主要因素有:进入风机人口的粉尘量大、风温低、磨损、安装精度低、风机进入喘振区域。 2.1 风机入口的粉尘量大

火电厂锅炉引风机抢风的影响因素及解决措施探讨

火电厂锅炉引风机抢风的影响因素及解决措施探讨 引风机是锅炉烟风道系统中的重要组成部分,对于锅炉的高效运行具有重要的意义,进而影响到火电厂的经济效益。一旦引风机发生抢风现象,不仅会对系统内设备本身造成一定的损害,同时严重影响到锅炉的运行状态,甚至会引发安全事故,为火电厂的安全稳定运行带来巨大的威胁。文章对于影响火电厂锅炉引风机抢风的因素进行了分析,进而提出了解决的措施,对于提高锅炉引风机运行的稳定性具有重要的意义。 标签:火电厂;锅炉引风机;抢风;因素;解决措施 引风机是火电厂中的一种大型回转设备系统,其主要是依靠机械能提高气体压力并且排送气体,从而为烟风系统的高效运行提供充足的动力,对火电厂的高效生产创造了有利的条件。在引风机运行的过程中,由于烟囱的通风能力不佳、空气预热器堵塞、锅炉运行参数不达标以及其他设备的运行状态不正常等,都会导致引风机发生抢风现象,从而降低运行效率,并且对相关设备产生不利影响。经过调查分析,在大多数火电厂中的锅炉引风机都存在抢风现象,所以为了保证设备运行的稳定性和安全性,要对其影响因素进行分析,进而制定出完善的解决措施,降低引风机抢风现象的发生几率,为火电厂的高效运行创造有利的条件。 1 锅炉引风机发生抢风的常见因素 1.1 烟囱通风能力减弱 烟囱的通风能力对引风机的运行状态会有一定程度的影响,烟囱为竖向结构,所以通风能力由其自身产生,并且向上。在增压风机运行的过程中,所产生的压力会降低烟囱的通风能力,加之其自身也存在的一定的阻力,所以通风能力就会下降。在锅炉运行负荷以及排烟温度降低到一定程度时,整个管网的阻力会随之上升,而管网阻力的特性曲线受到破坏时,就会导致引风机发生抢风现象。 1.2 空气预热器出现阻塞 当引风机的出风管道偏离风机的工作区域时,其工作效率就会下降,进而影响到锅炉的出力状况,烟气在水平烟道中的流动速度会降低,长此以往,烟道中会积存大量的灰尘,从而造成空气预热器堵塞,导致引风机抢风。 1.3 锅炉运行参数与引风机设计参数不符 为了确保锅炉的正常运行,需要使用适宜的引风机,在各方面的参数一定要相符。如果引风机与锅炉运行的设计参数不匹配,引风机所选的型号越大,其所产生的风压以及风量就会越大,当供风量超出了锅炉所需的范围时,锅炉的烟风系统无法承受这种压力和风量,引风机的风速就会失控从而导致抢风现象。而在锅炉运行负荷较小时,处于并联状态的两台引风机和失速区的距离就会更接近,

引风机振动增大原因的诊断与处理示范文本

文件编号:RHD-QB-K6229 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 引风机振动增大原因的诊断与处理示范文本

引风机振动增大原因的诊断与处理 示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1台300 MW机组锅炉配备2台型号为 AN25eb、静叶可调轴流式引风机。该风机自投运以来,因振动超标等问题采取过一些措施,但风机振动特性仍表现在空载或低负荷运行时振动小,在高负荷、满负荷时振动增大现象,且多次被迫降负荷或停风机处理,振动威胁着机组安全经济运行。 1 振动诊断 1.1 原因分析 (1) 引风机振动,一般来说其振动源应该来自风机本身,如转动部件材料的不均匀性;制造加工误差

产生的转子质量不平衡;安装、检修质量不良;锅炉负荷变化时引风机运行调整不良;转子磨损或损坏,前、后导叶磨损、变形;进出口挡板开度调节不到位;轴承及轴承座故障等,都可使引风机在很小的干扰力作用下产生振动。 但由于采取了一系列相应的处理措施,如风机叶轮和后导叶进行了防磨处理,轴承使用进口优质产品,轴承箱与芯筒端板的连接高强螺栓采取了防松措施,对芯筒的支承固定进行了改进,还增加了拉筋;严格检修工艺质量,增加引风机运行振动监测装置等,解决了一些实际问题,风机低负荷运行良好,但高负荷振动增大现象仍未能解决。 (2) 该风机在冷态下启动升至工作转速和低负荷时振动小,说明随转速变化由转子质量不平衡引起振动的问题影响不大;从风机振动频谱分析看出风机振

一次风机失速事件分析

一次风机失速事件分析

2011年6月11日#1机组B一次风机失速异常事件一事件前运行工况: 1、#1机组负荷413MW,A、B、C、D、F磨运行。总煤量为262吨,一次风母管压力为9.37kpa,B一次风机出口压力11.827KPa ,B一次风机电流130A,动叶开度61%;A一次风机电流125.3A,动叶开度59.6%,风机出口压力11.66KPa。六台磨风量总和为477吨/小时。 2、E磨备用。E磨冷风门开度13%、热风调整门、气动门、锁紧门关闭状态,E磨通风流量8.4t/h,入口风压0.31KPa。 3、A磨为烟煤,煤量58 t/h、风量91.4t/h、入口风压8.54KPa。 B磨为褐煤,煤量50 t/h、风量93.1 t/h、入口风压8.54KPa。 C磨为褐煤,煤量为57 t/h、风量为93.4 t/h、入口风压 8.49KPa。D磨为褐煤,煤量为48 t/h、风量为94.0 t/h、 入口风压8.53KPa。F磨为褐煤,煤量为50 t/h、风量为96.6 t/h、入口风压8.59KPa。 二、事件经过: 1、10时04分,B一次风机失速 (1)机组长王虎立即汇报值长,值长刘学会令解AGC、解协调,减负荷,投入上排、中排油枪增加锅炉热负荷、稳燃; (2)主值班员石伟解除A、B一次风机自动,手动并列一次风机。2、10时05分B磨跳闸( B磨跳闸原因为:失去煤火检) (1)立即启动E磨煤机运行; (2)同时将B磨跳闸首出复位后并提升磨辊,使其具备启动条件。

9、10时16分机侧汽温降至480℃,值长刘学会令开启各蒸汽管道和气缸疏水;并派人到就地检查机侧各蒸汽管道无异常,机组振动、胀差均正常。 10、10时17分一次风机并入正常运行。 11、10时18分主汽温度降低到最低430℃。 12、10时20分主汽温度升高到460℃。 13、10时29分主汽温度升高到529℃,负荷恢复到360MW. 机组各参数逐渐恢复正常运行。 三、原因分析 1.B一次风机第一次失速的原因: (1)E磨停止运行后没有按规定通风,而E磨冷风入口又靠近B一次风机出口,所以E磨停止通风使B一次风机出口阻力增加流量降低,一次风母管压力未发生变化情况下,一次风流量由508.5吨/小时,降至497.3吨/小时(2)在风机失速前运行的磨煤机一次风流量均有不同程度的降低(风量由100t/h左右降至93t/h左右,六台磨煤机总一次风量由497.3吨/小时降至477吨/小时),磨煤机出入口压差均有不同程度的升高,通过这两点说明在风机失速前磨已有轻微堵煤现象发生,使一次风系统通风阻力增大。两项因素的共同作用,在一次风机出力随机组负荷变化而进行调整时,使B一次风机运行工况进入失速区而发生失速。 2.B一次风机第二次失速的原因: (1)在处理第一次风机失速时,没有及时解炉主控将各磨的煤量降

风机产生振动的原因及处理方法

风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是中国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,风力发电机。那么风机会出现振动的原因和解决办法有哪些呢? 风机产生振动的原因及解决方法 1.叶轮与主轴配合间隙过大引起的振动,其主要原因是叶轮在制作加工过程中加工精度有误差,轴头出现椭圆,导致配合接触面减少,有原来的面接触变成了点接触。还有在修复过程中检修人员用细砂纸打磨轴头,多次修复后,导致主轴头与叶轮配合间隙过大。 解决方法:叶轮与主轴配合间隙过大引起的振动,对于新轴要依据图纸进行校核,确保达到叶轮与轴的配合间隙,叶轮轴孔与轴之间为过盈配合,紧力为0.01-0.05mm。另外风机正常运行期间尽量减少检修次数,由于每次检修对于风机主轴都存在一定的磨修,这样一来多次的修复会造成主轴的累积磨损,使主轴轴颈明显变细,达不到

孔与轴的过盈配合要求。还有叶轮与主轴安装完毕后,轴头用于锁紧叶轮的锁母必须紧固到位,一旦出现松动会造成风机振动加剧上升。 2.叶轮本身不平衡所引起的振动,其产生的原因有:叶轮上的零部件松动、变化、变形或产生不均匀的腐蚀、磨损;工作介质中的固体颗粒沉积在转子上;检修中更换的新零部件重量不均匀;制造中叶轮的材质不绝对匀称;加工精度有误差、装配有偏差等。叶轮本身不平衡,叶轮不平衡可分为动不平衡(力偶不平衡)和静不平衡(力矩不平衡)两种。 解决方法:消除动不平衡的方法是:拆除风机转子,利用动平衡机对转子进行平衡找平,通过平衡机找平的转子,动、静不平衡基本可以得到根除。静不平衡可在现场利用三点平衡法进行找平。 3.主轴发生弯曲,其主要原因是风机长期处于停用状态,主轴叶轮在自重的作用下,发生弯曲变形。这种情况经常出现在正常运转的风机停用后,,再次启机时,出现风机振动超标的现象。再者主轴局

引风机抢风原因分析

关于我厂#2炉引风机抢风原因分析及个人处理意见 引言:近期我厂#2炉频繁出现引风机抢风现象,运行人员都根据轴流式风机的工作特性经精心调整后恢复正常,未发生事故.我在夜班期间应姚主任令,进行了一下分析.由于本人水平有限且不是当事人分析如下,仅供参考 一. 我查了一下最近四次引风机抢风前后工况如下表 二. 抢风现象 当两台引风机进入抢风区域后,风机电流大幅波动最大可达几十安,在把引风机出力调平过程中,多次出现两引风机出力互换,电流互换,工作点互换的情况,并伴随负压的波动.区别于#1炉引风机出现过的喘震,负压的波动没有周期性,应不属于共振.虽然抢风可以引起喘震,就以上四次现象分析,并未发生喘震. 三. 原因分析 1. 两台风机并列运行,风机的实际运行状态不仅取决于其本体的性能,还取决于整个管路的特性,风机的工作点即是风机性能曲线与风道特性曲线的交点.当风道的特性曲线与两台风机的合成性能曲线交于驼峰点后时,可形成稳定工况,若与性能曲线交于驼峰前,则进入抢风区,两个风机的工作点受到扰动就会互换. 2. 造成风机进入抢风区的最常见的原因就是风道的阻力系数增加,管路特性曲线变陡我厂风机在低负荷时发生抢风就属于这个原因 3. 我厂#2炉的空预器堵灰严重是造成管道阻力增加而抢风的重要原因.但我认为这几次引风机抢风的主要原因在于引风机后的烟道受阻即脱硫问题.原因如下: A. 此几次抢风均发生于脱硫旁路烟气挡板全关或正在关的状态下, B. 在引风机出口烟气压力不低于-300PA(31日三值早班)我将引风机开至接近各个抢风情况下的开度,未发生抢风现象.切通过调历史曲线抢风均发生于引风机出口烟气压力较低值 C. 由于空预器堵造成的空预器两侧二次风差压增加在低负荷较#1机约大0.2KPA,而次几次抢风前引风机出口压力值较正常高出约0.3KPA. 四. 防范措施 1. 加强脱硫管理,当旁路挡板全关,且#2炉处于低负荷时其增压风机的出力应保证不得使引风机出口负压低于一定值 2. 加强GGH管理防堵 3. 加强空预器吹灰 4. 利用停炉时间清洗空预器 5. 有些电厂对烟道进行改造,省煤器下设灰斗,定期放灰.布置我厂是否适合 6. 在此段时间若脱硫,空预器都无法满足要求,可以在低负荷降低风箱差压,来减少烟道阻力 五.结束语,综上是我对我厂#2炉引风机抢风原因分析及个人处理意见,希望领导能够对我的分析进行批评与指教 时间 3月29日04:16 3月30日06:01 3月29日00:48 3月28日22:46 抢风前稳定后抢风前稳定后抢风前稳定后抢风前稳定后 A引风机电流(A) 90 89 96 103 90 90 93 90 B引风机电流

引风机振动大分析

1B、2A引风机电机轴向振动分析 我厂引风机采用成都电力机械厂的Y A15236-8Z型静叶可调轴流风机,电机为湘潭电机厂的YKK710-6W型空冷电机,电机功率为2240KW,额定电流为267A 转速为980rpm。2012年4月份发现2A引风机电机和1B引风机电机轴向间歇性振动大,最大达20S。 2012年6月份将风机振动测点安装至电机轴向进行实时监测,根据监测数据分析显示电机轴向振动波动频繁。 联系热控从DCS画面中调取了11日至24日1B及2A轴向振动、负荷、电流、风机静叶开度、排烟温度、引风机入口压力、空预器进出口烟气压差曲线图,由生技部电气、锅炉配合分析。从调取的曲线中未发现振动与运行工况变化有明显的关系。以下是几个振动波动明显的曲线图: 1B曲线图 图1 图1:2012.06.11 14:30-16:00 1B引风机轴向振动,其他工况正常。排烟温度:137℃。

图2 图3 图2,3:2012.06.11 21:38-06.12 23:14 1B引风机长时间轴向振动大,其他 工况无明显异常。排烟温度:135摄氏度。

图4 图4:2012.06.13 22:20 1B引风机轴向振动突然减小后又增大,从曲线分析由于功率波动导致引风机电流波、引风机烟气入口压力、空预器进出口压差、引 风机静叶反馈波动。排烟温度132℃。 图5 图5:2012.06.19 09.40.00左右轴向震动从4mm/S在缓慢下降至3mm/S 后突升至6mm/S,然后开始缓慢下降。此时空预器烟气压差、引风机电流、负荷从小到大,随后下降。但电机轴向震动在此点出现缓降突升趋势。此时排烟温度 为137℃。

火电厂锅炉引风机抢风问题与应对措施

火电厂锅炉引风机抢风问题与应对措施 在火电厂的运行中,锅炉是其中最为基础、重要的设备,如果其中的引风机发生抢风的现象,则会直接影响锅炉的效率。对此,本文将深入研究火电厂锅炉引风机抢风问题及相应的应对措施。 标签:火电厂;锅炉;引风机;问题;对策 1火电厂锅炉引风机抢风问题 1.1设计参数 在火电厂运行中,如果引风机的风机有着过大的选型,就会增大风量和风压,导致抢风问题以及风机失速问题的出现。若引风机是两台并联运行,那么如果锅炉处于小负荷状态,就会导致工作点与失速区非常接近,如果在一定程度上改变了工况,导致抢风问题发生。 1.2脱硫系统无法正常工作 在火电厂锅炉的运行中,脱硫系统出现异常是锅炉引风机抢风的关键因素。当脱硫系统处于正常运行的状态时,增压风机能够将脱硫系统产生的阻力抵消掉,此时增压风机、锅炉引风机之间,形成了一种串联的关系。所以,如果增加风机出力明显大于脱硫系统时,那么增压风机就会对引风机产生助力作用,强化引风机的运行效果。反之,如果增加风机出力明显小于脱硫系统时,那么引风机就会对增压风机产生助力作用,影响平衡增压风机的运行效果,增加系统中管网的阻力,最终形成引风机抢风的问题。 1.3堵塞问题 通过实践研究表明,如果有堵塞问题出现于空气预热器中,那么风机工作区就不能够匹配引风管道系统的出力特性,会导致抢风问题出现在引风机中。引风机如果在空气预热器的作用下,出现了抢风问题,那么引风机就无法进行平衡的处理,会使引风机的工作效率降低,并且锅炉出力也受到了较大程度的影响,降低了水平烟道的烟气流速;出现了这种问题,如果不及时采取有效的处理措施,再继续长时间运行,就会导致更加严重的问题出现于烟道中,如飞灰沉积等等。 1.4漏风问题 对于火电厂的锅炉来说,其系统属于一个整体,要想强化引风机的运行功能,就必须在根本上提高系统的密闭性。但实际上,火电厂锅炉在运行中并不能避免漏风的问题,而出现这一现象是因为烟道设计、锅炉本体的设计存在诸多不合理的因素。当锅炉漏风时,其中的烟气就会出现体积膨胀的现象,使得烟气的流速提升。另外锅炉本身的漏风现象,还会使得炉膛的温度降低,在一定程度上影响

风机运行中常见故障原因分析及其处理

风机运行中常见故障原因分析及其处理方法
风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,是机 械热端最关键机械设备之一,虽然风机的故障类型繁多,原因也很复杂,但根据 经验实际运行中风机故障较多的是:轴承振动、轴承温度高、运行时异响等。 1 风机轴承振动超标 风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺 栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标 的原因较多, 如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事 半功倍的效果。 1.1 叶片非工作面积灰引起风机振动 这类缺陷常见现象主要表现为风机在运行中振动突然上升。 这是因为当气体 进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在 叶片的非工作面一定有旋涡产生, 于是气体中的灰粒由于旋涡作用会慢慢地沉积 在非工作面上。 机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转 离心力的作用将一部分大块的积灰甩出叶轮。 由于各叶片上的积灰不可能完全均 匀一致, 聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致 叶轮质量分布不平衡,从而使风机振动增大。 在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从 而减少风机的振动。 在实际工作中,通常的处理方法是临时停机后打开风机叶轮 外壳,检修人员进入机壳内清除叶轮上的积灰。 1.2 叶片磨损引起风机振动 磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片 磨损, 平衡破坏后造成的。 此时处理风机振动的问题一般是在停机后做动平衡校 正。 1.3 风道系统振动导致引风机的振动 烟、 风道的振动通常会引起风机的受迫振动。这是生产中容易出现而又容易 忽视的情况。风机出口扩散筒随负荷的增大,进、出风量增大,振动也会随之改 变,而一般扩散筒的下部只有 4 个支点,如图 2 所示,另一边的接头石棉帆布是 软接头,这样一来整个扩散筒的 60%重量是悬吊受力。从图中可以看出轴承座 的振动直接与扩散筒有关,故负荷越大,轴承产生振动越大。针对这种状况,在 扩散筒出口端下面增加一个活支点(如图 3),可升可降可移动。当机组负荷变 化时,只需微调该支点,即可消除振动。经过现场实践效果非常显著。该种情况 在风道较短的情况下更容易出现。

1000MW机组引风机失速原因分析及防范措施

1000MW机组引风机失速原因分析及防范措施 发表时间:2019-04-11T16:40:11.970Z 来源:《电力设备》2018年第30期作者:吴鹏刘敏 [导读] 摘要:电厂1000MW机组引风机发生失速现象、事故处理过程及原因,查找风机重要参数曲线,提出事故预想防范措施,提出保障机组风机安全运行的合理建议。 (国电浙能宁东发电有限公司宁夏银川市 753000) 摘要:电厂1000MW机组引风机发生失速现象、事故处理过程及原因,查找风机重要参数曲线,提出事故预想防范措施,提出保障机组风机安全运行的合理建议。 关键词:引风机;失速;事故处理;防范措施 某电厂3号机组2台引风机为成都电力机械厂的AP系列动叶可调轴流式通风机(HU27448-222G),针对该厂3号机组引风机A失速异常现象,通过查找引风机重要参数曲线,对事故处理过程及原因进行分析,对保障机组风机安全运行提出了防范措施,对国内同类型 1000MW机组引风机异常处理具有良好的借鉴意义。 1事故经过 2018年1月7日0∶18∶38,3号机升负荷至998MW,之后3号机组处于满负荷稳定过程,引风机动叶处于自动调节,炉膛负压约为-92Pa,此时A动叶开至最大为93%,电流为761.52A,B动叶开至90%,电流为796.6A,相差最大约为35A,且A动叶执行机构开至最大为93%。 1∶32∶18,引风机A动叶开至最大93%,电流为755.88A,B动叶开至93%,电流为839.56A,电流相差最大约为75A,且还有电流偏差增大的趋势。 1∶38∶23,引风机A失速报警发出。运行监盘人员发现引风机A电流由757.24A突降至541.39A,最大幅度达到210A。引风机B电流由846.12A突降至823.25A,电流仅降25A。送风机A从166.74A升至167.85A(最大升幅为1.1A),送风机B从161.49A升至162.37A(最大升幅为1.1A),送风机电流几乎无异常波动。 2引风机失速原因 2.1轴流风机失速 轴流风机性能曲线的左半部有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现不正常的空气动力工况则是旋转脱流或称旋转失速。这两种不正常工况是不同的,但是它们又有一定的关系。在其它因素都不变的情况下,轴流风机叶片前后的压差大小决定于动叶冲角的大小,在临界冲角值以内,上述压差大致与叶片的冲角成正比,不同的叶片叶型有不同的临界冲角值。翼型的冲角超过临界值时,气流会离开叶片凸面发生边界层分离现象,产生大面积的涡流,此时风机的全压下降,这种情况称为“失速现象”。 2.2风机失速的危害 对风机本身而言,若在失速区域长时间运行,将导致叶片断裂,且叶轮的机械部件也可能损坏。英国HOWDEN公司有明确规定:风机在失速区内累积运行时间不能超过15h,否则要更换叶片。对机组而言,若风机发生失速,造成风机跳闸,将直接联锁单侧通风组停止,机组减负荷;间接地引起炉膛正压或负压超限,锅炉发生MFT,联锁机组跳闸。因此,轴流风机运行中必须防止其发生失速。 2.3引风机失速现象 (1)负荷低于450MW运行时,在相同静叶开度情况下,两台引风机电流基本一致,风烟系统抗干扰能力较强,引风机自动调节可以正常投运。 (2)负荷高于450MW运行时,在相同静叶开度情况下,A引风机电流略高于B引风机,负荷越高偏差越大。 (3)450MW以上高负荷工况下,当B引风机电流高于A引风机运行时,A引风机易出现失速,同时B引风机出现明显抢风现象。600MW 工况失速时,A引风机电流由约240A陡降至约170A,而B引风机电流也由约240A陡升至约275A,炉膛负压剧烈波动,引风机自动调节退出。 3引风机失速后的处理方法 (1)当风机失速时,首先解列炉膛负压自动,控制另一台风机电流、振动和炉膛负压在规定范围内。 (2)为防止炉膛压力过高或风机电流过大,必要时可适当降低机组负荷和送风量,以防止风机掉闸和锅炉灭火。 (3)根据当前烟气流量和风机出入口差压,采取降低未失速风机出力、适当抬高炉膛压力和降低引风机出口压力等措施,判断能否将风机比压能降至水平失速线下。因为水平失速线全压升约2.08kPa,因此,未失速风机入口压力在3.0kPa以下,方便直接进行2台引风机的出力调整,否则,必须通过采取加强布袋除尘器清灰、投入检修布袋通道等方法来消除烟道异常阻力以及降低烟气量。 (4)在风机失速情况下的紧急清灰过程中,应尽量维持较低的炉膛压力、较高的引风机出口压力和较低的烟气流量,以提高清灰效果,同时加强清灰设备的检查消缺工作。 (5)在进行引风机调整时,在满足炉膛压力不超过1000Pa的条件下,可将2台风机转速调整一致,然后逐步关小失速风机静叶,同时关小另一台风机静叶,保持2台风机静叶开度基本一致,以防交替失速抢风。在失速现象消除时,风机调节装置开度与相同负荷下的烟气量基本匹配,以防止炉膛负压剧烈波动。将未失速风机工作点拉至失速线以下才能使失速风机并列出风,此时炉膛压力必然显示冒正,使布袋清灰效果下降,因此,必须尽量缩短风机并列过程。 (6)风机并列后,先观察布袋差压变化情况和失速裕量是否满足提升风机出力要求。然后根据情况逐步调整炉膛负压至正常范围,若并列过程时间较长且布袋差压明显增加时,必须在增加引风机出力的同时适当增加送风量,以保证足够的失速裕量,从而防止再次发生失速抢风。 4防范措施 为解决机组运行中引风机出现的失速现象,必须使风机的实际运行工作点远离理论失速界限,为此提出相应的解决措施如下。

风机振动原因分析

电站风机振动故障的几种简易诊断 2009-11-18 11:20:44 来源:中国化工仪器网 风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。文中所述振动基于电厂离心式送风机、引风 机和排粉机。1 轴承座振动 1.1 转子质量不平衡引起的振动 在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2 动静部分之间碰摩引起的振动 如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装置之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动 如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成 局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动 滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位置和损坏程度,在此不加阐述。表1列出滚动轴承异常现象的检测,可以看出各种缺陷所对应的异常现象中,振动是最普遍的现象,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机

探讨电厂锅炉引风机抢风问题

探讨电厂锅炉引风机抢风问题 作为火电厂的重要设备之一,引风机影响着烟风系统的正常运行,也影响着整个火电厂的正 常运行。随着相关技术的发展,现阶段国内火电厂通常采用两台以及两台以上引风机并行工 作的方式保障火电厂的正常运行,这种方式可以确保在一台引风机出现故障时另一台引风机 可以维持火电厂的运行。在实际运行过程中,作为火电厂发电机组的重要辅助设备,引风机 的实际运行状况不但取决于自身的性能,还受到整个火电厂管路性能的影响。常见的火电厂 引风机抢风问题主要有:锅炉运行参数和引风机设计参数不符合、火电厂脱硫系统没有正常 运行、空气预热器堵塞、锅炉烟道漏风、锅炉负荷较大、烟囱排风能力较差,下文对这些问 题进行相应的分析和探讨。 1 电厂锅炉引风机抢风问题原因分析 1.1 锅炉运行参数和引风机设计参数有偏差 在火电厂实际运行过程中,如果锅炉配备的引风机选型太大,会产生较大的风量和风压,在 不能和锅炉烟风系统正常匹配的情况下,会发生风机失速、抢风故障。在采用并行工作的两 台引风机处于小负荷工作状态时,就会导致引风机的工作点接近于失速区,一旦工作情况发 生变化,就会出现引风机抢风故障。 1.2 火电厂脱硫系统出现不正常运行状况 在实际火电厂运行过程中,如果相应的脱硫系统可以正常运行,在增压风机运行的情况下可 以减缓脱硫系统运行增加的阻力,在这种状况下,增风压机和锅炉引风机会串联在一起运行,共同发挥相应的作用,但是当增风压机产生的力比整个脱硫系统产生阻力时,就会导致增压 风机作用于引风机。当增风压机产生的力比整个脱硫系统产生阻力小时,就会导致引风机作 用于增压风机。因此,在整个脱硫系统产生阻力和增压风机产生力存在一定偏差时,会形成 一定的作用力,尤其是在脱硫系统阻力大于增压风机产生力时,会导致相应的管网阻力增大 从而发生引风机抢风故障的发生。 1.3 空气预热器堵塞 在实际运行过程中,如果空气预热器发生堵塞状况,将会导致引风管道系统的出力特性和风 机工作区产生一定的偏差,就会导致引风机抢风状况的发生。在引风机由于空气预热器故障 发生抢风现象之后,锅炉引风机的处理工作就会发生一定的平衡失调,导致引风机工作效率 大大下降,致使锅炉出力受到严重的影响,从而致使水平烟道烟气流速降低,在长期的这种 运行状况下,就会导致烟道内发生飞灰沉积现象。 锅炉本体、尾部烟道出现漏风 在锅炉本体或者尾部烟道出现漏风情况时,会导致烟气体积发生增大现象,致使烟气流动速 度逐渐加快。随着运行,炉膛内部温度也会逐渐降低,导致相应的燃料无法充分燃烧,导致 烟道尾部的受热面出现堵灰故障,导致管网阻力会逐渐增大,引风机的运行工况点会逐渐进 入非稳定的工作区域,导致引风机抢风故障的发生。 1.4 锅炉负荷不稳定或煤种偏离 在处于低负荷运行状况时,锅炉内负荷会发生比较大的幅度波动,或者实际运行燃烧的煤种 与设计运行存在较大的偏差时,尤其是实际煤种存在较多灰分、硫分时,在实际燃烧过程中 就会导致烟气中含有过量的铁离子和硫酸盐,导致烟道系统中空气预热器和省煤器等设备出 现结渣堵灰情况,从而导致管网阻力逐渐增大,如果相应的设备长期处于这种状况,就会导 致管网阻力特性曲线发生破坏,导致引风机出现抢风故障。

锅炉引风机振动分析及处理

锅炉引风机振动分析及处理 摘要:风机振动是运行中常见的现象,只要在振动控制范围内,不会造成太大 的影响。但是风机的振动超标后,会引起轴承座或电机轴承的损坏、电机地脚螺 栓松动、风机机壳、叶片和风道损坏、电机烧损发热等故障,使风机工作性能降低,甚至导致根本无法工作。严重的可能因振动造成事故,危害人身健康及工作 环境。所以查找风机振动超标的原因,并针对不同的现象分析原因采取恰当的处 理办法,往往能起到事半功倍的效果。本文针对锅炉引风机振动分析及处理开展 分析。 关键词:锅炉风机;振动故障;要因分析 引风机作为火力发电厂不可缺少的一部风,其运行状况的好坏直接关系到火 力发电厂的经济效益。对造成引风机振动故障的主要原因进行分析排查。 1、概述 按照国家2011年7月29日发布的最新标准《火电厂大气污染物排放标准》(GB13223-2011)要求,自2014年7月1日起,某企业将执行新标准规定的大 气污染物排放浓度限值,烟尘排放限值为30mg/m3、SO2排放限值为400mg/m (3某区)、NOX排放限值为200mg/m3,我企业投建了电站锅炉烟气除尘脱硫 脱硝项目,从而烟气风阻增大,需提高风机风压。更换成QAY-5D-21.5D型锅炉引风机,流量165174m3/h,压力7000Pa,无负荷单机试车运行发现当风机调节门 开度在50%-60%之间,电流逐步接近额定电流35.5A,风机传动组振动值最高达 到0.223mm,风机机壳及烟道大幅度振动,噪音过大,电机侧振动正常。当风机 调节门开度超过60%,风机传动组振动值逐步正常,噪音减轻,机壳及烟道振动 减小。根据对锅炉引风机运行当中出现的故障看出,风机振动一般归纳为以下几 方面:(1)由基础不牢、连接坚固不够、支承动刚度不足引起振动;(2)风机 转速接近临界转速产生的共振;(3)气流不稳定,调节挡板开度不一致、挡板 销子脱落或损失严重引起;(4)轴承本身损坏或轴承装配不良;(5)部件松动 引起的冲击力;(6)联轴器故障、转子不同心、不平直和轴径本身不圆;(7) 转子不平衡量产生的离心力;(8)电机轴承故障。排除法分别对以上8方面进 行试验数据分析对比发现有可能因气流不稳定,调节挡板开度不一致、挡板销子 脱落或损失严重引起的风机振动。联系厂家技术售后人员,经厂家技术人员对现 场判断,怀疑风机调节门开度在50%-60%之间,使风机气流产生共振,导致振动 情况。按照厂家人员指导在风机入口喇叭口处增加导流板(图1),使风机在进 风的过程中,风向均匀一致,不会发生紊乱,消除风机气流产生的共振。工作完 成后,开始试机,现场测振值结果稍有改变,机壳及烟道振动幅度仍偏大,调节 门开度达到60%以上,电机额定电流超标(35.5A),无法满足锅炉生产负荷要求。 2、振动产生的原因分析 (1)电动机的振动;电动机转子通过二支点的滚动轴承来旋转,轴承的轴向和径向的间隙很小,在润滑状态下磨损产生的振动和扫膛引起的振动极小,一般 不会给引风机造成太大的影响。(2)引风机轴承箱的振动;轴承箱主轴承损坏 和主轴弯曲、地脚螺栓松动和基础下沉会引起振动。(3)联轴器的振动;联轴 器磨损、连接不良、两轴中心线偏差均会引起振动。(4)风机壳体的振动;风 机壳体是由4mm薄钢板焊接而成,本身体型较大,运行中烟气流动使壳体产生 共振。同时,水膜除尘器在处理烟气的过程中,因水膜的不均匀等原因,烟气湿 度极度不均引起的振动。(5)叶轮的振动;烟气携带的灰尘颗粒粘附在叶轮上

增压风机 失速分析

某发电分公司燃化除灰部脱硫运行 2007-11-6 【摘要】:某发电分公司#5、6脱硫系统自2006年9月投产以来,增压风机经常性的失速,造成#5、6脱硫系统不能正常运行,针对增压风机失速进行分析、整理,保证脱硫系统的正常运行,提高运行工人分析事故和处理事故的能力,对发现的问题吸取精华,剔除糟泊。 【关键词】:增压风机失速分析漳电脱硫 【引言】:近年来,由于我国国民经济的迅速发展,对电力的需求增长更快,作为主要电源供应的燃煤发电机组也逐年增加,燃煤火力发电装置排放物对人类生存直接构成危害,我国火力发电用煤主要是高灰分、高硫分煤的比例比较大,而且几乎不经过任何洗选等预处理过程,同时,火力发电硫氧化物排放的总量最大而且集中,因此,火力发电需要对尾气硫化物进行脱除,目前在发电厂应用最多的脱硫技术是比较成熟的石灰石-湿法,石灰石-湿法技术关键是脱硫系统中增压风机的正常运行,只有保证增压风机正常运行,才能保证脱硫系统正常运行,乃至整个机组的正常运行 增压风机是大容量轴风机,是直接影响主机安全运行的重要因素,同时也是环保评价我厂脱硫投入率的前提,轴硫分风机失速信号测点就是风机叶片前后的烟气流量的差压前后的反应,运行对DCS增压风机筒振重点监测是十分必要的,正常情况下烟气流入静叶挡板门通过动叶旋转至增压风机出口,烟气流与动叶形成很小的夹角当经过叶片后形成平行的流线状态为最好。当烟气与某一叶片形成有扰动角度时,这时绕过叶片的烟气流在叶片背面形成涡流,叶片之间的气道受阻,轻则筒振增大,失速报警信号发出。重则,扰动气流破坏相邻的边界层,使之多个动叶间烟气流通道被气流团阻塞(包括级间叶片气流团剧烈扰动导致末级叶片背压升高)不采取措施风机喘震增大引起共振,导致叶片折断轴变形断裂等严重后果。 #6脱硫系统运行,增压风机静叶挡板开度60%,增压风机出口温度异常升高、电流下降、筒振升高、失速报警信号发、出口压力下降,增压风机内声音异常,静叶挡板门各静叶轴承座振动增大,造成#6增压风机失速有以下原因: 1、脱硫系统中出入口烟气挡板门内置扇形板任意一扇脱落或销子断使扇门不能开启,都会导致增压风机入口流量不足或出口阻力增大。 1)、烟气系统入口挡板门没有完全开启或挡板门的一扇脱落,造成入口风量不足,增压风机不能正常工作,发生喘振,造成失速,经检查入口挡板门在全开位置,没有发现任意一扇脱落开不起来,也没有发现销子断裂,挡板门的主轴转动自如; 2)、烟气系统出口挡板门没有完全开启,或挡板门的一扇脱落,造成入口风量不足,增压风机不能正常工作,发生喘振,造成失速,经检查入口挡板门在全开位置,没有发现任意一扇脱落开不起来,也没有发现销子断裂,挡板门的主轴转动自如; 3)、烟气系统烟道中的支撑多,支撑不合格,支撑上积灰,造成系统阻力大,经专家测试系统支撑不是造成增压风机失速的原因; 2、GGH积灰造成烟气阻力大,GGH打开人孔检查后,发现换热元件上积灰严重,增压风机入口烟尘含量高,造成系统积灰,造成GGH积灰严重的原因有: 1)、烟气中灰尘含量高,携带的烟尘黏结在换热器元件上,造成换热元件堵塞

相关主题