搜档网
当前位置:搜档网 › 假设有两个寡头垄断厂商的行为遵循古诺模型

假设有两个寡头垄断厂商的行为遵循古诺模型

假设有两个寡头垄断厂商的行为遵循古诺模型
假设有两个寡头垄断厂商的行为遵循古诺模型

假设有两个寡头垄断厂商的行为遵循古诺模型,它们的成本函数分别为:

=0.1Q+20 Q1+100000

TC

=0.4Q+32 Q2+20000

TC

这两个厂商生产一同质产品,其市场需求函数为:Q=4000-10P,试求:

(1)厂商1和厂商2的反应函数。

(2)均衡价格和厂商1和厂商2的均衡产量。(3)厂商1和厂商2的利润。

解:(1)要求厂商1和厂商2的反应函数,须先求二厂商的利润函数。

已知市场需求函数为Q =4000-10P ,可得P =400-0.1Q ,又因为Q = Q 1+ Q 2,因此,

P =400-0.1Q =400-0.1(Q 1+ Q 2)。

因此,二厂商的利润函数分别为:

π1=TR 1- TC 1= PQ 1- TC 1

=[400-0.1(Q 1+ Q 2)] Q 1-(0.1 Q 21+20 Q 1+100000)

=400 Q 1-0.1 Q 21-0.1 Q 1 Q 2-0.1 Q 21-20 Q 1-100000

π2=TC 2- TC 2= PQ 2- TC 2

=[400-0.1(Q 1+ Q 2)] Q 2-(0.4 Q 21+32 Q 1+20000)

=400 Q 2-0.1 Q 2

2-0.1 Q 1 Q 2-0.4 Q 21-32 Q 2-20000

要使厂商实现利润极大,其必要条件是:

11

d πd Q =400-0.2Q 1-0.1Q 2-0.2 Q 1-20=0 (8—1) 22

d πd Q =400-0.2Q 2-0.1Q 1-0.2Q 2-32=0 (8—2) 整理(8—1)式可得厂商1的反应函数为:

Q 1=950-0.25 Q 2

同样,整理(8—2)式可得厂商2的反应函数为:

Q 2=368-0.1 Q 1

(2)从两厂商的反应函数(曲线)的交点可求得均衡产量和均衡价格。为此,可将上述二反应函数联立求解:

1221

9500.253680.1Q Q Q Q =-??=-? 解上述方程组可得:Q 1=880,Q 2=280,Q =880+280=1160

P =400-0.1×1160=284。

(3)厂商1的利润

π1=PQ1- TC1

=284×880-(0.1×8802+20×880+100000)

=54880

厂商2的利润

π2=PQ2- TC2

=284×280-(0.4×2802+32×280+20000)

=19200

药动学单室模型计算例题

药动学单室模型部分计算题练习 例1(书上的例题)某患者静脉注射一单室模型药物,剂量1050mg,测得不同时刻血药浓度数据如下: 求该药的动力学参数k、t1/2、V值。 解:用常规线性回归法来解答:先根据已知血药浓度和时间数据,来计算出logC,结果我 然后将logC和t做线性回归,得到曲线:logC=-0.1358t+2.1782,R2=1,因此,我们可以得到:-k/2.303=-0.1358,logC0=2.1782,即:k=0.313,t1/2=0.693/k=2.22h,C0=150.7μg/ml,再根据已知数据:X0=1050 mg,V=X0/C0=1050000/150.7=6967.5 ml=6.9675 L。 例2:某人静脉注射某药300mg后,呈单室模型一级动力学分布,其血药浓度(μg/ml)与时间(小时)的关系为C=60e-0.693t,试求: (1)该药的生物半衰期,表观分布容积; (2)4小时后的血药浓度及血药浓度下降至2μg/ml的时间。 解答: (1)血药浓度(μg/ml)与时间(小时)的关系为C=60e-0.693t,根据单室静脉注射模型血药浓度时间关系:C=C0e-kt,所以,C0=60μg/ml,k=0.693,生物半衰期t1/2=1 h。V=M0/C0=300/60=5 L。 (2)C=60 e-0.693×4=3.75μg/ml,2μg/ml=60e-0.693t,t=4.9 h

例3:(书上176页例2)某单室模型药物100mg给患者静注后,定时收集尿液,测得尿排泄 1/2 Δ 我们决定将它舍弃,因为如果将其积分入曲线的话,误差会比较大,直线的线性回归系数为:r=0.9667,而舍弃这个点,得到的线性回归系数为:r=1,方程式为:LgΔxu/Δt=-0.1555t -0.3559,r=1。对照速度法公式:lgdxu /dt=-kt/2.303+lgke.x0,,因此,k=0.1555×2.303=0.3581,t1/2=0.693/k=1.94 h,lgke.x0=-0.3559,x0=100 mg,因此ke=10-0.3559/100=0.0044065。说明尿中药物代谢是非常少和慢的。 例4:某药生物半衰期为3.0h,表观分布容积为10L,今以每小时30mg速度给某患者静脉滴注4h ,间隔8h后,又滴注4h,问再过2h后体内药物浓度是多少? 解答:根据已知条件:t1/2=3.0h,t1/2=0.693/k=3.0h,k=0.231h-1,V=10 L,k0=30 mg/h,静脉滴注的血药浓度与时间的关系式为:C=k0/kV(1-e-kt),因此,滴定稳态前停滴的血药浓度与时间的关系式为:C=k0/kV(1-e-kT) e-kt,其中T为滴定时间,t为滴定停止后开始算的时间,因此,第一次滴定4 h停止后,血药浓度与时间的关系为:C1=30*1000(ug/h)/0.231*10 1000(ml/h)(1-e-0.231*4)e-0.231*(8+4+2)=12.987*0.397*e-3.234=0.203 ug/ml,第二次滴定4 h后停止后,血药浓度与时间的关系式为:C2=30*1000(ug/h)/0.231*10*1000(ml/h) 0.397*e-0.231*2=12.987*e-0.462=3.248 ug/ml,再过2h后体内血药浓度C=C1+C2=0.203+3.248 =3.451 ug/ml,(自然对数e=2.718)。 例5:给某患者静脉注射某药20mg,同时以20mg/h速度静脉滴注给药,问经过4h后体内血药浓度是多少?(已知:V=60L,t1/2=50h)(跟书上略有不一样,即书上v=50L, t1/2=30h)解答:C=C0e-kt,t1/2=50h=0.693/k,k=0.693/50=0.01386 h-1,C0=X0/V=20*1000 ug/60*1000 ml=1/3 ug/ml,因此,对静脉注射来讲,4 h后体内血药浓度C1=1/3 ug/ml*e-0.01386*4=0.3153 ug/ml,对静脉滴注血药浓度C的公式:C2=k0(1-e-kt)/kV=20*1000 ug(1-e-0.01386*4)/0.01386*60×1000=1.297 ug/ml,e-0.01386*4=0.94607, 因此,总的血药浓度C=C1+C2=0.3153+1.297 ug/ml=1.612 ug/ml

药代动力学代表计算题

计算题(Calculation questions ) 1.某患者单次静脉注射某单室模型药物2g ,测得不同时间的血药浓度结果如下: 时间(h) 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 血药浓度(mg/ml) 0.28 0.24 0.21 0.18 0.16 0.14 0.1 0.08 求k ,Cl ,T 1/2,C 0,V ,AUC 和14h 的血药浓度。 【解】对于单室模型药物静脉注射 k t 0e C C -=,t 303 .2k C log C log 0 -= log C 对t 作直线回归(注:以下各题直线回归均使用计算器或计算机处理),得: a = 0.4954, b = -0.0610,|r | = 0.999(说明相关性很好) 将a 、b 代入公式0C log 303 .2kt C log +-= 得回归方程: 4954.0t 061.0C log --= ① 1h 1405.0)061.0(303.2b 303.2k -=-?-=?-= ② h 9323.41405 .0693.0k 693.0T 2/1== = ③ mg/ml 3196.0)4954.0(log C 1 0=-=- ④ 6.258L ml)(62583196 .02000C X V 0 0=== = ⑤ L/h 8792.0258.61405.0kV Cl =?== ⑥ )(mg/ml h 2747.21405 .03196.0k C AUC 00 ?== = ∞ ⑦ 3495.14954.014061.0C log -=-?-= g/ml 44.7mg/ml)(0477.0C μ== 即14h 的血药浓度为g/ml 44.7μ。 2.某患者单次静脉注射某药1000mg ,定期测得尿药量如下: 时间(h) 1 2 3 6 12 24 36 48 60 72 每次尿药量 (mg) 4.02 3.75 3.49 9.15 13.47 14.75 6.42 2.79 1.22 0.52 设此药属一室模型,表观分布容积30L ,用速度法求k ,T 1/2,k e ,Cl r ,并求出80h 的累积药量。 【解】单室模型静脉注射尿药数据符合方程0e c u X k log 303 .2kt t X log +- =??, t X log u ??对c t 作图应为一直线。根据所给数据列表如下: t (h) 1 2 3 6 12 t ? 1 1 1 3 6

古诺模型

古诺模型也称为古诺双寡头模型或双寡头模型。古诺模型是早期的寡头模型。它是由法国经济学家库诺(Cournot)在1838年提出的。库诺模型是纳什均衡应用的最早版本,而库诺模型通常用作寡头理论分析的起点。古诺模型的结论可以很容易地扩展到三个或更多寡头企业的情况。 古诺模型是法国经济学家安托万·奥古斯丁·库尔诺(Antoine Augustin Cournot)于1838年提出的。古诺模型通常用作寡头理论分析的起点。古诺模型是只有两个寡头的简单模型,也称为“双寡头模型”或双寡头理论。该模型解释了相互竞争但彼此不协调的制造商的生产决策如何相互影响,从而在完美竞争和完美垄断之间产生了平衡结果。古诺模型的结论可以很容易地扩展到三个或更多寡头企业的情况。 价格竞争的古诺模型假设两个寡头生产的产品可以互换并且具有固定成本40元的差异,并且假设没有可变成本且边际成本为0。两个寡头面临的市场需求是如下: D1:Q1 = 24–4p1 + 2p2,D2:Q2 = 24–4p2 + 2p1。因此,寡头1的利润为π1 = p1q1–40 = 24p1–4p12 + 2p2p2–40,因此,利润最大化,dπ1 / dp1 = 24–8p1 + 2p2 = 0,并且反应函数P1 = 3解决了寡头垄断1的+ P2 / 4。同样,寡头2的反应函数为P2 = 3 + P1 /4。因此,求解均衡价格P1 = P2 = 4,均衡输出Q1 = Q2 =

16,求解均衡利润π1=π2= 24。寡头不串通而达到的这种平衡称为古诺平衡。如果寡头之间存在共谋以最大化联合利润,则获得的均衡就是共谋均衡。可以计算出共谋均衡点P1 = P2 = 6,Q1 = Q2 = 12,π1=π2= 32,利润高于古诺均衡。

生物药剂学和药物动力学计算题

第八章 单室模型 例1 给某患者静脉注射一单室模型药物,剂量 1050 mg ,测得不同时刻血药浓度数据如下: 试求该药的 k ,t1/2,V ,CL ,AUC 以及 12 h 的血药浓度。 解:(1)作图法 根据 ,以 lg C 对 t 作图,得一条直线 (2)线性回归法 采用最小二乘法将有关数据列表计算如下: 计算得回归方程: 其他参数求算与作图法相同 0lg 303 .2lg C t k C +-=176.21355.0lg +-=t C

例2 某单室模型药物静注 20 mg ,其消除半衰期为 3.5 h ,表观分布容积为 50 L ,问消除该药物注射剂量的 95% 需要多少时间?10 h 时的血药浓度为多少? 例3 静注某单室模型药物 200 mg ,测得血药初浓度为 20 mg/ml ,6 h 后再次测定血药浓度为 12 mg/ml ,试求该药的消除半衰期? 解: 例4 某单室模型药物100mg 给患者静脉注射后,定时收集尿液,测得累积尿药排泄量X u 如下,试 例6 某一单室模型药物,生物半衰期为 5 h ,静脉滴注达稳态血药浓度的 95%,需要多少时间? 解: 例5 某药物静脉注射 1000 mg 后,定时收集尿液,已知平均尿药排泄速度与中点时间的关系 为 ,已知该药属单室模型,分布容积 30 L ,求该药的t 1/2,k e ,CL r 以及 80 h 的累积尿药量。 解: 6211.00299.0lg c u +-=??t t X

例7 某患者体重 50 kg ,以每分钟 20 mg 的速度静脉滴注普鲁卡因,问稳态血药浓度是多少?滴注 经历 10 h 的血药浓度是多少?(已知 t 1/2 = 3.5 h ,V = 2 L/kg ) 解题思路及步骤: ① 分析都给了哪些参数? ② 求哪些参数,对应哪些公式? , ③ 哪些参数没有直接给出,需要求算,对应哪些公式? 例8 对某患者静脉滴注利多卡因,已知 t 1/2 = 1.9 h ,V = 100 L ,若要使稳态血药浓度达到 3 mg/ml , 应取 k 0 值为多少? 解题思路及步骤: ① 分析都给了哪些参数? ② 求哪些参数,对应哪些公式? ③ 哪些参数没有直接给出,需要求算,对应哪些公式? 例9 某药物生物半衰期为 3.0 h ,表观分布容积为 10 L ,今以每小时 30 mg 速度给某患者静脉滴注, 8 h 即停止滴注,问停药后 2 h 体内血药浓度是多少? 解题思路及步骤: ① 分析都给了哪些参数? ② 求哪些参数,对应哪些公式? C=C 0 + e -kt ③ 哪些参数没有直接给出,需要求算,对应哪些公式? 例10 给患者静脉注射某药 20 mg ,同时以 20 mg/h 速度静脉滴注该药,问经过 4 h 体内血 药浓度多少?(已知V = 50 L ,t 1/2 = 40 h ) 解: kV k C ss 0=)1(0 kt e kV k C --=1/2 00.693 L 100250h /mg 12006020t k V k = =?==?=)()(kV k C ss 0 =kV C k ss 0=1/20.693 t k = 1/2 0.693t k =) 1(0kt e kV k C --=

古诺模型

什么是古诺模型 古诺模型又称古诺双寡头模型(Cournot duopoly model),或双寡头模型(Duopoly m ode l),古诺模型是早期的寡头模型。它是由法国经济学家古诺于1838年提出的。是纳什均衡应用的最早版本,古诺模型通常被作为寡头理论分析的出发点。古诺模型是一个只有两个寡头厂商的简单模型,该模型也被称为“双头模型”。古诺模型的结论可以很容易地推广到三个或三个以上的寡头厂商的情况中去。 古诺模型假定一种产品市场只有两个卖者,并且相互间没有任何勾结行为,但相互间都知道对方将怎样行动,从而各自怎样确定最优的产量来实现利润最大化,因此,古诺模型又称为双头垄断理论。 古诺模型的假设 古诺模型分析的是两个出售矿泉水的生产成本为零的寡头厂商的情况。 古诺模型的假定是:市场上只有A、B两个厂商生产和销售相同的产品,他们的生产成本为零;他们共同面临的市场的需求曲线是线性的,A、B两个厂商都准确地了解市场的需求曲线;A、B 两个厂商都是在已知对方产量的情况下,各自确定能够给自己带来最大利润的产量,即每一个产商都是消极地以自己的产量去适应对方已确定的产量。 古诺模型中厂商的产量选择 A厂商的均衡产量为: OQ(1/2―1/8―1/32―……)=1/3 OQ B厂商的均衡产量为:OQ(1/4+1/16+1/64+……)=1/3 OQ 行业的均衡总产量为:1/3 OQ+1/3 OQ=2/3 OQ 价格竞争的古诺模型 假定两个寡头分别用40元的固定成本生产可以相互替代并且有差别的产品,并假定不存在可变成本,边际成本为0,两个寡头面临的市场需求数如下: D1:Q1=24-4P1+2P2 D2:Q2=24-4P2+2P1 π1=P1Q1-40=24P1-4P12+2P1P2-40 dπ1/ dP1=24-8P1+2P2=0 P1=3+1/4P2(寡头1的反应函数) 同理:P 2=3+1/4P1(寡头2的反应函数) 因此,P1=4,P2=4 得:Q1=16,Q2=16;π1=24,π2=24。 寡头间的这种无勾结行为而达到的这种均衡称为古诺均衡.寡头间若存在着勾结,以求得联合的利润最大化,所得到的均衡为共谋均衡。 古诺模型结论的推广

古诺模型实例

例:两企业A 、B ,需求曲线为 ,MC=0。 1.几何分析过程:A 自行,决定产量为600,价格为6;B 进入,认为A 600的产量不会变,决定自 己的产量为300,价格P =12-12×(600+300)/1 200=3;A 追求π最大,决定将产量减为450,价格变为P =12-12×(300+450)/1 200=4.5…… 2.几何过程总结:A 先进入市场,则A 为防守型,B 为进攻型。市场容量为 。 =

二者竞争的结果:,由图:对应价格为:P =4, 二者的利润之和为:。这就是古诺双寡头模型的 结论。 3.推广n 头模型:0 00 P P P Q Q =-,0P 、0Q 为D 在P 、Q 轴上的截距。 n =1时:独家垄断,总产量为 02 Q ,价格000P P P Q Q =-02P =。 n =2时:双头垄断,总产量为,价格000P P P Q Q =- 03 P =。 …… 寡头数量为n 时:n 头垄断,总产量为 1 nQ n +,价格000P P P Q Q =- 01 P n =+。 n →∞时,完全竞争,总产量为 1nQ n +0Q →,价格0 01 P n →+(0)MC = 4.利用实例数据采用产量反应函数分析:,TC=0(设 TFC=0) , ,

得厂商A 产量反应函数: ,同理B 产量反应函数为: 。 A : B : A : B : …… …… 竞争过程中 ,最终双方利润达到最大化,市场实现均衡, 两个反应函数的交点为最大产量。 5.用产量反应函数推广为不勾结n 头: 1212 12()1200 n P Q Q Q =- +++ ,211 112312()100100n Q Q Q Q Q Q π=--+++ ,由1 0π'=得到:123112()050100 n Q Q Q Q - -+++= ,整理得: 12321200n Q Q Q Q ++++= ,同理可得: 12321200n Q Q Q Q ++++= ,…,12321200n Q Q Q Q ++++= ,将上述n 个式子相加,得到:1231200/(1)n Q Q Q Q n n ++++=+ ,但方程中的i Q 是对称的,所以解得: 。 本例参考文献:《西方经济学简明教程》,尹伯成主编,上海人民出版社,1995年8月,183~190页。

药物动力学计算题

1.计算题:一个病人用一种新药,以2mg/h的速度滴注,6小时即终止滴注,问终止后2小时体血药浓度是多少?(已知k=0.01h-1,V=10L) 2.计算题:已知某单室模型药物,单次口服剂量0.25g,F=1,K=0.07h-1,AUC=700μg/ml·h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。 3.某药静注剂量0.5g,4小时测得血药浓度为 4.532μg/ml,12小时测得血药浓度为2.266μg/ml,求表观分布容积Vd为多少? 4.某人静注某药,静注2h、6h血药浓度分别为1.2μg/ml和0.3μg/ml(一级动力学),求该药消除速度常数?如果该药最小有效剂量为0.2μg/ml,问第二次静注时间最好不迟于第一次给药后几小时? 5.病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1.2μg/ml,3h为0.3μg/ml,该药在体呈单室一级速度模型,试求t1/2。 6.某病人一次用四环素100mg,血药初浓度为10μg/ml,4h后为 7.5μg/ml,试求t1/2。 7.静脉快速注射某药100mg,其血药浓度-时间曲线方程为:C=7.14e-0.173t,其中浓度C的单位是mg/L,时间t的单位是h。请计算:(1)分布容积;(2)消除半衰期;(3)AUC。

8.计算题:某药物具有单室模型特征,体药物按一级速度过程清除。其生物半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg。 求:该药的蓄积因子 第2次静脉注射后第3小时时的血药浓度 稳态最大血药浓度 稳态最小血药浓度 9.给病人一次快速静注四环素100mg,立即测得血清药物浓度为10μg/ml,4小时后血清浓度为7.5μg/ml。求四环素的表观分布体积以及这个病人的四环素半衰期(假定以一级速度过程消除)。 10.计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度-时间曲线方程为:C=61.82e-0.5262t,其中的浓度单位是μg/ml,t的单位是h,试求病人体的初始血药浓度、表观分布容积、生物半衰期和血药浓度-时间曲线下面积。 11.计算题:已知某药物具有单室模型特征,体药物按一级速度方程清除,其t1/2=3h,V=40L,若每6h静脉注射1次,每次剂量为200mg,达稳态血药浓度。求:该药的(1)ss C max (2)ss C m in (3)ss C (4)第2次给药后第1小时的血药浓度

古诺模型的均衡分析

古诺模型的均衡分析 摘要:古诺模型是个经典的经济博弈模型,可用来指导经济活动的重要决策问题。重复博弈对经济效率的提高有重要作用。结合古诺模型与重复博弈理论,以两个厂商连续产量的古诺模型为例,讨论古诺模型的均衡分析,包括无约束古诺模型的均衡分析和有约束古诺模型的均衡分析,并以此为基础讨论无限重复古诺模型的均衡分析,以探索提高厂商合作水平,实现较高效率均衡的途径。 关键词:古诺模型;博弈;均衡分析 一、前言 寡头垄断市场是指少数厂商完全控制一个行业的市场结构,是一种普遍存在的市场。1838年法国经济学家古诺 (Augustin Cournot )最早提出了一个数学模型,用以考察一个行业中仅有两个生产厂商的所谓双头垄断市场的情况,研究两个厂商条件下的均衡产量问题,该模型后来被称为古诺模型。该模型假定:寡头市场仅有两个生产厂商,他们生产同质的产品,两个厂商的边际成本为零,两个厂商都掌握市场需求情况,他们都面临共同的线性需求曲线,各厂商根据对手采取的行动,并假定对手继续如此行事来作出自己的决策。 古诺模型是一个经典的经济博弈模型,,即寡头之间通过产量进行竞争。对其进行研究、分析规律,,可用来指导经济活动中所遇到的重要决策问题。重复博弈揭示了经济环境和经济秩序的长期稳定性,,对经济效率的提高有十分重要的作用。本文将古诺模型与重复

博弈结合起来, 研究无限重复古诺模型,给出其均衡分析。、 二、理论基础 (一)静态博弈 所有博弈方同时或可看作同时选择策略的博弈称为“静态博弈”。 每个博弈方的策略都是针对其他博弈方策略或策略组合的最佳对策,具有这种性质的策略组合,即博弈中的“纳什均衡”。 一致预测性是纳什均衡的本质属性,即如果所有博弈方都预测某个特定博弈结果会出现,那么这个预测结果最终真会成为博弈的结果。在大多数博弈问题中,纳什均衡是普遍存在的。这意味着纳什均衡是一种基本的分析方法,是分析博 弈和预测博弈结果的中心概念和基本出发点。 (二)动态博弈 博弈方依次选择行为的博弈称为“动态博弈”。 各博弈方的选择会形成依次相连的时间阶段。各博弈方在整个博弈中轮到选择的每个阶段,针对前面阶段的各种情况作出相应选择和行为的完整计划,以及由其他博弈方的这种计划构成的组合是动态博弈中的博弈方策略。动态博弈的结果包括博弈方采用的策略组合、实现的博弈路径和各博弈方的得益。 子博弈完美纳什均衡在整个动态博弈及它的所有子博弈中都构成纳什均衡。 动态博弈分析的中心内容是子博弈完美纳什均衡分析,子博弈完美纳什均衡分析的核心方法是逆推归纳法。

补充:古诺模型、卡特尔模型

古诺模型(同时行动的静态博弈,要求解的是纳什均衡) 假设: 1.一个行业,两个厂商; 2.两厂商产品同质; 3.两厂商平均成本均为c; 4.两厂商同时选择产量,市场价格由供求决定。 两厂商在选择自己的产量的时候,只能根据对另一厂商产量的预期做出决策,因为它无法观测到对方的产量。但是,由于在最终的均衡,这种预期必须是正确的,因此我们只关心均衡情况。 模型: 反市场需求函数:P = a – b (q1 + q2) 厂商1的利润函数:L1 = [ a – b (q1 + q2)] – cq1 厂商1利润最大化的产量满足的一阶条件:? L1/? q1 = a – 2bq1–bq2– c = 0 从而得到厂商1的反应函数:R1 (q2) = (a – c – bq2) /2b (1) 同理可以得到厂商2的反应函数:R2 (q1) = (a – c – bq1) /2b (2) 古诺均衡产量(q1*,q2*)满足q1* = R1(q2*),q2* = R2(q1*)。即给定其他厂商的最优产量,每个厂商都实现了最大利润,从而也没有激励单方面改变自己的产量,正因为如此,古诺均衡是纳什均衡。 联立(1)和(2),得到:q1* = q2* = (a – c)/3b(古诺模型的均衡产量) 整个行业总供给量:q = q1 + q2 = 2 (a – c) / 3b 市场价格:P = (a +2c) / 3;限定a>c,因此P = (a + 2c) / 3 > c= MC 这表明古诺模型中的产量竞争不同于完全竞争市场,没有实现总剩余最大化。但是古诺模型确实有两个寡头的竞争,行业总供给也大于垄断产量(a – c) / 2b. 补充:模型的一般化(n个寡头情形下的古诺模型) 假设n个寡头有相同的不变的平均成本c。 市场需求函数:P = a–b(q1+q2+…+q n),a>0,b>0,a>c. 厂商i的利润函数:L i = [a–b(q1+q2+…+q n)]q i–cq i 利润最大化的一阶条件:? L i /? q i = a – bq – bq i – c = 0,其中q = q1+q2+…+q i. 所有厂商的均衡产量都满足这一条件,把它相加n次:na – bnq – bq – nc = 0 解此方程得:q = n (a – c) / b(n+1) 从而P = (a + nc) / (n+1) 当n = 1,得到垄断解;当n = 2,得到双寡头解;当n趋于无穷大,得到完全竞争解。 卡特尔模型(寡头合谋,联合定产) 在某个寡头市场中,如果几个重要的厂商联合起来限制产量,操纵价格,以获取垄断利润,这种联合组织就被称为卡特尔。卡特尔的作用是消除厂商之间的竞争。 两个厂商的成本函数:c1 (q1) ,c2 (q2) 共同面对的反市场需求函数:P = P(q1+q2) Max. L = P(q1+q2).(q1+q2) - c1 (q1) - c2 (q2) 分别对q1和q2求偏导得到一阶条件:

古诺模型

古诺模型 所属分类:经济学术语通信技术 添加摘要 (Cournot duopoly model),或双 寡头模型(Duopoly model),古诺 模型是早期的寡头模型。它是由法 国经济学家古诺于1838年提出的。 是纳什均衡应用的最早版本,古诺 模型通常被作为寡头理论分析的出 发点,它是一个只有两个寡头厂商 的简单模型,该模型也被称为“双 头模型”。古诺模型假定一种产品 市场只有两个卖者,并且相互间没 有任何勾结行为,但相互间都知道 对方将怎样行动,从而各自怎样确定最优的产量来实现利润最大化,因此,古诺模型又称为 双头垄断理论。 ? 1 简介 ? 2 描述 ? 3 双寡头厂 ? 4 伯特兰德模型 ? 5 相关词条 ? 6 参考链接 古诺模型-简介 奇默罗在1913年提出的关于象棋博弈的定理是博弈论的第一个定理,

一、古诺模型的假设 古诺模型分析的是两个出售矿泉水的生产成本为零的寡头厂商的情况。 古诺模型的假定是:市场上只有A 、B 两个厂商生产和销售相同的产品,他们的生产成本为零;他们共同面临的市场的需求曲线是线性的,A 、B 两个厂商都准确地了解市场的需求曲线;A 、B 两个厂商都是在已知对方产量的情况下,各自确定能够给自己带来最大利润的产量,即每一个产商都是消极地以自己的产量去适应对方已确定的产量。 二、古诺模型中厂商的产量选择 A 厂商的均衡产量为: OQ (1/2―1/8―1/32―……)=1/3OQ B 厂商的均衡产量为:OQ (1/4+1/16+1/64+……)=1/3OQ 行业的均衡总产量为:1/3OQ+1/3OQ=2/3OQ 三、价格竞争的古诺模型 假定两个寡头分别用40元的固定成本生产可以相互替代并且有差别的产品,并假定不存在可变成本,边际成本为0,两个寡头面临的市场需求数如下: D1:Q1=24-4P1+2P2 D2:Q2=24-4P2+2P1 π1=P1Q1-40=24P1-4P12+2P1P2-40 d π1/dP1=24-8P1+2P2=0 P1=3+1/4P2(寡头1的反应函数) 同理:P2=3+1/4P1(寡头2的反应函数) 因此,P1=4,P2=4 得:Q1=16,Q2=16;π1=24,π2=24。

药代动力学单室模型计算题

1. 计算题:一个病人用一种新药,以2mg/h的速度滴注,6小时即终止滴注,问终止后2小时体内血药浓度是多少?(已知k=0.01h「1, V = 10L) 2. 计算题:已知某单室模型药物,单次口服剂量0.25g,F=1,K=0.07h-1,AUC=700卩g/ml ? h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。 3. 某药静注剂量0.5g, 4小时测得血药浓度为 4.532卩g/ml, 12小时测得血药浓度为2.266卩g/ml,求表观分布容积Vd为多少? 4. 某人静注某药,静注2h、6h血药浓度分别为1.2卩g/ml和0.3卩g/ml (一级 动力学),求该药消除速度常数?如果该药最小有效剂量为0.2卩g/ml,问第二次 静注时间最好不迟于第一次给药后几小时? 5. 病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1.2卩g/ml,3h为0.3卩g/ml,该药在体内呈单室一级速度模型,试求切2。 6. 某病人一次用四环素100mg,血药初浓度为10卩g/ml,4h后为 7.5卩g/ml,试求t1/2。 7. 静脉快速注射某药100mg,其血药浓度—时间曲线方程为:C=7.14e-0.173t, 其中浓度C的单位是mg/L,时间t的单位是h。请计算:(1)分布容积;(2)消除半衰期;(3)AUC。 8. 计算题:某药物具有单室模型特征,体内药物按一级速度过程清除。其生物 半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg。 求:该药的 蓄积因子 第 2 次静脉注射后第 3 小时时的血药浓度 稳态最大血药浓度 稳态最小血药浓度 9. 给病人一次快速静注四环素100mg,立即测得血清药物浓度为10卩g/ml, 4 小时后血清浓度为7.5卩g/ml。求四环素的表观分布体积以及这个病人的四环素半衰期(假定以一级速度过程消除)。 10. 计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度—时间曲

古诺模型+

古诺模型 伯特兰德模型 埃奇沃斯模型 斯塔克尔伯格模型 斯威齐模型 价格领先模型 卡特尔模型 ?古诺模型的综合应用3页 ?寡头垄断条件下的排污收费古诺模型5页 ?基于古诺模型的企业RD外部性分析3页 ?古诺模型在区域产业协调发展中的应用3页 ?古诺模型下的物流企业战略联盟效应研究3页?多个生产商下的动态古诺模型分析6页 ?基于古诺模型的发电商竞价策略分析3页 ?两个企业序贯博弈的动态古诺模型研究7页 ?基于古诺模型的房地产企业竞争分析2页 ?寡占市场中自适应动态古诺模型的建立4页 ?关于伯特兰德模型的分析2页 古诺模型 古诺模型(Cournot model) 目录 [隐藏] ? 1 什么是古诺模型 ? 2 古诺模型的假定[2] ? 3 古诺模型中厂商的产量选 择 ? 4 价格竞争的古诺模型[2] ? 5 古诺模型结论的推广 ? 6 相关条目 ?7 参考文献

古诺模型又称古诺双寡头模型(Cournot duopoly model),或双寡头模型(Duopoly model),古诺模型是早期的寡头模型。它是由法国经济学家古诺于1838年提出的。是纳什均衡应用的最早版本,古诺模型通常被作为寡头理论分析的出发点。古诺模型是一个只有两个寡头厂商的简单模型,该模型也被称为“双头模型”。古诺模型的结论可以很容易地推广到三个或三个以上的寡头厂商的情况中去。 古诺模型假定一种产品市场只有两个卖者,并且相互间没有任何勾结行为,但相互间都知道对方将怎样行动,从而各自怎样确定最优的产量来实现利润最大化,因此,古诺模型又称为双头垄断理论。 [1] 古诺模型的假定[2] 两个生产者的产品完全相同;生产成本为零(如矿泉水的取得);需求曲线为线性,且双方对需求状况了如指掌;每一方都根据对方的行动来做出自己的决策,并都通过凋整产量来实现最大利润。 如图,AB为产品的需求曲线,总产量为OB,开始时假定A厂商是唯一的生产者,为使利润最大,其产 量 (按MC=0 假设,OB中点的产量使得MR=MC=0),价格为P B厂商进入该行业时,认为 1。当 A将继续生产Q1的产量,市场剩余销售量为,为求利润最大,B厂商的产量Q1Q2将等 B厂商进人该行业后,A厂商发现市场剩余销售量只剩 于,价格下降到P 2。 下,为求利润最大化,它将把产量调整到。A厂商调整产量后,B厂商将再把产量调整到。这样,两个寡头将不断地调整各自的产量,为使利润为最大,每次调整,都将产量定为对方产量确定后剩下的市场容量的。

生物药剂学及药物动力学计算题

第八章单室模型 例1 给某患者静脉注射一单室模型药物,剂量1050 mg,测得不同时刻血药浓度数据如下: 试求该药的k,t1/2,V,CL,AUC以及12 h的血药浓度。 解:(1)作图法 根据,以lg C 对t 作图,得一条直线 (2)线性回归法 lg 303 .2 lg C t k C+ - =

采用最小二乘法将有关数据列表计算如下: 计算得回归方程: 其他参数求算与作图法相同 例2 某单室模型药物静注 20 mg ,其消除半衰期为 3.5 h ,表观分布容积为 50 L ,问消除该药物注射剂量的 95% 需要多少时间?10 h 时的血药浓度为多少? 例3 静注某单室模型药物 200 mg ,测得血药初浓度为 20 mg/ml ,6 h 后再次测定血药浓度为 12 mg/ml ,试求该药的消除半衰期? 解: []176 .2341355.06223.107111355.034712306223.1034718057.42111121 212111=?--=??? ??-=-=?-??-=??? ??-??? ????? ??-=∑∑∑∑∑∑∑=======)(n i i n i i n i n i i i n i n i i n i i i i t b Y n a t n t Y t n Y t b 176.21355.0lg +-=t C

例4 某单室模型药物100mg给患者静脉注射后,定时收集尿液,测得累积尿药排泄量X u如下,试求该药的k,t1/2及k e值。 t (h) 0 1.0 2.0 3.0 6.0 12.0 24.0 36.0 48.0 60.0 72.0 X u(mg) 0 4.02 7.77 11.26 20.41 33.88 48.63 55.05 57.84 59.06 59.58 例6 某一单室模型药物,生物半衰期为5 h,静脉滴注达稳态血药浓度的95%,需要多少时间?解: 例5 某药物静脉注射1000 mg 后,定时收集尿液,已知平均尿药排泄速度与中点时间的关系 为,已知该药属单室模型,分布容积30 L,求该药的t1/2,k e,CL r 以及80 h 的累积尿药量。 解: 6211 .0 0299 .0 lg c u+ - = ? ? t t X

第九章--多室模型

第九章 多室模型 用单室模型模拟体内过程,处理方法虽简单,但应用上有局限。既然把整个机体看作一个隔室,严格来说,进入体内的药物就必须迅速完成向可分布组织、器官与体液的分布,使药物在血浆与这些组织器官、体液间立即达到动态平衡的分布状态。实际上,由于体内各部分的血流速度不同,达到动态平衡是需要一定时间的。也就是说,绝对符合单室模型的药物是不存在的,只是为了简化数学处理,将分布速度相差不大的组织或体液合并成了一个隔室。对某些药物而言,其达到分布动态平衡的时间较短,以至可以忽略不计,这类药物可用单室模型近似处理分析它的体内过程。也有不少的药物,体内各部位分布速度差异比较显著,分布速度较快的组织、器官和体液连同血浆构成一个隔室属于,称为“中央室”, 分布速度较慢的组织、器官和体液等部分,称为“周边室”(外周室),从而构成 “双室模型”。一般而言,血流丰富的组织器官如心、肝、脾、肺、肾等归属于“中央室”,而血流贫乏的如肌肉、骨骼、皮下脂肪等“周边室”。由于肝肾这两个主要的消除器官都归属于“中央室”,多室模型药物的消除仅发生在中央室。 有些药物还需要用三室或更多的模型来表征,它们都是由一个“中央室”和若干个“周边室”组成。理论上,药物动力学可以建立任何多室模型,但从实用角度看,四室以上的模型很少见。同一药物随着实验条件和处理方法的不同,可分成不同的隔室。分得合理与否,主要看它是否于实际情况相符,也要考虑数据处理是否简单易行。 第一节 二室模型静脉注射 一、模型建立 静注后,药物首先进入中央室,再逐渐向周边室转运,在中央室按一级过程消除,可用下面的模型图表示: X 0为给药剂量;X c 为中央室药量;X p 为周边室药量;k 12为药物从中央室向周边室转运的一级速度常数;k 21为药物从中央室向周边室转运的一级速度常数;k 10 为药物从中央室消除的一级速度常数。 X 0 X p k 12 k 21

古诺模型

古诺模型 古诺模型是早期的寡头模型。它是由法国经济学家古诺于1838年提出的。古诺模型通常被作为寡头理论分析的出发点。古诺模型是—个只有两个寡头厂商的简单模型,该模型也被称为“双头模型”。古诺模型的结论可以很容易地推广到三个或三个以上的寡头厂商的情况中去。 古诺模型分析的是两个出售矿泉水的生产成本为零的寡头厂商的情况。古诺模型的假定是:市场上只有A 、B 两个厂商生产和销售相同的产品,它们的生产成本为零;它们共同面临的市场的需求曲线是线性的,A 、B 两个厂商都准确地了解市场的需求曲线;A 、B 两个厂商都是在已知对方产量的情况下,各自确定能够给自己带来最大利润的产量,即每一个厂商都是消极地以自己的产量去适应对方已确定的产量。 古诺模型的价格和产量的决定可以用图来说明。 图 古诺模型 在图中,D 曲线为两个厂商共同面临的线性的市场需求曲线。由于生产成本为零,故图中无成本曲线。 在第一轮,A 厂商首先进入市场。由于生产成本为零,所以,厂商的收益就等于 利润。A 厂商面临D 市场需求曲线,将产量定为市场总容量的12,即产量为112OQ OQ =, 将价格定为1OP ,从而实现了最大的利润,其利润量相当于图中矩形11OPFQ 的面积(因为从几何意义上讲,该矩形是直角三角形OPQ 中面积最大的内接矩形)。然后,B 厂 商进入市场。B 厂商准确地知道A 厂商在本轮留给自己的市场容量为112Q Q OQ =,B 厂商也按相同的方式行动,生产它所面临的市场容量的12,即产量为1214Q Q OQ =。

此时,市场价格下降为2OP ,B 厂商获得的最大利润相当于图中矩形12Q HGQ 的面积。而A 厂商的利润因价格的下降而减少为矩形21OP HQ 的面积。 在第二轮,A 厂商知道B 厂商在本轮中留给它的市场容量为34OQ 。为了实现最大 的利润,A 厂商将产量定为自己所面临的市场容量的12,即产量为38OQ 。与上一轮相 比,A 厂商的产量减少了18OQ 。然后,B 厂商再次进入市场。A 厂商在本轮留给B 厂商的市场容量为58OQ ,于是,B 厂商生产自己所面临的市场容量的12的产量,即产量为516OQ 。与上一轮相比,B 厂商的产量增加了116OQ 。 在这样轮复一轮的过程中,A 厂商的产量会逐渐地减少,B 厂商的产量会逐渐地增加,最后,达到A 、B 两个厂商的产量都相等的均衡状态为止。在均衡状态中,A 、B 两个厂商的产量都为市场总容量的13,即每个厂商的产量为13OQ ,行业的总产量为 23OQ 。 因此,A 厂商的均衡产量为: 1111()28323OQ OQ ---= B 厂商的均衡产量为: 1111()416643OQ OQ +++= 行业的均衡总产量为:112333OQ OQ OQ += 以上双头古诺模型的结论可以推广。令寡头厂商的数量为m ,则可以得到一般的结论如下: 每个寡头厂商的均衡产量=市场总容量·1 1m + (1) 行业的均衡总产量=市场总容量·1m m + (2) 古诺模型也可以用以下建立寡头厂商的反应函数的方法来说明。 在古诺模型的假设条件下,设市场的线性反需求函数为:

药物动力学计算题

1.计算题:一个病人用一种新药,以2mg/h得速度滴注,6小时即终止滴注,问终止后2小时体内血药浓度就是多少?(已知k=0、01h-1,V=10L) 2.计算题:已知某单室模型药物,单次口服剂量0、25g,F=1,K=0、07h-1,AUC=700μg/ml·h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。 3.某药静注剂量0、5g,4小时测得血药浓度为4、532μg/ml,12小时测得血药浓度为2、266μg/ml,求表观分布容积Vd为多少? 4.某人静注某药,静注2h、6h血药浓度分别为1、2μg/ml与0、3μg/ml(一级动力学),求该药消除速度常数?如果该药最小有效剂量为0、2μg/ml,问第二次静注时间最好不迟于第一次给药后几小时? 5.病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1、2μg/ml,3h 为0、3μg/ml,该药在体内呈单室一级速度模型,试求t1/2。 6.某病人一次用四环素100mg,血药初浓度为10μg/ml,4h后为7、5μg/ml,试求t1/2。 7.静脉快速注射某药100mg,其血药浓度-时间曲线方程为:C=7、14e-0、173t,其中浓度C得单位就是mg/L,时间t得单位就是h。请计算:(1)分布容积;(2)消除半衰期;(3)AUC。 8.计算题:某药物具有单室模型特征,体内药物按一级速度过程清除。其生物半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg。 求:该药得蓄积因子 第2次静脉注射后第3小时时得血药浓度 稳态最大血药浓度 稳态最小血药浓度 9.给病人一次快速静注四环素100mg,立即测得血清药物浓度为10μg/ml,4小时后血清浓度为7、5μg/ml。求四环素得表观分布体积以及这个病人得四环素半衰期(假定以一级速度过程消除)。 10.计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度-时间曲线方程为:C=61、82e-0、5262t,其中得浓度单位就是μg/ml,t得单位就是h,试

药动学单室模型计算例题

药动学单室模型部分计算题练习 例1 (书上的例题)某患者静脉注射一单室模型药物,剂量1050mg,测得不同时刻血药 浓度数据如下: 求该药的动力学参数 k、t1/2、V值。 例2:某人静脉注射某药 300mg后,呈单室模型一级动力学分布,其血药浓度(卩g/ml )与时间 (小时)的关系为 C=6Oe-0.693t,试求: (1)该药的生物半衰期,表观分布容积; (2) 4小时后的血药浓度及血药浓度下降至2卩g/ml的时间。 例3:(书上176页例2)某单室模型药物100mg给患者静注后,定时收集尿液,测得尿排泄数据如下: 例4:某药生物半衰期为 3.0h,表观分布容积为 10L,今以每小时30mg速度给某患者静脉滴注4h, 间隔8h后,又滴注4h,问再过2h后体内药物浓度是多少? 例5:给某患者静脉注射某药 20mg,同时以20mg/h速度静脉滴注给药,问经过 4h后体内血药浓度是多少?(已知: V=60L , t i/2=50h)(跟书上略有不一样,即书上 v=50L, t i/2=30h) 例6:(书上192页例13)口服某药100mg的溶液剂后,测出各时间的血药浓度数据如下:假定该药在体内的表观分布容积为30L,试求该药的k,ka,t 1/2 ,t 1/2(a)及F值 例7 :普鲁卡因胺(t1/2 =3.5h,V=2L/kg )治疗所需血药浓度为 4~8ug/ml,—位体重为50kg 的病人, 先以每分钟20mg速度滴注,请问何时达到最低有效治疗浓度?滴注多久后达到最大治疗浓度?欲维持此浓度,应再以怎样的速度滴注? 例&某一受试者口服500mg某药后,测得各时间的血药浓度数据如下,假定F=0.8,V=125 L, 求 k,ka,t1/2,Cm,tm,AUC 。

药动学单室模型计算例题

'. 药动学单室模型部分计算题练习 例1(书上的例题)某患者静脉注射一单室模型药物,剂量1050mg,测得不同时刻血药浓度 数据如下: t (h) 1 2 3 4 6 8 10109.7843.0423.0512.356.61 59.8180.35C g/ml)求该药的动力学参数k、t、V值。1/2例2:某人静脉注射某药300mg后,呈单室模型一级动力学分布,其血药浓度(μg/ml)与-0.693t,试求:C=60e 时间(小时)的关系为(1)该药的生物半衰期,表观分布容积; (2)4小时后的血药浓度及血药浓度下降至2μg/ml的时间。 例3:(书上176页例2)某单室模型药物100mg给患者静注后,定时收集尿液,测得尿排泄数据如下: 要求求算试求出k、t及ke值。1/2 例4:某药生物半衰期为3.0h,表观分布容积为10L,今以每小时30mg速度给某患者静脉滴注4h ,间隔8h后,又滴注4h,问再过2h后体内药物浓度是多少? 例5:给某患者静脉注射某药20mg,同时以20mg/h速度静脉滴注给药,问经过4h后体内血药浓度是多少?(已知:V=60L,t=50h)(跟书上略有不一样,即书上v=50L, t=30h)1/21/2 例6:(书上192页例13)口服某药100mg的溶液剂后,测出各时间的血药浓度数据如下:,t 及Fk,ka,t值假定该药在体内的表观分布容积为30L,试求该药的1/2(a)1/2 =3.5h,V=2L/kg)治疗所需血药浓度为4~8ug/ml,一位体重为50kgt:普鲁卡因胺(例71/2的病人,先以每分钟20mg速度滴注,请问何时达到最低有效治疗浓度?滴注多久后达到最大治疗浓度?欲维持此浓度,应再以怎样的速度滴注? 例8:某一受试者口服500mg某药后,测得各时间的血药浓度数据如下,假定F=0.8,V=125

相关主题