搜档网
当前位置:搜档网 › 勾股定理中四种重要的数学思想

勾股定理中四种重要的数学思想

勾股定理中四种重要的数学思想
勾股定理中四种重要的数学思想

勾股定理中四种重要的数学思想

摘要:本文主要针对勾股定理中的主要四种数学思想:方程思想、数形结合的思想、分类思想、转换思想,进行讨论、介绍.

关键字:勾股定理方程思想数形结合思想分类思想转换思想

勾股定理又称毕达哥拉斯定理,它是几何学中几个最重要的定理之一,它揭示了直角三角形三边之间的数量关系——如果在直角三角形三边的两直角边长分别为a,b,斜边为c,那么a2+b2=c2.它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一.它不仅在数学中,而且在其他自然科学、实际的生产生活中也被广泛地使用.

数学思想是数学的“灵魂”,数学思想遍及数学学习的各个角落,总结概括数学思想有利于透彻地理解所学的知识,有利于在数学学习中提高我们分析问题和解决问题的能力,形成用数学解决问题的意识.而在勾股定理这一章节的学习过程中我们同样可以发现其中蕴含着多种的数学思想. 本文主要介绍其中主要的四种数学思想.

1 方程思想

“方程”历来是数学研究的重要内容之一,也是研究数学重要的工具.对于众多数学问题的求解,方程常常可以充当由已知探索未知的桥梁而发挥巨大的作用.运用方程的观点去考察问题,运用方程的思想去分析问题,能有效地沟通知识间的纵横联系,发现各种数量之间的关系.有助于解题思路的寻求与优化.

勾股定理本身就是反应了直角三角形中三边的关系.所以在勾股定理的应用中最常见也是最基本的一类问题就在直角三角形中已知两边求第三边的问题,或是关于此类问题的变形题.而方程思想在勾股定理关于此类问题的求解过程中都得到了广泛的运用.

1.1 求距离长度问题

例1:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇

的长度分别是多少?

分析:在Rt△ABC中,只有BC边的长度,利用勾股定理求一边的长度,还要知道另

一边的长度.因此可以通过设立未知量,建立方程求解.

解:

设:水的深度为AB为x 尺,则芦苇的长度AC(AD)为(x+1)尺.

依题意可以得到如图1所示的图形

∵在Rt△ABC中,BC=5尺,根据勾股定理可得方程

(x+1)2=x2+52

解得 x=12 ∴ x+1=13

则水的深度为12尺,芦苇的长度为13尺. 图1

1.2 折纸问题

例2 如图所示,把一个长方形(四个角都是直角,对边相等)折叠,恰好点D落边BC上,交BC与点F.已知AB=8cm,BC=10cm,求EC的长.

分析:Rt△AEF,是Rt△AED沿边AE边折叠的,所以就可以通

过折叠中对称的性质得到许多的等量,在矩形中的折叠可以得到

许多的直角三角形.要求EC边长,构造直角三角形,找出EC边所

在的直角三角形,在根据勾股定理,找出所需的量以及各个量之间的关系.在已知量与为质量之间建立方程关系.

解:由题意,得AF=AD,DE=EF.

在Rt△ABF中,AB=8cm,AF=AD=10cm,

E

D A

B

C

∴6

==(cm).

∵BC=10cm,∴CF=10-6=4(cm).

设CE=xcm,则DE=(8-x)cm,

∴EF=DE=(8-x)cm,在Rt△CEF中,根据勾股定理可得方程

42+x2=(8-x)2

解得 x=3,故EC的长为3cm

2 数形结合思想

数形结合是数学解题中常用的一种数学方法,它也是一种数学思想.使用数形结合的方法,很多问题都能迎刃而解,且解法简捷.所谓数形结合就是根据数与形之间的对应关系,通过“数”与“形”之间相互结合,相互渗透、相互转化,将反映问题的抽象数量关系与直观图形结合起来,也是将抽象思维与形象思维有机的结合起来的一种解决数学问题的重要思想方法.

数形结合思想通过“以形助数,以数解形”,将数量关系和空间形式巧妙结合,使复杂问题简单化,抽象问题具体化,有助于把握数学问题的本质,发现问题中所隐含的条件。它是数学的规律性与灵活性的有机结合.

勾股定理揭示了直角三角形三边之间的数量关系——如果在直角三角形三边的两直角边长分别为a,b,斜边为c,那么a2+b2=c2.定理的本身实现了由“形”的特点与“数”特点的结合.因此不管是在定理本身的证明还是在定理的应用都经常运用到数形结合的思想.

2.1 方位问题:方位问题是勾股定理实际运用的重要体现.也是数形结合的典型列子.

例3:台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏性.如图所示,据气象部门观测,距沿海某城市A的正南方向220km B处有一台风中心,其中心最大风力为12级,每远离台风中心20km,风力就会减弱一级,该台风中心现正以15km/h的速度沿北偏东30°方向往C 处移动,且台风中心风力不变.若城市所受风力达到或超过4级,则称为受台风影响.

分析:根据图形找出距离A点最近的台风中心的位置,求出距离就可以判断是否收到影响,影响的风力.根据题意可以在图形上直观得找到所受影响的范围,构造直角三角形,根据勾股定理就可以求出范围及影响的时间.

(1)该城市是否会受到这次台风的影响?请说明理由;

(2)若会受到台风影响,则台风影响该城市持续时间有多长.

(3)该城市受到台风影响的最大风力为几级.

解:(1)作AD⊥BC于D,AD为城市A距台风中心的最短距离,在Rt△ABD中,

∠B=30°,AB=220km.

∴AD=1

2

AB=110km.

由题意知,当点A距离台风(12-4)×20=160(km)时,将会受到台风的影响,故该城市会受到台风的影响.

(2)由题意知,当A点距台风中心不超过160km时,将会受到台风的影响,则以A点为圆心,以160km 长为半径画弧,交BC于E、F两点,此时AE=AF=160km,当台风中心从E移到F处时,该城市都会受到台风影响,由勾股定理得

==

EF=2DE=

∴这次台风影响该城市的时间为

15

=h).

(3)当台风中心位于D时A市受这次台风影响的风力最大,最大风力为12-110

20

=6.5(级).

3 分类思想

分类的思想是自然科学乃至社会科学研究中经常用到的,又叫做逻辑划分.不论从宏观上还是从微观上对研究对象进行分类,都是深化研究对象、发展科学必不可少的思想.因此分类思想既是一种逻辑方法,也是一种数学思想.

数学中的分类思想主要是依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的思想.当解决数学问题时,由于研究问题过程中出现了不同情况,因而需对不同情况进行分类,然后对划分的每一类分别进行研究和求解。运用分类的思想,通过正确的分类,可以使复杂的问题得到清晰、完整、严密的解答.利于提高学生严密的逻辑推理能力和良好的思维品质.通过分类讨论,常能化繁为简,更清楚地暴露问题的本质.应用分类讨论思想解决问题,必须保证分类科学、统一,不重复,不遗漏,并力求最简.

在勾股定理中,主要应用分类思想来进行对三角形形状的分类讨论或对已知边或点所在的位置进行分类讨论,完整地求解。

例4 在△ABC中,AB=13,AC=15,高AD=12,则△ABC的周长为多少.

分析:可以对三角形的形状进行分类,不同的形状高线的位置不同:锐角

三角形的高线在三角形的内部,钝角三角形的高线在三角形的外部,而BC求解随高线位置的不同而不同.所以必须分类来讨论三角形的形状.

解:(1)如图4,如果该三角形是锐角三角形时当BC边上的高线在△ABC 内部时,如图所示:

∵AD⊥BC

∴∠ADB=∠ADC=90°,

∴△ADB与△ADC为直角三角形.

在Rt△ADB中,AB=13,AD=12,根据勾股定理得

BD2=AB2-AD2

∴==5

在Rt△ADC中,AC=13,AD=12,根据勾股定理得

DC2=AC2-AD2

∴=

∴BC=BD+DC=5+9=14.

△ABC的周长=AB+BC+CA=13+15+14=42

(2)如图5,如果该三角形是钝角三角形时,BC边上的高线在△ABC外部时,同理可得:BC=BD-DC=9-5=4

△ABC的周长=AB+BC+CA=13+15+4=32. C

图4 图5

例5 有一个面积为160m 2的等腰三角形草地,测得它的一边长为20m.现要给这块三角形草四周围上低矮栅栏,则栅栏的长度为____m.

分析:要完整的给出答案就要根据不同的情况进行分类.避免造成漏解.本题只给出了等腰三角形的一条边长,结果随已知边位置的不同而不同,所以,可以先对已知的边长进行分类:该边可以为等腰三角形的底,也可以为等腰三角形的腰;其次,对三角形的形状进行

分类:当已知边为等腰三角形的腰时,这边上的高既可以在形内,也可以在形外.

要完整的给出答案就要根据不同的情况进行分类.避免造成漏解.

解:(1)如图6,当已知边为等腰三角形的底时,BC=20m.

作AD ⊥BC 于D ,∵ABC S ?=160m 2, ∴ 高AD=16(m). ∵ BD=

12

BC=10(m),在Rt △ADB 中,由勾股定理可求得:

AB=

20+ (2)当已知边为等腰三角形的腰时,①若腰上的高在形内,

如图7,AB=AC=20 m ,

∵ABC S ?=160m 2,

∴高BD=16m ,在Rt △ABD 中,由勾股定理可求得AD=12m ,

∴ CD=8m ,在Rt △BCD 中,由勾股定理有

BC=

从而栅栏的长为

40+②若腰上的高在形外,如图8,AB=AC=20m ,

∵ABC S ?=160m 2,

∴高BD=16m ,在Rt △ABD 中,由勾股定理知AD=12m,从而DC=32m.

∴在Rt △BCD 中,由勾股定理有

BC=,所以栅栏的长度为

40+(m) 综上所述,答案应填入

20+40

40+. 4 转换思想

转换也是数学中的一种常用重要思维方法,它是分析问题和解决问题的一种重要思想,它能将未知的问题转化为已知的问题,把抽象的问题转化为具体的问题,把复杂的问题转化成简单的问题.

勾股定理研究的是平面直角三角形中三边之间的关系.但在学习过程中时常会遇到立体图形上的问题,这时就要考虑到运用转换的思想,把立体图进行展开等变化,形成熟悉的平面图形,再利用平面几何的知识进行求解.

例6 一长方体礼盒如图9所示,其中A A 'B 'B,C C 'D 'D 面为边长为10的正方形,BC=20.在底部A 处有壁虎,C '处有一蚊子,壁虎急于捕捉到坟子充饥.

(l)试确定壁虎所走的最短路线;

(2)若立方体礼盒的棱长为10cm ,壁虎要在半分钟内捕捉到坟子,求壁虎的每分钟至少

爬行多少厘米(保留整数)?

分析:求长方体表面两点间的最短距离时,就可以应用转换的思想通将长方体表面展开,把立体图形转换成平面图形,就可以利用平面几何的知识于进行求解.

解:(1)若把礼盒的上底面A ,B ',C ',D '竖立起来,如图9所示,使它与立方体的正面(ABB C ')在同一平面内,然后连结A C ',根据“两点间线段最短”知,线段A C '就是壁虎捕捉蚊子所走的最短路线.

(2)由(1)得,△AB C '是直角三角形,且AB=10,B C '=15, 根据勾股定理,得

A C '

26.93(cm )

壁虎要在半分钟内捕捉到蚊子,它至少每分钟爬行约54厘米.

B 图6 图7 图8

B'C'

C

A'C

例7 有一圆柱物体,如图所示,一只蚂蚁要从A 点绕物体的外壁爬行,正好到A 的正上方相对的B 点处,问蚂蚁爬行的最短

路径是多少.(已知物体的地面半径是2m ,高是4m.)

分析:解此题的关键是利用转换思想,把圆柱体的侧面展开,

得到一个矩形,找出对应的A,B 点在展开图中的位置利用两点间

的线段最短与勾股定理知识作答.

解:把圆柱体沿AD 边展开,形成一个矩形,A,B 点在矩形中

的位置如图所示. 连接AB ,根据“两点间线段最短”,则线段AB 就是蚂蚁爬行

的最短路径.

∴在Rt △DAB 中,AD=4m,BC=2π,根据勾股定理 AB=AD 2+BC 2=16+4π2≈5.34m

以上四中数学思想是勾股定理解题中最重要的数学思想,它们不仅可以相互独立使用,而且在许多问题解决中都是相互联系的,概括这些思想,有助于我们更好地使用这些数学思想去解决问题,提高解决问题能力。

参考文献:

[1]马全甫,勾股定理与数学思想的完美结合[J],成功(教育),武汉:湖北人民出版社,2008年06期.

[2]魏华斌,数学中常用的5种转化思想[J],湖北职业技术学院学报,孝感:湖北职业技术学院,2008年01期,第11卷.

[3]王勇刚,用分类思想解决数学问题[J],中学教与学,天津师范大学,2007年01期.

[4]孟坤,勾股定理中的数学思想[J],中学生数理化初二版(华师大版),郑州:河南教育报刊,2006年10期.

[5]于秀坤,勾股定理与数学思想的结合[J],中学生数理化八年级数学(北师大版),郑州:河南教育报刊,2007年z2期.

[6]邵梦芯,方程思想在三角解题中的妙用[J],新高考高一版,南京:江苏教育出版社.

[7]陈德前,解中考常用的数学思想方法例说,考试(中考版)[J],光明日报报业集团,2007年05期.

[8]林群 田载今 薛彬,勾股定理,义务教育课程标准实验教科书数学八年级下册[M],人民教育出版社.

[9]学习辅导练习组合(人教版) 八年级[M],广东教育出版社,23-26

9 B 图 10

初二数学勾股定理测试题及答案

勾股定理测试题 体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。 一、选择题 | 1.下列各数组中,不能作为直角三角形三边长的是( ) A. 9,12,15 B. 7,24,25 C. 6,8,10 D. 3,5,7 2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A. 可能是锐角三角形 B. 不可能是直角三角形 C. 仍然是直角三角形 D. 可能是钝角三角形 ! 3.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m) ( ) 4.一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为( ) A. 12cm B. C. D. ~ 二、填空题 5.如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是_________ . 6.直角三角形两条直角边的长分别为5、12,则斜边上的高为. < 7.已知甲往东走了4km,乙往南走了3km,这时甲、乙两人相距. 8.一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为. 9.以直角三角形的三边为边向形外作正方形P、Q、K,若SP=4,SQ=9,则Sk= . 三、解答题 @ 10.假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米

为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP=a.求:以PE 为边长的正方形的面积. / 12.已知:如图13,△ABC中,AB=10,BC=9,AC=17. 求BC边上的高. 13.拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,· 如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和__________ (填“大于”、“小于”或“等于”)图③中小正方形 《 的面积,用关系式表示为________ .(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有__________个正方形,它们的面积之间的关系是________ ,用 关系式表示为_____ .(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方>

初中数学勾股定理拔高综合训练含答案

初中数学勾股定理拔高综合训练 一.选择题(共15小题) 1.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出() A.2个 B.3个 C.4个 D.6个 2.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有() A.1 B.2 C.3 D.4 3.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是() A.4 B.8 C.16 D.32 4.分别以下列四组数为一个三角形的边长①6,8,10②5,12,13 ③8,15,16④4,5,6,其中能构成直角三角形的有() A.①④B.②③C.①②D.②④

5.如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果正方形的面积是13,小正方形的面积是1,直角三角形的两条边是分别是a,b,则a+b和的平方的值() A.13 B.19 C.25 D.169 6.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A1,则梯子底部B滑开的距离BB1是() A.4米 B.大于4米C.小于4米D.无法计算 7.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或D.60cm 8.如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有() A.2个 B.3个 C.4个 D.5个 9.如图所示:数轴上点A所表示的数为a,则a的值是()

八年级数学上册探索勾股定理教案浙教版

课题 探索勾股定理 教材 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。 授课教师: 刘洋 教学目标 1、知识与技能目标:掌握直角三角形三边之间的数量关系,学会用符号表示。学生在经历用数格子与割补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。 2、能力目标:通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。 3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学,爱数学,做数学的情感。使学生从经 历定理探索的过程中,感受数学之美,探究之趣。 教学重点、难点 重点:用面积法探索勾股定理,理解并掌握勾股定理。 难点:计算以斜边为边长的大正方形C面积及割补思想的理解与应用。 教学方法 选择引导探索法,采用“问题情境----建立模型----解释、应用与拓展”的模式进行教学。 教具准备 多媒体课件;若干张已画好直角三角形的方格纸;剪刀;已剪好的纸片若干张。 教学过程 一、创设情境,引入新课 (师)请同学们观察动画,我国科学家曾向太空发射勾股图 试图与外星人沟通,在2002年的国际数学家大会上采用弦图 作为会标,它为什么有如此大的魅力呢?它蕴涵着怎样迷人的 奥妙呢?这节课我就带领大家一起探索勾股定理。 (设计意图:用一段生动有趣的动画,点燃学生的求知欲,以 景激情,以情激思,引领学生进入学习情境。) 二、师生互动,探究新知 活动1:(观察图1)你知道正方形C的面积是多少吗? 你是怎样得出上面结果的呢? (生)独立思考后交流,采用直接数方格的办法,或者是 分割成几个等腰直角三角形的方法计算正方形C的面积。(多 媒体演示) (过渡语)同学们用数格子的方法发现了正方形C的面积,那么对于 下面图2中的正方形C,“数方格子”的方法还行得通吗?下面我们 一起来研究。 活动2:(观察你手中方格纸上的图2)正方形C的面积是多少? 你是怎样得出结果的呢? (师)我们用数方格子的方法能算出正方形C的面积吗?参考弦图,你想到什么好方法了吗?(引出“割” 法) 大家想一想还有没有其它方法呢?受“割”法的启示,我们能通过“补”的方法得出结论吗?

勾股定理中蕴含的数学思想

勾股定理中蕴含的数学思想 河北张家口市第十九中学 贺峰 数学思想方法是对数学的认识内容和所使用的方法的本质的认识,是数学知识的精髓,又是知识转化为能力的桥梁,有了数学思想方法为灵魂,数学才有了魅力。在学习数学的过程中,既要掌握基础知识,又要注重挖掘题目中蕴含的数学思想和方法,从而不断提高数学素养,增强探索创新能力,激发学习数学的兴趣,本文着重将勾股定理中蕴含的数学思想为同学们加以分析: 一、 特殊到一般的思想 例1如图1所示的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤……,则第n 个等腰直角三角形的斜边长为_____________。 析解:观察图象,第①、②、③、④个等腰直角三角形的斜边长分别为2、4、8、16,由此类推,第n 个等腰直角三角形的斜边长为2n 。 说明:猜想型问题是近几年各地中考试题的热点问题,根据问题提 供的信息,通过观察、类比、推理、猜想、验证得出一般性规律和 结论是解决这类问题一般方法,解题时要注意数形结合。 二、 分类思想 例2 如果三条线段的长分别为6cm 、xcm 、10cm ,这三条线段恰好能组成一个直角三角形,那么x =_______。 析解:本题分两种情况解答 (1)当以6cm 、xcm 为直角边,10cm 为斜边时,102=62+x 2,x =±8(舍负) (2)当6cm 、10cm 均为直角边时,62+102=x 2,x =±234(舍负) 因此,x 为4或34。 说明:在利用勾股定理解答某些数学问题时,常见的分类情况有以直角边、斜边分类,按等腰三角形的腰与底分类,依三角形的形状分类,按展开方式的不同分类等,同学们在解题须注意这一点,以避免出现丢解或遭成错解。 三、 整体思想 例3 如图2,已知Rt △ABC 的周长为2+6,其中斜边AB =2,求这个三角形的面积。 析解:在Rt △ABC 中,根据勾股定理,得 BC 2+AC 2=2 2 即(BC +AC )2-2BC 2AC =4 又由已知得BC +AC = 6 所以(6)2-2 BC 2AC =4 解得BC 2AC =1 所以S =12BC 2AC =12 说明:若要直接求出BC 与AC 的值,再求三角形的面积,比较繁杂,但由S =12 BC 2AC B C A 图2 图1

初中数学勾股定理

聚智堂学科教师辅导讲义 年级:课时数:学科教师: 学员姓名:辅导科目:数学辅导时间: 课题勾股定理 教学目的 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 2、勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是 直角三角形。 3、满足2 2 2c b a= +的三个正整数,称为勾股数。 教学内容 一、日校回顾 二、知识回顾 1. 勾股定理 如图所示,在正方形网络里有一个直角三角形和三个分别以它的三条边为边的正方形,通过观察、探索、发现正方形面积之间存在这样的关系:即C的面积=B的面积+A的面积,现将面积问题转化为直角三角形边的问题,于是得到直角三角形三边之间的重要关系,即勾股定理。 勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么 2 2 2c b a= + 即直角三角形两直角边的平方和等于斜边的平方。 说明: (1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,那么三条边之间就没有这种关系了。

(2)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。在没有特殊说明的情况下, 直角三角形中,a ,b 是直角边,c 是斜边,但有时也要考虑特殊情况。 (3)除了利用a ,b ,c 表示三边的关系外,还应会利用AB ,BC ,CA 表示三边的关系,在△ABC 中,∠B =90°,利 用勾股定理有2 2 2 AC BC AB =+。 2. 利用勾股定理的变式进行计算 由2 2 2 c b a =+,可推出如下变形公式: (1)2 2 2 b c a -=; (2)2 2 2 a c b -= (3)22b c a -= (4)22a c b -= (5)22b a c += (平方根将在下一章学到) 说明:上述几个公式用哪一个,取决于已知条件给了哪些边,求哪条边,要判断准确。 三、知识梳理 1、勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、如何判定一个三角形是直角三角形 (1) 先确定最大边(如c ) (2) 验证2 c 与2 2 b a +是否具有相等关系 (3) 若2 c =2 2 b a +,则△ABC 是以∠C 为直角的直角三角形;若2 c ≠2 2 b a + 则△ABC 不是直角三角形。

八年级初二数学 数学勾股定理的专项培优练习题(及答案

八年级初二数学数学勾股定理的专项培优练习题(及答案 一、选择题 1.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为() A.42 B.32 C.42或32 D.37或33 2.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm,在容器内壁离容器底部4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm,则该圆柱底面周长为()cm. A.9 B.10 C.18 D.20 3.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=53,CB的反向延长线上有一动点D,以AD为边在右侧作等边三角形,连CE,CE最短长为() 53 A.5B.53C.53D. 4.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直 .试在直线a上找一点M,在直线b上找一点N,满足 线b的距离为3,AB230 MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=() A.6 B.8 C.10 D.12 5.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )

A.3 B.15 4 C.5 D. 15 2 6.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为() A.12cm B.14cm C.20cm D.24cm 7.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,B C'交AD于点E,则线段DE的长为() A.3 B.15 4 C.5 D. 15 2 8.如图,点A和点B在数轴上对应的数分别是4和2,分别以点A和点B为圆心,线段AB的长度为半径画弧,在数轴的上方交于点C.再以原点O为圆心,OC为半径画弧,与数轴的正半轴交于点M,则点M对应的数为() A.3.5 B.3C13D 36 9.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()

初二数学勾股定理教案(模板)

初二数学上册教案模板勾股定理(2课时) 一、教学目标及重点 1、教学目标 (1)经历探索勾股定理及验证勾股定理的过程,通过自主学习体验获取数学知识的感受,培养学生的思维能力和语言表达能力。 (2)运用勾股定理解决实际问题。 (3)了解有关勾股定理的历史,通过有关勾股定理的历史讲解,对学生进行德育教育。 2、教学重点:勾股定理及其应用。 3、教学难点:通过有关勾股定理的历史讲解,了解数学发展史,激发学习兴趣,对学生进行德育教育。 二、探索发现:(在教师的引领下,小组合作,探索学习) 通过此案例引出:勾股定理(商高定理、毕达哥拉斯定理、百牛定理)的渊源。 三、知识透析: 1.勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,

那么: 即:直角三角形两直角边的 等于斜边的平方。 2.注意:(1)勾股定理的条件是:只有在直角三角形中才使用;(2)勾股定理的变形:222a =-b c ;222b =-a c 3.勾股定理验证方法:(教师引导学生通过面积计算,实现勾股定理证明) (1)赵爽证明: (2)伽菲尔德“总统证明法” 四、典例分析: 题型1:勾股定理 1.=90ABC C A B C ?∠∠∠∠V 例在中,,、、所对的边分别是a 、b 、c 。 (1)当a=3,b=4,则c= (2)若a=5,b=12,则c= 例2.一个等腰三角形的腰长为13cm ,底边长为10cm ,则底边上的高为?( )

(随堂练习:教材3页1、2) 题型2:勾股定理验证 例3.请您用下图验证勾股定理 例4.教材5页第三问 (随堂练习:教材6页中间) 题型3:勾股定理应用 例5.有两棵树,一棵高10米,另一棵高4m,两棵相距8米。一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()(2013安顺中考) A.8米 B.10米 C.12米 D.14米 注:将应用题转化构造为直角三角形 例6.教材5页例题

八年级数学上册《探索勾股定理》教案

八年级数学上册《探索勾股定理》教案 八年级数学上册《探索勾股定理》教案 一、教学目标: 知识与技能目标: 1、了解勾股定理的化背景,体验勾股定理的探索过程,学习利用拼图验证勾股定理的方法。 2、会利用勾股定理解决生活当中的实际问题。 过程与方法目标: 在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。 1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。 情感与态度目标: 1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久化的情感,激励学生奋发学习。 2、在探索勾股定理的过程中,培养合作意识和探索精神,以及严谨的数学学习态度。体会勾股定理的应用价值。 二、教学重、难点

重点:了解勾股定理的演绎过程,掌握定理的应用。 难点:理解勾股定理的推导过程。 关键:通过网格拼图的办法探索勾股定理的证明过程,理解其内涵。 三、教学准备: 制作投影幻灯片,网格图,设计好拼图(用纸片制作)。 四、教学方法: 本节课采用情境导入法,探究发现法教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。 五、教学程序 一、创设情境,导入新课 (显示投影片1、2) 小明现在遇到难题: 1、大风将学校的一根木制旗杆吹裂,随时都可能倒下,十分危急。(如图)现在决定从断裂处将旗杆折断,需要划出一个安全警戒区域,想请小明确定这个安全区域的半径至少是多少米,你能帮帮他吗? 2、小明妈妈买了一部29英寸(约为74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?

在勾股定理的教学中渗透数学思想方法

在勾股定理的教学中渗透数学思想方法 东莞东华初级中学 陈佩弟 《全日制义务教育数学课程标准》指出:“通过数学学习,学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法.”数学思想方法是数学的生命和灵魂,是数学知识的精髓,是把知识转化为能力的桥梁.因此,在数学教学活动中,教师应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,为学生的持续学习和发展作好奠基.勾股定理是平面几何有关度量的最基本、最重要的定理,也是中考的重要考点之一,其中蕴涵着多种数学思想,现小结如下: 一.勾股定理与数形结合思想 所谓数形结合思想,就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到迅速解题的目的. 勾股定理反映了直角三角形三条边之间的关系,它是把三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范. 例1:(课本P76习题18.2 T5)△ABC 中,AB=13cm,BC=10cm,BC 边上的中线AD=12cm.求AC 思考与分析:解答本题一定要先根据题意画出相应的图形,求出BD=CD=5cm ,再将题目所给的数据标在图上,得到如图,因此很容易就想到本题的解答思路是:先利用勾股定理的逆定理说明∠ADB=90°,从而∠ADC=90°,再用勾股定理即可求得AC 解: ∵AD 是BC 边上的中线 ∴BD=CD= 21BC=21×10=5cm (由形到数) ∵169144251252222=+=+=+AD BD 1691322==AB ∴222AB AD BD =+ ∴△ADB 为直角三角形,且∠ADB=90°(由数到形) ∴∠ADC=180°-∠ADB=90° ∴△ADC 为直角三角形 (由数到形) ∴131695122222==+=+=CD AD AC cm (由形到数) B C D 13 12 5 5

最新初中数学八年级上册《探索勾股定理》精品版

2020年初中数学八年级上册《探索勾股定 理》精品版

北师大版初中数学八年级上册《探索勾股定理》精品教案 【学情分析】 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。 【教学目标】 (一)知识与技能 掌握直角三角形三边之间的数量关系,学会用符号表示。学生在经历用数格子与割、补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。 (二)过程与方法 通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。 (三)情感态度与价值观 通过数学史上对勾股定理的介绍,激发学生学数学、爱数学、做数学的情感。使学生从经历定理探索的过程中,感受数学之美和探究之趣。 【教学重点】用面积法探索勾股定理,理解并掌握勾股定理。 【教学难点】计算以斜边为边长的大正方形C面积及割补思想的理解与应用。 【教学方法】 教法:选择引导探索法,采用“问题情境→建立模型→解释、应用与拓展”的模式进行教学。 学法:自主探索—合作交流的研讨式学习,乐于创新—参与竞争的积极性学习。 【课前准备】 为了更好地体现本节课课堂评价的主题,课前将全班学生划分为6个小组,每个小组的同学推举一位组长和副组长,在黑板上展示出以组长名字划分的6个小组的竞技台,由班长和数学课代表一起完成本节课的记分任务。另外,老师加以说明,本节课同学们积极参与课堂评价,我们将评选出1~2个优胜小组获得老师准备的奖品,评选出5~6位表现突出的同学获得老师赠与的礼物。 【教学过程】 (一)故事引入,引发思考

勾股定理中四种重要的数学思想

勾股定理中四种重要的数学思想 摘要:本文主要针对勾股定理中的主要四种数学思想:方程思想、数形结合的思想、分类思想、转换思想,进行讨论、介绍. 关键字:勾股定理方程思想数形结合思想分类思想转换思想 勾股定理又称毕达哥拉斯定理,它是几何学中几个最重要的定理之一,它揭示了直角三角形三边之间的数量关系——如果在直角三角形三边的两直角边长分别为a,b,斜边为c,那么a2+b2=c2.它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一.它不仅在数学中,而且在其他自然科学、实际的生产生活中也被广泛地使用. 数学思想是数学的“灵魂”,数学思想遍及数学学习的各个角落,总结概括数学思想有利于透彻地理解所学的知识,有利于在数学学习中提高我们分析问题和解决问题的能力,形成用数学解决问题的意识.而在勾股定理这一章节的学习过程中我们同样可以发现其中蕴含着多种的数学思想. 本文主要介绍其中主要的四种数学思想. 1 方程思想 “方程”历来是数学研究的重要内容之一,也是研究数学重要的工具.对于众多数学问题的求解,方程常常可以充当由已知探索未知的桥梁而发挥巨大的作用.运用方程的观点去考察问题,运用方程的思想去分析问题,能有效地沟通知识间的纵横联系,发现各种数量之间的关系.有助于解题思路的寻求与优化. 勾股定理本身就是反应了直角三角形中三边的关系.所以在勾股定理的应用中最常见也是最基本的一类问题就在直角三角形中已知两边求第三边的问题,或是关于此类问题的变形题.而方程思想在勾股定理关于此类问题的求解过程中都得到了广泛的运用. 1.1 求距离长度问题 例1:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇 的长度分别是多少? 分析:在Rt△ABC中,只有BC边的长度,利用勾股定理求一边的长度,还要知道另 一边的长度.因此可以通过设立未知量,建立方程求解. 解: 设:水的深度为AB为x 尺,则芦苇的长度AC(AD)为(x+1)尺. 依题意可以得到如图1所示的图形 ∵在Rt△ABC中,BC=5尺,根据勾股定理可得方程 (x+1)2=x2+52 解得 x=12 ∴ x+1=13 则水的深度为12尺,芦苇的长度为13尺. 图1 1.2 折纸问题 例2 如图所示,把一个长方形(四个角都是直角,对边相等)折叠,恰好点D落边BC上,交BC与点F.已知AB=8cm,BC=10cm,求EC的长. 分析:Rt△AEF,是Rt△AED沿边AE边折叠的,所以就可以通 过折叠中对称的性质得到许多的等量,在矩形中的折叠可以得到 许多的直角三角形.要求EC边长,构造直角三角形,找出EC边所 在的直角三角形,在根据勾股定理,找出所需的量以及各个量之间的关系.在已知量与为质量之间建立方程关系. 解:由题意,得AF=AD,DE=EF. 在Rt△ABF中,AB=8cm,AF=AD=10cm, E D A B C

新北师大版八年级数学(上册)勾股定理专题训练优质讲义全

勾股定理 本章常用知识点: 1、勾股定理:直角三角形两直角边的 等于斜边的 。如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。 2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。 常见勾股数有: 3、常见平方数: 121112=; 144122=; 169132=; 196142=; 225152=;256162= 289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272= 专题归类: 专题一、勾股定理与面积 1、、在Rt ▲ABC 中,∠C=?90,a=5,c=3., 则Rt ▲ABC 的面积S= 。 2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。 3、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为

4、在直线l 上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是1、 2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+S 2+S 3+S 4等于 。 5、三条边分别是5,12,13的三角形的面积是 。 6、如果一个三角形的三边长分别为a,b,c 且满足:a 2+b 2+c 2 +50=6a+8b+10c,则这个三角形的面积为 。 7、如图1,?=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长? 7、如下图,在?ABC 中,?=∠90ABC ,AB=8cm ,BC=15cm ,P 是到?ABC 三边距离相等的点,求点P 到?ABC 三边的距离。 8、有一块土地形状如图3所示,?=∠=∠90D B ,AB=20米,BC=15米,CD=7 米,请计算这块土地的面积。(添加辅助线构造直角三角形) l 3 2 1 S 4 S 3 S 2 S 1 B C P

勾股定理回顾与思考

第一章勾股定理 回顾与思考 一、学生起点分析 通过前面三节的学习,学生已经基本掌握了勾股定理及逆定理的知识,并能应用勾股定理及其逆定理解决一些具体的实际问题,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力. 八年级学生已初步具有几何图形的观察,几何证明的理论思维能力.他们希望老师创设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会.但对于勾股定理的综合应用,还需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,可能部分同学会有一些困难. 二、教学任务分析 勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之间的数量关系,将形与数密切联系起来,理论上占有重要的地位,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用,勾股定理的应用蕴含着丰富的文化价值.勾股定理也是后续有关几何度量运算和代数学习必要的基础,具有学科的基础性与广泛的应用. 本课时教学是复习课,强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力.让学生通过动手、动脑、动口自主探索,感受数学的美,以提高学习兴趣. 为此,本节课的教学目标是: ①让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用. ②在回顾与思考的过程中,提高解决问题,反思问题的能力.

八年级初二数学下学期勾股定理单元专题强化试卷学能测试试题

八年级初二数学下学期勾股定理单元专题强化试卷学能测试试题 一、选择题 1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( ) A .600m B .500m C .400m D .300m 2.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm . A .25 B .20 C .24 D .105 3.如图,将一个等腰直角三角形按图示方式依次翻折,若DE a =,则下列说法正确的是 ( ) ①DC '平分BDE ∠;②BC 长为( ) 22a +;③BCD 是等腰三角形;④CED 的周长 等于BC 的长. A .①②③ B .②④ C .②③④ D .③④ 4.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )

A .2cm B .3cm C .4cm D .5cm 5.如图,在数轴上点A 所表示的数为a ,则a 的值为( ) A .15-- B .15- C .5- D .15-+ 6.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定 ABC 的形状是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .以上都不对 7.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为( ) A .4 B .3 C .2 D .1 8.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( ) A .217 B .25 C .42 D .7 9.如图,在ABC ?中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=?, 4BE =,7AD =,则AB 的长为( ) A .10 B .53 C .213 D .1510.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的

中考数学复习指导:勾股定理中的分类讨论

勾股定理中的分类讨论 在学习勾股定理时,有时会遇到多种情况,稍不留神就会丢解或造成错解,这就需要我们利用分类讨论思想对各种情况加以分类,并逐类求解,然后综合得解.为帮助同学们解决这类问题,现将勾股定理中需用到分类的问题为同学们分类浅析. 一、按直角边、斜边分类 例1 如果三条线段的长分别为3cm 、x cm 、5cm ,这三条线段恰好能组成一个直角三角形,那么x 等于________. 解:(1)当以3cm 、x cm 为直角边,5cm 为斜边时,有52=32+x 2,x =4; (2)当3cm 、5cm 均为直角边时,有32+52=x 2,x 因此,x 为4 二、按等腰三角形的腰与底分类 例2 在等腰三角形ABC 中,AB =5cm ,BC =6cm ,则△ABC 的面积为________. 解:(1)当5cm 为腰,6cm 为底时,则AB =AC =5cm ,如图1.过A 点作AD ⊥BC ,所以CD =3,在Rt △ACD 中,AD 2=AC 2-CD 2,所以AD 2=52-32,AD =4,因此S △ABC =12 ×6×4=12cm 2. (2)当6cm 为腰,5cm 为底时,则BC =AC =6cm ,如图2.过C 点作CD ⊥AB 于点 D ,所以AD =52,在Rt △ACD 中,CD 2=AC 2-AD 2,所以222562CD ??=- ??? ,CD , 因此1522ABC S =??=△2. 所以△ABC 的面积为12cm 2cm 2. 三、按高的位置分类

例3 在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为________. 解:(1)当△ABC 的高在三角形内时,如图3.由题意可知,BD 2=AB 2-AD 2,所以BD 2=152-122,BD =9,CD 2=AC 2-AD 2,所以CD 2=132-122,CD =5,所以BC =9+5=14,因此△ABC 的周长为9+5+15+13=42. (2)当△ABC 的高在三角形外时,如图4.由题意可知,BD 2=AB 2-AD 2,所以BD 2=152-122,BD =9,CD 2=AC 2-AD 2,所以CD 2=132-122,CD =5,所以BC =9-5=4,因此△ABC 的周长为4+15+13=32. 综上所述△ABC 的周长为32或42. 四、按展开方式的不同分类 例4 如图5是一个放置雕塑的长方体底座,AB =12米, BC =2米,BB ′=3米,一只蚂蚁从点A 出发,以2厘米/秒的 速度沿长方体表面爬到C ′至少需( ) A .1105 2分钟 B .5106分钟 C .1132 分钟 D .10分钟 解:2厘米/秒=0.02米/秒. (1)将正面与右面展开,如图6. 由两点之间,线段最短及勾股定理可知路径一:AC ′2=AC 2+CC ′2=142+32=205; (2)将左面与上面展开,如图7. 由勾股定理知路径二:AC ′2=AD 2+C ′D 2=152+22=229; (3)将正面与上面展开,如图8.

人教版八年级下册数学 专题:第18章.勾股定理知识点与常见题型总结

八年级下册第18章.勾股定理知识点与常见题型总结 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 7.勾股定理的应用 勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用 勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体

初中数学《勾股定理》典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 ) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆. 2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半 圆的面积之间的关系.

3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 3、已知直角三角形两直角边长分别为5和12, 求斜边上的高. 4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ) A . 2倍 B . 4倍 C . 6倍 D . 8倍 5、在Rt △ABC 中,∠C=90° S 3 S 2 S 1

浙教版初中数学八年级上册 2.7 探索勾股定理

2.7 探索勾股定理(2) 教案 教学任务分析 教学过程设计

B ’ A B C A ’ C ’ D B A C 2.如果△ABC 满足AC 2+BC 2=AB 2,那么 这个三角形是不是直角三角形? [活动2] 理论释意 已知:如图在△ABC 中,AC=a ,BC=b ,AB=c , a 2+ b 2= c 2. 求证:△ABC 是直角三角形. [活动3] 例1、根据下列条件,分别判断以a ,b ,c 为边的三角形是不是直角三角形 (1)a =7,b =24,c =25 (2)a = ,b =1,c = 牛刀小试 :1、根据下列条件,判断下面以a 、b 、c 为边的三角形是不是直角三角形? (1) a =20,b=21,c=2 (2) a =5,b=7,c=8 (3) 2、如图,四边形ABCD 中,AB =3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD 的面积. 学生结合活动1的体验, 独立思考问题1,在此基础上, 通过小组交流、讨论,说出问 题2的证明思路. 教师提出问题,并适时诱导,指导. 学生完成活动2的证 明.之后,归纳得出勾股定理 的逆定理.在此基础上,类比定理与逆定理的关系. 在活动2中教师应重点 关注: (1)学生能否联想到 了全等,进而设法构造全等三 角形,这一问题获解的关键; (2)学生在活动2中,所表 现出来的构造直角三角形的 意识; (3)数形结合的意识和由特 殊到一般的数学思想方法; 学生说出例1(1)的判 断思路,部分学生演板问题2,剩下的学生在课堂作业本上完成. 教师板书例1的详细解答过程,并纠正学生在练习中出现的问题,最后向学生介绍勾股数的概念. 在活动3、4中教师应重点关注: (1)学生的解题过程是否规 范; (2)是不是用两条较小边长的平方和与较大边长的平方进行比较; “命题+证明=定理”的推理模式为定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点. 进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重点. 2c b a ===,3,732

相关主题