搜档网
当前位置:搜档网 › 常用金属材料及其成形

常用金属材料及其成形

常用金属材料及其成形
常用金属材料及其成形

第七章常用金属材料及其成形

这是用铸造方法生产出的电机外壳

金属材料在许多领域中的应用都十分广泛,特别是在机械行业中更是主要的使用对象。要合理的选择材料和成形加工方法,就要掌握和了解金属材料的种类、性能特点、成形加工方法和应用范围等知识。学习本章后应掌握和应了解的具体内容如下:

1.铸造成形的方法,工艺技术

2.几种常用铸造方法的工艺过程、特点,适用铸造合金,应用范围

3. 锻造成形的方法,设备,工艺技术

4. 锻造毛坯的组织和性能特点,应用范围

5.冲压成形的加工对象,基本工序

6.钢的分类、牌号,性能特点,应用

7.铸铁的分类,组织和性能特点,应用

8.非铁金属的分类,性能特点,应用

金属材料包括钢铁(黑色金属)和非铁(有色)金属两大类。钢铁材料在各个领域中的应用都十分广泛,尤其在机械行业中更是起到基础材料的作用。

金属材料的主要成形技术——铸造和锻造由来已久,是人类最早应用的工业技术。直到现在高科技迅速发展的信息时代,这些传统的工艺技术仍在不断发展,仍在起着不可替代的重要作用。

通过本章的学习,你将了解到:金属材料的种类,各种金属材料的性能特点、应用范围,金属成

形加工的方法、工艺过程、特点和应用。这些知识都是工程师和设计师所必需的基础知识。

7.1.1 概述

金属零件的制造过程一般包括毛坯成形和对毛坯的切削加工,有时需要进行热处理以获得所希望的性能(见图7.1-1)。金属成形方法主要指获得毛坯的生产加工方法。工业上应用的金属成形方法(即毛坯生产方法)主要有:铸造,压力加工,焊接,粉末冶金等(见图7.1-2)。

图7.1-1机器生产过程示意图

图7.1-2金属毛坯的生产方法及其分类

图7.1-2列举了一些主要的金属成形方法。每一种成形方法都有自己的特点和适用范围,所应用的

原理也各不相同。

铸造是将所需的金属熔化成液体,浇注到铸型中,待其冷却凝固后获得铸件(毛坯)的。因此,铸造也可以称为液态成形。

压力加工则是利用固态金属的塑性变形来实现成形加工的。

焊接成形是将金属局部熔化,通过焊缝的凝固把单个的构件连接组合在一起,形成一个完整的毛坯或零件。

粉末冶金是利用烧结过程中原子的扩散,使粉末颗粒紧密结合在一起。

下面将选择几种常用的金属成形方法作简要介绍。

7.2.1 铸造历史

铸造(Casting)是历史最悠久、至今仍是应用最广泛的金属成形方法。工艺过程包括熔炼金属、制造铸型、浇注,凝固后获得一定形状和性能的铸件。

中国古代的铸造技术水平非常之高,令当今世人惊叹不已。这里介绍几例(引自:温林、李建平,彩图版十万个为什么(艺术卷),京华出版社,2001),以飨读者。

图7.2-1商代司母戊鼎

在河南安阳出土,用青铜铸造,重875kg,高133cm,

长110cm,宽78cm。

图7.2-2西周时代的簋青铜器。簋(音gui):盛食物用的器皿

图7.2-3西汉透光铜镜(上)和它的透光效果

图7.2-4商厚期的青铜器

7.2.2 铸造的特点

由于是液态成形,铸造可以生产形状很复杂的铸件,见图7.2-5。

铸件大小几乎不受限制,质量从几克到几百吨,壁厚从1mm到1m以上都可以铸造,见图7.2-6。

可用于铸造的金属与合金的种类很多。从原理上讲,所有金属与合金都可以熔化成液体,能够用于铸造。

但是金属材料的铸造性能有差别,实际生产中主要使用那些容易铸造的合金,如铸铁。 铸造所用原材料价格较低,所以铸件生产成本较低。

由于铸造具有如此突出的优点,所以才会经久不衰,且不断发展,直到现在仍然在制造业中得到广泛应用。

图7.2-5 具有复杂形状和内腔的铝合金铸件(汽车发动机箱体——压铸件)(引自:E.Paul,De Garmo, Materials and Processes in Manufacturing )

图7.2-6 60多吨重的大型铸件(引自:Gregory S.

Graham, Metalworking An Introduction )

铸造生产过程较为复杂,铸件质量不易控制,铸件的力学性能较同种材料的锻压件差。但是,由于铸造工艺的不断改进,现代科技在铸造中的应用,以及一些新型铸造方法的出现和应用,这些缺点正在逐步被克服,铸件的力学性能、形状和尺寸精度、表面质量大大提高。这使得铸造的应用范围更加广泛。例如,原来用钢锻造的内燃机曲轴,已用球墨铸铁铸造生产,见图7.2-7。

图7.2-7 球墨铸铁曲轴(铸件)

7.2.3 砂型铸造

砂型铸造(Sand casting)是最基本、应用最普遍的铸造方法。其基本工艺过程如图7.2-8所示。

图7.2-8砂型铸造基本工艺过程示意图

型砂一般是由石英(SiO2)砂、粘结剂、水等混合而成。工业生产常用的粘结剂有粘土,水玻璃、树脂、植物油等。粘土砂、树脂砂主要用于铸铁件生产;水玻璃砂用于铸钢件生产;油砂则主要用于制造特殊的型芯,以形成铸件复杂的内腔。

砂型铸造就是用配制好的型砂和模型来制作铸型(此过程称为造型)。在砂箱中将型砂舂紧,然后取出模型,合箱后就成为铸型。将熔炼好的金属液体浇注到铸型中,冷却凝固后,落砂、清理出铸件。

砂型铸造的适应性很强,各种大小、形状的,各种合金的铸件都可以生产。

一个铸型只能使用一次,造型耗费的时间较多;另外,工人的工作环境较差。

7.2.4 熔模铸造

除了砂型铸造,其他还有许多种铸造方法,这些铸造方法统称为特种铸造。下面简单介绍几种常用的特种铸造方法。

(以下几种铸造方法可以仅作一般性了解)

熔模铸造(Investment casting)也称为精密铸造或失蜡铸造(Lost-wax casting)。生产工艺过程如图7.2-9所示(具体生产工艺过程将在《金属工艺学》或《材料成型加工技术》课程中讲解,这里仅作简介)。

图7.2-9 熔模铸造工艺过程示意图

与砂型铸造相比,熔模铸造有如下优点:

由于没有分型面,所以能生产形状非常复杂的铸件;

铸件精度和表面质量高; 适用于各种合金铸件,特别适合高熔点、难加工、形状复杂的高合金钢铸件。如高速钢刀具,不锈钢叶片、叶轮等(图7.2-10)。

图7.2-10 用熔模铸造法生产的叶轮

叶轮形状复杂,叶轮片很薄,用其他铸造方法难以制造。(引自:E.Paul,De Garmo, Materials and Processes in Manufacturing ) 看更多的关于熔模铸造的图片,请点击更多图片。

工序繁多,生产周期长,生产效率较低; 铸件大小受限,一般不超过25kg ; 铸件生产成本较高。

7.2.5 压力铸造

压力铸造(Die casting)是用高的压力(比压为30 ~70Mpa)将金属液体压入金属铸型,并在压力下凝固成为铸件。

生产率极高。原因是操作简便,自动化或半自动化生产。

每小时可压铸50 ~500件。

铸件质量高。包括铸件尺寸精度和表面质量高,铸件的

力学性能高。这是因为铸件在高压下凝固,组织细密,所

以强度硬度高。

便于铸出形状复杂的薄壁铸件。

图7.2-11是具有复杂形状和内腔的压铸件。

图7.2-11铝合金压铸件(引自:E.Paul,De Garmo, Materials and Processes in Manufacturing)

设备投资大。包括压铸机(图7.2-12)和压型(模具),价格都很高。

压铸合金一般都是低熔点合金,如铝合金、锌合金。这是因为压铸钢铁材料时,压型的寿命太短。

由于金属液体充型和冷却速度太快,型腔内的气体难以排尽,铸件内往往有气孔存在。真空压铸可以解决气孔问题,但是抽真空会降低生产率。

图7.2-12压铸机(引自:E.Paul,De Garmo,

Materials and Processes in Manufacturing)

目前压力铸造主要用于大批量生产非铁合金铸件:铝合金约占30 ~ 60%,锌合金次之,铜合金约占1 ~ 2%。

7.2.6 其他铸造法

金属型铸造(Permanent casting)的铸型是用金属(大都是用钢)加工而成的,可以反复使用,因此,也称为永久型铸造。使用金属铸型省掉了造型工序,和砂型铸造相比大大提高了生产效率;同时,由于金属铸型对铸件的冷却速度快,所以也提高了铸件的力学性能。由于受铸型寿命问题的限制,金属型铸造主要用于铝合金、锌合金、镁合金、铜合金铸件的生产。

离心铸造(Centrifugal casting)是将金属液体浇入高速旋转的铸型中,在离心力的作用下充型和凝固从而获得铸件的方法。

离心铸造分为立式和卧式两种基本形式。绕垂直轴旋转的称为立式,绕水平轴旋转的则叫做卧式。卧式离心铸造主要用于较长铸铁管件(如水管、汽缸的缸套等)的生产。图7.2-14为立式离心铸造生产火车轮的示意图,为了提高生产率,一次铸出5个车轮铸件。

离心铸造主要适用于大批量生产的回转体铸件。

图7.2-14火车轮的离心铸造示意图

(引自:Gregory S. Graham, Metalworking An Introduction)

低压铸造(Pressure casting)的工作原理

见动画演示。保温坩埚炉用于熔炼和储存金属

液,升液管与铸型型腔相通。铸型可以是金属型、

干砂型或石墨型等。在压缩空气的压迫下,金属

液在升液管中缓慢上升,直至充满型腔,并保持

压力,使铸件在压力下凝固。铸件凝固后,卸去

压力,升液管中未凝固的金属液在重力的作用下

流回到坩埚中。取出铸件,安装好铸型,再进行

下一件的生产。

低压铸造原理演示

金属液充型平稳,型腔内的气体容易排除。

可以防止铸件生产缩孔、缩松缺陷,并且不需要安放冒口,从而提高了金属的利用率。

铸件在压力下凝固,组织致密,力学性能高。

所用设备比压铸机价格低得多,而且容易实现自动化操作。

目前主要用于铝合金铸件的大批量生产,如汽缸体、汽缸盖、小汽车的车轮毂、活塞等。也可以用于球墨铸铁件,铜合金铸件的生产。

7.2.7 几种常用铸造方法的比较

7.3.1 概念及其基本生产方式

压力加工(Forging operations)是利用金属在外力的作用下所产生的塑性变形(Plastic deformation),来获得具有一定形状、尺寸和力学性能的毛坯或零件的生产方法。

根据金属坯料变形时被加热的温度高低,压力加工分为热加工(Hot working)和冷加工(Cold working )。变形温度在再结晶温度(Recrystallization temperature)以上时,称为热加工或热变形;变形温度在再结晶温度以下时,则称为冷加工或冷变形。

经过冷变形的金属强度、硬度升高,塑性、韧性下降的现象称为加工硬化(Strain hardening)。再结晶可以使加工硬化完全消除,所以热加工不会造成加工硬化。然而,由于金属经塑性变形后内部组织致密、晶粒细化,所以冷、热加工生产的毛坯或零件具有更高的力学性能。

压力加工的基本生产方式有:

7.3.2 自由锻造

自由锻造(Free forging)是在锻造设备的上、下砧之间(或只是

应用简单的通用性工具)直接使金属坯料发生变形的锻造方法。锻件

(Forge piece)的成形主要取决于操作工人的操作方法和技能。

通用、灵活,大小锻件均可生产(小到不足1kg,大到300t以上)。(见图7.3-1, 图7.3-2)由于自由锻造可以实现坯料的局部变形(而模型锻造是坯料整体变形),所以,对于大型或巨型锻件只能采用自由锻造法生产。

锻件形状简单、尺寸精度低、表面粗糙,要求操作工人的技术水平高、且劳动强度大,生产效率比模型锻造低得多。

图7.3-1典型自由锻造锻件的形状

图7.3-2巨型自由锻锻件(引自:E.Paul,De Garmo,

Materials and Processes in Manufacturing)

自由锻造的设备分为锻锤和液压机两类。锻锤对金属坯料施加的是冲击力,液压机则是使坯料在静压力下变形。

工业上常用的锻锤有空气锤和蒸汽-空气锤(图7.3-3),空气锤可锻100kg以下的锻件,蒸汽-空气锤可锻1500kg以下的锻件,再大的锻件则需要用液压机了。

液压机有水压机和油压机,大型水压机(图7.3-4)可锻造300t以上的锻件。

图7.3-3蒸汽-空气锤(引自:Gregory S. Graham, Metalworking An Introduction)

图7.3-4五万吨压力的水压机(引自:E.Paul,De Garmo, Materials and Processes in Manufacturing)

常见八种金属材料及其加工工艺

常见八种金属材料及其加工工艺 1、铸铁——流动性 下水道盖子作为我们日常生活环境中不起眼的一部分,很少会有人留意它们。铸铁之所以会有如此大量而广泛的用途,主要是因为其出色的流动性,以及它易于浇注成各种复杂形态的特点。铸铁实际上是由多种元素组合的混合物的名称,它们包括碳、硅和铁。其中碳的含量越高,在浇注过程中其流动特性就越好。碳在这里以石墨和碳化铁两种形式出现。 铸铁中石墨的存在使得下水道盖子具有了优良的耐磨性能。铁锈一般只出现在最表层,所以通常都会被磨光。虽然如此,在浇注过程中也还是有专门防止生锈的措施,即在铸件表面加覆一层沥青涂层,沥青渗入铸铁表面的细孔中,从而起到防锈作用。金属加工微信,内容不错,值得关注。生产砂模浇注材料的传统工艺如今被很多设计师运用到了其他更新更有趣的领域。 材料特性:优秀的流动性、低成本、良好的耐磨性、低凝固收缩率、很脆、高压缩强度、良好的机械加工性。 典型用途:铸铁已经具有几百年的应用历史,涉及建筑、桥梁、工程部件、家居、以及厨房用具等领域。 2、不锈钢——不生锈的革命 不锈钢是在钢里融入铬、镍以及其他一些金属元素而制成的合金。其不生锈的特性就是来源于合金中铬的成分,铬在合金的表面形成了一层坚牢的、具有自我修复能力的氧化铬薄膜,这层薄膜是我们肉眼所看不见的。我们通常所提及的不锈钢和镍的比例一般是18:10。 20世纪初,不锈钢开始作为元才来噢被引入到产品设计领域中,设计师们围绕着它的坚韧和抗腐蚀特性开发出许多新产品,涉及到了很多以前从未涉足过的领域。这一系列设计尝试都是非常具有革命性的:比如,消毒后可再次使用的设备首次出现在医学产业中。 不锈钢分为四大主要类型:奥氏体、铁素体、铁素体-奥氏体(复合式)、马氏体。家居用品中使用的不锈钢基本上都是奥氏体。 材料特性:卫生保健、防腐蚀、可进行精细表面处理、刚性高、可通过各种加工工艺成型、较难进行冷加工。 典型用途:奥氏体不锈钢主要应用于家居用品、工业管道以及建筑结构中;马氏体不锈钢主要用于制作刀具和涡轮刀片;铁素体不锈钢具有防腐蚀性,主要应用在耐久使用的洗衣机以及锅炉零部件中;复合式不锈钢具有更强的防腐蚀性能,所以经常应用于侵蚀性环境。

金属材料的塑性成形

第3章金属材料的塑性成形 概述 3.1金属塑性成形基础 3.2 常用的塑性成形方法 3.3 少、无切削的塑性成形方法3.4 常用的塑性成形金属材料

概述 金属塑性成形是利用金属材料所具有的塑性, 在外力作用下通过塑性变形,获得具有一定形状、尺寸和力学性能的零件或毛坯的加工方法。由于外力多数情况下是以压力的形式出现的,因此也称为金属压力加工。 塑性成形的产品主要有原材料、毛坯和零件三大类。 金属塑性成形的基本生产方式有:轧制、拉拔、挤压、自由锻、模锻、板料冲压等。

塑性成形的特点及应用: (1)消除缺陷,改善组织,提高力学性能。 (2)材料的利用率高。 (3)较高的生产率。如利用多工位冷镦工艺加工内角螺钉,比用棒料切削加工工效提高约400倍。 (4)零件精度较高。应用先进的技术和设备,可实现少切削或无切削加工。如精密锻造的伞齿轮可不经切削加工直接使用。 但该方法不能加工脆性材料和形状特别复杂或体积特别大的零件或毛坯。 塑性成形加工在机械制造、军工、航空、轻工、家用电器等行业得到了广泛应用。例如,飞机上的塑性成形零件约占85%;汽车、拖拉机上的锻件占60%~80%。

3.1 金属塑性成形基础 3.1.1 单晶体和多晶体的塑性变形3.1.2 金属的塑性变形 3.1.3 塑性成形金属在加热时组织和 性能的变化 3.1.4 金属的塑性成形工艺基础

3.1.1单晶体和多晶体的塑性变形1.单晶体的塑性 变形 金属塑性变形最常 见的方式是滑移。 滑移是晶体在 切应力的作用下, 一部分沿一定的晶 面(亦称滑移面) 和晶向(也称滑移 方向)相对于另一 部分产生滑动。 晶体滑移变形示意图

金属材料性能

金属材料性能 金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金属氧化物(如氧化铝)不属于金属材料) 性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。 种类 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。 (3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。 金属材料特质 1.塑性 塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。 金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。 2.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

最新常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 .生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性 能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在 于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化 铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生 铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低, 它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件 的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会 使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可 提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了 生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬 脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达 1.2%。硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁 化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高 的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是 由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定 影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格 的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 部分常用钢的牌号、性能和用途 1 《信息来源:无缝钢管》

(完整版)金属材料知识大全

金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金 属氧化物(如氧化铝)不属于金属材料) 1.意义 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后 出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。 2.种类 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬 度一般比纯金属高,并且电阻大、电阻温度系数小。 (3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及 金属基复合材料等。 3.性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制 造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工 艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、 切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它 包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它 的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和 非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷 的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为 机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载 荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求 的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、 多次冲击抗力和疲劳极限等。 金属材料特质

金属材料成型工艺及设备

《金属材料成型工艺及设备》课程教学大纲 (Metal Forming Process and Equipments) 学时数:32 其中:实验学时: 课外学时: 学分数:2 适用专业:模具设计及制造 执笔者:王兴波 审核人: 编写日期:2010年9月 一、课程的性质、目的和任务 本课程是模具设计及制造专业本科的专业必修课程之一,主要根据模具设计与制造的专业特点,以金属材料成型技术为核心,围绕金属材料液态(铸造)、金属材料固态塑性变形(冲压)、金属材料液态连接(焊接)以及粉末成型四个方向的成型技术和基本操作,介绍铸造成型、冲压成型、焊接成型、粉末成型的相关工艺及设备。通过本课程的学习,学生在理论上能够了解并掌握金属材料成型的工艺、材料变形与分析的基本方法以及相关成型设备的特征与使用。 二、课程教学的基本要求 课程是模具设计与制造专业的专业必修课程。通过本课程的教学,学生应该: (一)掌握铸造成型的基本原理,熟练掌握压铸成型的工艺及设备是使用方法; (二)熟练掌握塑性成型的工艺过程、设备的使用以及材料变形的控制; (三)掌握焊接成型的工艺原理、设备特征; (四)掌握粉末成型的工艺原理、设备特征。 三、课程的教学内容、重点和难点 第一章金属材料及其成型 一、金属材料 (一)碳素钢与合金钢 (二)铸钢 (三)有色金属及粉末冶金材 二、金属成型的种类及特点 (一)液态成型 (二)压力加工成型 (三)焊接成型 (四)粉末成型 三、金属成型制件的价值

(一)汽车工业 (二)飞机工业 (三)其他民用与国防工业 第二章金属液态成型——铸造成型 一、概述 二、铸造成形方法 (一)浇铸 (二)压铸 三、精铸成形 四、压铸成型和半固态成型 (一)压铸成型原理 (二)压铸的基本工艺过程 (三)铸件成形缺陷与防止措施 四、压铸设备 (一)压铸机及其工作原理 (二)压铸设备的技术参数 第三章金属塑性成型——压力加工成型 一、金属塑性成型基础 (一)金属的弹性与塑性变形 (二)应力应变关系——本构关系 (三)金属塑性成型的屈服理论 (四)金属压力加工成型的种类 二、锻压成型 (一)自由锻成型 (二)模锻成型 (三)锻压成型的工艺过程 三、冲压成型 (一)板材冲压成型 (二)冲压成型的工艺过程及特征 1.冲裁 2.弯曲 3.拉伸 (三)冲压成形材料 1.板料的冲压性能及试验方法

材料成型知识点归纳总结

一、焊接部分 1.焊接是通过局部加热或同时加压,并且利用或不用填充材料,使两个分离的焊件达到牢固结合的一种连接方法。实质——金属原子间的结合。 2.应用:制造金属结构件;2、生产机械零件;3、焊补和堆焊。 3.特点:与铆接相比1 . 节省金属;2 . 密封性好;3 . 施工简便,生产率高。与铸造相比 1 . 工序简单,生产周期短;2 . 节省金属; 3 . 较易保证质量 4.焊条电弧焊:焊条电弧焊(手工电弧焊)是用电弧作为热源,利用手工操作焊条进行焊接的熔焊方法,简称手弧焊,是应用最为广泛的焊接方法。 5.焊接电弧:焊接电弧是在电极与工件之间的气体介质中长时间稳定放电现象,即局部气体有大量电子流通过的导电现象。电极可以是焊条、钨极和碳棒。用直流电焊机时有正接法和反接法. 6.引弧方式接触短路引弧高频高压引弧 7.常见接头形式:对接搭接角接T型接头 8.保护焊缝质量的措施:1、对熔池进行有效的保护,限制空气进入焊接区(药皮、焊剂和气体等)。2、渗加有用合金元素,调整焊缝的化学成分(锰铁、硅铁等)。3、进行脱氧和脱磷。 9.牌号J×××J-结构钢焊条××-熔敷金属抗拉强度最低值×-药皮类型及焊接电源种类 10.焊缝由熔池金属结晶而成。冷却凝固后形成由铁素体和少量珠光体组成的柱状晶铸态组织。 11.热影响区的组织过热区正火区部分相变区熔合区 12.影响焊缝质量的因素影响焊缝金属组织和性能的因素有焊接材料、焊接方法、焊接工艺参数、焊接操作方法、焊接接头形式、坡口和焊后热处理等。 13.改善焊接热影响区性能方法:1.用手工电弧焊或埋弧焊焊一般低碳钢结构时,热影响区较窄,焊后不处理即可保证使用。2.重要的钢结构或用电渣焊焊接构件,要用焊后热处理方法消除热影响区。3.碳素钢、低合金结构钢构件,用焊后正火消除。4.焊后不能接受热处理的金属材料或构件,要正确选择焊接方法与焊接工艺。 14.常见的焊接缺陷裂纹夹渣未焊透未熔合焊瘤气孔咬边 15.焊接应力的产生及变形的基本形式收缩变形弯曲变形波浪变形扭曲变形角变形 16.焊接应力与变形产生的原因焊接过程中,对焊件进行了局部不均匀的加热是产生焊接应力与变形。 17.防止和减少焊接变形的措施:可以从设计和工艺两方面综合考虑来降低焊接应力。在设计焊接结构时,应采用刚性较小的接头形式,尽量减少焊缝数量和截面尺寸,避免焊缝集中等。 18.矫正焊接变形的方法机械矫正法火焰加热矫正法 19.坡口:焊件较薄时,在焊件接头处只需留出一定的间隙,用单面焊或双面焊,就可以保证焊透。焊件较厚时,为保证焊透,需预先将接头处加工成一定几何形状的坡口。 20.焊缝位置:熔焊时,焊缝所处的空间位置称为焊接位置。它有平焊、立焊、横焊和仰焊等四种。 21.埋弧自动焊的焊接电弧是在熔剂下燃烧,其引弧,维持一定弧长和向前移动电弧等主要焊接动作都由机械设备自动完成,故称为埋弧自动焊。 22.埋弧自动焊特点:1.生产率高2.焊缝质量好3.节省焊接材料和电能4.改善了劳动条件5.焊件变形小6.设备费用一次性投资较大。但由于埋弧焊是利用焊剂堆积进行焊接的,故只适用于平焊和直焊缝,不能焊空间位置焊缝及不规则焊缝。 23.自动焊工艺:仔细下料、清洁表面、准备坡口和装配点固。 24.气体保护焊:用外加气体作为电弧介质并保护电弧和焊接区的电弧焊。按照保护气体的不同,气体保护焊分为两类:使用惰性气体作为保护的称惰性气体保护焊,包括氩弧焊、氦弧焊、混合气体保护焊等;使用CO2气体作为保护的气体保护焊,简称CO2焊。特点:保护气体廉价,成本低;热量集中,焊速快,不用清渣,生产率高;明弧操作,焊接方便;热影响区小,质量好,尤其适合焊接薄板。主要用于30mm 以下厚度的低碳钢和部分合金结构钢。缺点是熔滴飞溅较为严重,焊缝不光滑,弧光强烈操作不当,易产生气孔。焊接工艺规范:采用直流反接,低电压(小于36V)和大电流密度。

常用金属材料及其成形

第七章常用金属材料及其成形 这是用铸造方法生产出的电机外壳 金属材料在许多领域中的应用都十分广泛,特别是在机械行业中更是主要的使用对象。要合理的选择材料和成形加工方法,就要掌握和了解金属材料的种类、性能特点、成形加工方法和应用范围等知识。学习本章后应掌握和应了解的具体内容如下: 1.铸造成形的方法,工艺技术 2.几种常用铸造方法的工艺过程、特点,适用铸造合金,应用范围 3. 锻造成形的方法,设备,工艺技术 4. 锻造毛坯的组织和性能特点,应用范围 5.冲压成形的加工对象,基本工序 6.钢的分类、牌号,性能特点,应用 7.铸铁的分类,组织和性能特点,应用 8.非铁金属的分类,性能特点,应用 金属材料包括钢铁(黑色金属)和非铁(有色)金属两大类。钢铁材料在各个领域中的应用都十分广泛,尤其在机械行业中更是起到基础材料的作用。 金属材料的主要成形技术——铸造和锻造由来已久,是人类最早应用的工业技术。直到现在高科技迅速发展的信息时代,这些传统的工艺技术仍在不断发展,仍在起着不可替代的重要作用。 通过本章的学习,你将了解到:金属材料的种类,各种金属材料的性能特点、应用范围,金属成

形加工的方法、工艺过程、特点和应用。这些知识都是工程师和设计师所必需的基础知识。 7.1.1 概述 金属零件的制造过程一般包括毛坯成形和对毛坯的切削加工,有时需要进行热处理以获得所希望的性能(见图7.1-1)。金属成形方法主要指获得毛坯的生产加工方法。工业上应用的金属成形方法(即毛坯生产方法)主要有:铸造,压力加工,焊接,粉末冶金等(见图7.1-2)。 图7.1-1机器生产过程示意图 图7.1-2金属毛坯的生产方法及其分类 图7.1-2列举了一些主要的金属成形方法。每一种成形方法都有自己的特点和适用范围,所应用的

金属材料基础知识汇总

《金属材料基础知识》 第一部分金属材料及热处理基本知识 一,材料性能:通常所指的金属材料性能包括两个方面: 1,使用性能即为了保证机械零件、设备、结构件等能够正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等)。使用性能决定了材料的应用范围,使用安全可靠性和寿命。 2,工艺性能即材料被制造成为零件、设备、结构件的过程中适应的各种冷、热加工的性能,如铸造、焊接、热处理、压力加工、切削加工等方面的性能。 工艺性能对制造成本、生产效率、产品质量有重要影响。 二,材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当达到或超过某一限度时,材料就会发生变形以至于断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。 承压类特种设备材料的力学性能指标主要有强度、硬度、塑性、韧性等。这些指标可以通过力学性能试验测定。 1,强度金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测出。抗拉强度σb和屈服强度σs是评价材料强度性能的两个主要指标。一般金属材料构件都是在弹性状态下工作的。是不允许发生塑性变形,所以机械设计中一般采用屈服强度σs作为强度指标,并加安全系数。2,塑性材料在载荷作用下断裂前发生不可逆永久变形的能力。评定材料塑性的指标通常用伸长率和断面收缩率。 伸长率δ=[(L1—L0)/L0]100% L0---试件原来的长度L1---试件拉断后的长度 断面收缩率φ=[(A1—A0)/A0]100% A0----试件原来的截面积A1---试件拉断后颈缩处的截面积 断面收缩率不受试件标距长度的影响,因此能够更可靠的反映材料的塑性。 对必须承受 强烈变形的材料,塑性优良的材料冷压成型的性能好。 3,硬度金属的硬度是材料抵抗局部塑性变形或表面损伤的能力。硬度与强度有一定的关系,一般情况下,硬度较高的材料其强度也较高,所以可以通过测试硬度来估算材料强度。另外,硬度较高的材料耐磨性也较好。 工程中常用的硬度测试方法有以下四种 (1)布氏硬度HB (2)洛氏硬度HRc(3)维氏硬度HV (4)里氏硬度HL 4,冲击韧性指材料在外加冲击载荷作用下断裂时消耗的能量大小的特性。 材料的冲击韧性通常是在摆锤式冲击试验机是测定的,摆锤冲断试样所作的功称为冲击吸收功。以Ak表示,Sn为断口处的截面积,则冲击韧性ak=Ak/Sn。 在承压类特种设备材料的冲击试验中应用较多。 三金属学与热处理的基本知识 1,金属的晶体结构--物质是由原子构成的。根据原子在物质内部的排列方式不同,可将物质分为晶体和非晶体两大类。凡内部原子呈现规则排列的物质称为晶体,凡内部原子呈现不规则排列的物质称为非晶体,所有固态金属都是晶体。 晶体内部原子的排列方式称为晶体结构。常见的晶体结构有:

常用金属材料的特性

它们都是含碳量比较低的优质碳素结构钢。它们不同的主要是两方面,一是含碳量不同;而是机械性能不同。 从化学成分上来看,是含碳量不同,10#钢平均含碳量为万分之10,20#钢平均含碳量为万分之20。 由于含碳量的不同就导致了它们的机械性能的不同。碳素结构钢随着含碳量的增加,强度硬度都相应提高,塑性纫性相应降低。10#、20#属于低碳钢,强度硬度不高,塑性纫性都很好。它们之间比较来说,10#钢的强度和硬度比20#钢要低;10#钢的塑性和纫性比20#钢要好,也是说要软些。 我国钢号表示方法的分类说明 1.碳素结构钢 ①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(σs)为235 MPa的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3.碳素工具钢 ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4.易切削钢 ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5.合金结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。 ③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如20MnVB钢中。钒为0.07-0.12%,硼为0.001-0.005%。 ④高级优质钢应在钢号最后加“A”,以区别于一般优质钢。 ⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如,铆螺专用的30CrMnSi钢,

金属材料成型工艺基础重点

第一章:金属的液态成型 一、充型: 1.充型概念:液态合金填充铸型的过程,简称充型。 2.充型能力:液态合金充满铸型型腔,获得形状完整、轮廓清晰铸件的能力。 ?充型能力不足时,会产生浇不足、冷隔、夹渣、气孔等缺陷 ?影响充型能力的主要因素 ?⑴合金的流动性—液态合金本身的流动能力 a 化学成分对流动性的影响—纯金属和共晶合金的成分的流动性好 b工艺条件对流动性的影响—浇注温度、充型能力、铸型阻力 c流动性的实验 ?⑵工艺条件:a、浇注温度一般T浇越高,液态金属的充型能力越强。 b、铸型填充条件—铸型的许热应力 c、充型压力:态金属在流动方向上所受的压力越大,充型能力越强。 d、铸件复杂程度:构复杂,流动阻力大,铸型的充填就困难 e、浇注系统的的结构浇注系统的结构越复杂,流动阻力越大,充型能力越差。 f、折算折算厚度也叫当量厚度或模数,为铸件体积与表面积之比。折算厚度大,热量散失慢,充型能力就好。铸件壁厚相同时,垂直壁比水平壁更容易充填。 ——影响铸型的热交换影响动力学的条件(充型时阻力的大小),必须在保证工艺条件下金属的流动性好充型能力才好。 二、冷却 ⑴影响凝固的方式的因素:a.合金的结晶温度范围—合金的结晶温度范围愈小,凝固区 域愈窄,愈倾向于逐层凝固。金属和共晶成分的合金是在恒温下结晶的。由表层向中心逐层推进(称为逐层凝固)方式,固体层内表面比较光滑,流动阻力小,流动性好。 b.铸件的温度梯度—在合金结晶温度范围已定的前提下,凝固区域的宽窄取决与铸 件内外层之间的温度差。若铸件内外层之间的温度差由小变大,则其对应的凝固区由宽变窄。 ⑵凝固: a.逐层凝固—充型能力强,便于防止缩孔、缩松。灰铸铁和铝硅合金等倾向于逐层凝固。 b.糊状凝固—充型能力差,难以获得结晶紧实的铸件球铁倾向于糊状凝固。 c.中间凝固— ⑶收缩:a.液态收缩从浇注温度到凝固开始温度之间的收缩。由温度下降引起。 T浇—T液用体收缩率表示 b.凝固收缩从凝固开始到凝固终止温度间的收缩。由状态改变、温度下降和相 变三部分组成。 T液—T固用体收缩率表示 ——液态收缩与凝固收缩产生的缺陷:1)缩孔 产生部位:通常在铸件上部,或最后凝固的部分,呈倒锥形,内表面粗糙。 产生条件:铸件由表及里地逐层凝固,即纯金属或共晶成分的合金易产生缩孔。 影响因素:合金的液态收缩↑,凝固收缩↑→缩孔容积↑浇注温度↑→缩孔容积↑;铸件较厚→缩孔容积↑ 2)缩松 缩松:分散在铸件某些区域内的细小孔洞,分为宏观缩松和显微缩松两种,显微缩松分布更为广泛。

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 材料的工艺性能指材料适应冷、热加工方法的能力。 (一)、机械性能 机械性能是指金属材料在外力作用下所表现出来的特性。 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 5 、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm2 ) . (二)、工艺性能 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。(三)、化学性能 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回

金属材料成型原理

金属材料成型原理 铸造部分 *液态金属的判断方法:间接法:通过固——液态、固——气态转变后的一些物理性质的变 化判断液态原子的结合状况。 直接法:通过液态金属的X射线或中子线的结构分析研究液态的原子 排列情况。 偶分布函数:距某一参考粒子r处找到另一粒子的概率 液态金属结构的主要特征:进程有序(存在很多不停游离的居于有序的原子集团),远程无 序(不具备对称性、平移性) 三种起伏:能量起伏:能量高低不同 结构起伏:结构的此消彼长 浓度起伏:浓度分布不同 充型能力:液态金属充满型腔,获得外形完整、轮廓清晰的铸件的能力。 *影响充型能力的因素:金属性质、铸型性质、浇注条件、铸件结构 螺旋图P17 流动性的测定方法:螺旋线法、真空法p17 1-16 1-17 提高充型能力的措施:正确选择合金的成分、合理的熔炼工艺“高温出炉,低温浇注” 铸件凝固方式:逐层凝固方式、体积凝固方式、中间凝固方式(取决于凝固区域的宽度)影响铸件凝固方式的因素:合金成分、铸件断面温度梯度 金属凝固过程中的传热图P26-27 液态成型:将金属液浇入铸型后,凝固后获得一定形状和性能的铸件的方法 影响铸件温度场的因素:金属性质、铸型性质、浇注条件、铸件结构 均质形核:在没有任何外来界面的均匀熔体种的形核过程。 非均质形核:在不均匀熔体中依靠外来杂质或型壁界面提供的衬底进行形核的过程。 固液界面的微观结构分为:粗糙界面:界面固相一侧的点阵位置有一半左右为固相原子所占据。这些原子散乱地随机分布在界面上,形成一个坑坑洼洼、凹凸不平的界面层。 平整界面:固液界面固相一侧表面的点阵位置几乎全部为固相原子所占据,只留下少数空位或台阶,从而形成了一个整体上平整光滑的界面结构。 相变驱动力:固液两相自由能之差△G。 凝固过程中溶质分配的平衡条件:凝固界面上溶质迁移的平衡、固相液相内部扩散的平衡热过冷:金属凝固时所需的过冷度完全由传热所提供,仅由溶体实际温度分布决定 成分过冷:由溶质再分配导致界面前方溶体成分及其凝固温度发生变化而引起的过冷度成为成分过冷。产生条件:平衡液相凝固温度大于同一点的实际温度(纯金属或共晶合 金的金属无成分过冷) 溶质再分配:从形核到结晶完毕,固液两相内部不断进行着溶质元素的重新分配的过程。平衡结晶:在结晶过程中,固液两相都能通过充分传质而使成分完全均匀并达到平衡相图对应温度的平衡成分。

材料成型工艺

. 问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别? . . 27.板料冲压有哪些特点?主要的冲压工序有哪些? 28. 间隙对冲裁件断面质量有何影响?间隙过小会对冲裁产生什么影响? 29. 分析冲裁模与拉深模、弯曲模的凸、凹模有何区别? 30. 何谓超塑性?超塑性成形有何特点? 31、落料与冲孔的主要区别是什么?体现在模具上的区别是什么? 32、比较落料或冲孔与拉深过程凹、凸模结构及间隙Z有何不同?为什么?

固态金属材料塑性成形过程-

第一讲固态金属材料塑性成形过程 金属固态塑性成形过程简称金属成形过程(又叫金属压力加工或锻压加工),它是指在外力作用下,使金属材料产生预期的塑性变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。 金属成形过程的成形原理属质量不变的“固态成形”。任何固态材料本身都具有一定的形状和大小,固态成形就是要改变固体原来的形状和大小,获得预期要求的形状和尺寸。因此,要实现金属材料的固态成形,必须要有两个基本成形条件,即 (1)被成形的金属材料具备一定的塑性。 (2)要有外力作用于固态金属材料上。 可见,金属的固态成形受到内外两方面因素的制约。内在因素即金属本身能否进行固态形变和可形变的能力大小,外在因素即需要多大的外力。另外,外界条件(如温度等)对内外因素有相当大的影响,且成形过程中两因素也相互影响。 由上述可知,所有在外力下产生塑性变形而不破坏的材料,都有可能进行质量不变的固态变形。低、中碳钢及大多数有色金属的塑性较好,故都可进行塑性成形加工,而铸铁、铸铝合金等脆性材料,塑性很差,一般不能或不宜进行塑性成形。 一、金属固态塑性成形方法 工业中实现质量不变的金属固态成形的方式多种多样,主要的金属塑性成形方法有: (1)轧制将金属通过轧机上两个相对回转轧辊之间的空隙,进行压延变形成为型材(如钢板、圆钢、角钢、槽钢等)的加工方法,如图1a所示。 轧制生产所用坯料主要是金属锭,坯料在轧制过程中靠摩擦力得以连续通过而受压变形,结果坯料的截面减小,轧出的产品截面与孔隙形状和大小相同,长度增加。 (2)挤压是将金属置于一封闭的挤压模内,用强大的挤压力将金属从模孔中

挤出成形的方法,如图2a所示。挤压过程中金属坯料的截面依照模孔的形状减小,长度增加。挤压可以获得各种复杂截面的型材或零件。 (3)拉拔将金属坯料拉过拉拔模模孔,而使金属拔长、断面与模孔相同的加工方法。它主要生产各种细线材、薄壁管和一些特殊截面形状的型材,如图3所示。

金属材料成形原理

金属材料成形原理实验报告 专业:材料成型及控制工程 班级:111班 学生姓名:金鑫 学号:5901211054 指导教师:孙晓刚 2014年4月

实验一铸造内应力的形成及测量分析 1、实验目的 1)了解坩锅炉熔炼原理及工艺过程。 2)测定应力框产生的铸造热应力。 3)分析应力框产生内应力的原因、应力对铸件质量的影响。2、实验原理 根据“T”形杆冷却过程中形成“粗杆受拉、细杆受压”的原理,设计如图2 所示的应力框。合金浇铸、冷却后,会在应力框的粗、细杆中形成不同性质的应力。将粗杆锯断,将使应力约束条件释放,致使应力杆的尺寸发生变化。测量应力杆的尺寸变化大小,根据虎克定律,便可计算出应力框中应力杆的大小。应力框尺寸如图 2 所示,采用潮模砂造型,在电阻坩锅炉中熔炼ZL101 合金,浇铸应力框。

3、实验步骤及方法 1)手工造型应力框铸型。 2)坩锅电阻炉中熔炼ZL101 合金。 3)浇铸应力框。 4)冷却后清理。 5)将中间的粗杆打两点标志,测量两点距离L0,然后将中间杆锯断,再测量两点的距离L1。 6)根据测量结果,计算杆中的铸造应力。 σ= E ε= E(L1–L0)/ L (2 N/mm) 式中: E --- 弹性模量,ZL101 为:72.4×3 102 N/mm L ---- 中间杆的长度mm

4、实验结果处理 1)画出应力框图,标出细杆和粗杆中存在的铸造应力性质(拉应力为+,压应力为-)。 2)根据测量结果、计算铸造应力。 测量结果:L0、L1、L;计算结果:σ σ= E ε= E(L1–L0)/ L 2 N/mm 式中: E --- 弹性模量,ZL101 为:72.4×3 102 N/mm L ---- 中间杆的长度mm 据第4组测量数据可得: σ=72.4×3 10(51.3-50)/300 =72.42 N/mm 3)分析应力框产生的原因和铸造应力对铸件质量的影响。(1)原因:因为铸件各部分厚薄不同,在凝固和其后的冷却过程中,冷却速度不同,造成同一时刻各部分收缩量不一致,铸件各部分彼此制约,产生的热应力,而热应力的存在使得铸件厚壁或心部受拉伸,薄壁或表层受压缩。铸件壁厚差别愈大,合金线收缩率愈高,热应力也越大,而应力框也正是在此情况下产生。 (2)影响:铸造应力和铸件的变形对铸件质量的危害很大。铸造应力是铸件在生产、存放、加工以及使用过程中产生变形和裂纹的主要原因,它降低铸件的使用性能。例如,当机件工作应力的方向与残

常用金属材料的力学性能一览表

常用金属材料的力学性能 金属材料的力学性能 任何机械零件或工具,在使用过程中,往往妾受到各种形式外力的作托。如起重机上的钢索,受到悬吊物拉力的作用:柴油机上的连杆,在传递动力时.不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件燮受到弯矩、扭力的作用等尊。这就要求金属材料必须具有一种弟受机械荷而不超过许可变形或不破坏的能力* 这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在夕卜力作坤下表现出力学性能的指标。 111 强度 强度是扌旨金属材料在静载荷作用下抵抗变形和断裂的能力。逼度扌旨标一般用单位面积所承受的载荷即力表示,符号为6 单位为 MP 弘 工程中常用的强度指标有屈服逼度和扰拉强度。屈服逼度是指金属材料在外力作用下* 产生屈服现象时的应力,或开始岀现塑性变形吋的最低应力值,用%表示?抗竝强度是指金厲材料在拉力的作用下,被拉断前所能承受的最大应力值,用巧表示。 对于大多数机械零件.工作时不允许产生塑性变形,所以屈服强度是事件逼度设计的依据!对于因断裂而失效的零件,而用抗拉强度作为其逼度设计的依据。 1.1 2 塑性 塑性是扌旨金属材料在外力作用下产生塑性变形而不断裂的能力。 工程中常用的塑性揭标有诩长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号豪示*断面收縮率指试样拉断后,断面縮小的面积与原来截面积之比,用甲表示。 伸长率和断面收缩率越大,其塑性越好;反之塑性越差,良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。 113 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力? 硬度的测试方法很多,生产中常埔的硬度测试方法有布氏硬度测试法和洛氏碳度试验方法两神° C- )布氏硬度试验法 布氏硬度试验法是用一直径为 D 的淬火钢球或硬质合金球作为压头,在载荷 0 的作用下压入被测试金厲表面,保持一定时间后卸载,测量金属表面形成的压痕直径乩以压痕的单位面积所承受的平均压力作为被测全属的布氏硬度值。 布氏硬度指标有 HBS 和 HBW, 前者所用压头为淬火钢球,适坤于布氏硬度值低于仍 0 的金属材料,如艮火钢、正火钢、调质钢及铸铁、有包金厲等;后者压头为硬质合金,适用于布氏硬度值为 450^650 的金属材料,如悴火钢等。 布氏硬度测试法,因压痕较尢故不宜测试成品件或薄片金属的硬度。

相关主题