搜档网
当前位置:搜档网 › 河南省中原名校平面向量及其应用单元测试题百度文库

河南省中原名校平面向量及其应用单元测试题百度文库

河南省中原名校平面向量及其应用单元测试题百度文库
河南省中原名校平面向量及其应用单元测试题百度文库

一、多选题

1.下列说法中正确的是( )

A .对于向量,,a b c ,有()()

a b c a b c ??=??

B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底

C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ?<”的充分而不必要条件

D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则

0λμ+=

2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ?≤

B .若a b c b ?=?且0b ≠,则a c =

C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向

D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是

5,3??-+∞ ???

3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列

ABC 有关的结论,正确的是( ) A .cos cos 0A B +>

B .若a b >,则cos2cos2A B <

C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径

D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 4.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ?=,则0b =

B .向量a 、b 为不共线的非零向量,则22

()a b a b ?=? C .若非零向量a 、b 满足2

2

2

a b

a b +=+,则a 与b 垂直

D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2

π

5.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6

A a c π

===则角C 的大小

是( ) A .

6

π B .

3

π C .

56

π D .

23

π

6.在ABC 中,AB =1AC =,6

B π

=,则角A 的可能取值为( )

A .

6

π B .

3

π C .

23

π D .

2

π 7.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )

A .10,45,70b A C ==?=?

B .45,48,60b c B ===?

C .14,16,45a b A ===?

D .7,5,80a b A ===?

8.下列结论正确的是( )

A .已知a 是非零向量,b c ≠,若a b a c ?=?,则a ⊥(-b c )

B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为

12

b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形

9.在ABC 中,若30B =?,AB =2AC =,则C 的值可以是( ) A .30° B .60°

C .120°

D .150°

10.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是

( )

A .若a b >,则sin sin A

B >

B .若sin 2sin 2A B =,则AB

C 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形

D .若2220a b c +->,则ABC 是锐角三角形

11.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1

()2

AD AB AC =

+ C .8BA BC ?=

D .AB AC AB AC +=-

12.下列命题中,正确的有( )

A .向量A

B 与CD 是共线向量,则点A 、B 、

C 、

D 必在同一条直线上 B .若sin tan 0αα?>且cos tan 0αα?<,则角2

α

为第二或第四象限角 C .函数1

cos 2

y x =+

是周期函数,最小正周期是2π D .ABC ?中,若tan tan 1A B ?<,则ABC ?为钝角三角形 13.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同

B .若a b a b +=-,则a 与b 方向相反

C .若a b a b +=-,则a 与b 有相等的模

D .若a b a b -=-,则a 与b 方向相同 14.化简以下各式,结果为0的有( ) A .AB BC CA ++ B .AB AC BD CD -+- C .OA OD AD -+

D .NQ QP MN MP ++-

15.下列命题中正确的是( )

A .对于实数m 和向量,a b ,恒有()m a b ma mb -=-

B .对于实数,m n 和向量a ,恒有()m n a ma na -=-

C .若()ma mb m =∈R ,则有a b =

D .若(,,0)ma na m n a =∈≠R ,则m n =

二、平面向量及其应用选择题

16.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若

(),DE AB AD R λμλμ=+∈,则λμ?等于( )

A .316

- B .

316 C .

12

D .12

-

17.O 为ABC ?内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知

0a OA b OB c OC ?+?+?=,且tan tan tan 0A OA B OB C OC ?+?+?=,若3a =边BC 所对的ABC ?外接圆的劣弧长为( ) A .

23

π B .

43

π C .

6

π D .

3

π 18.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=

B .1a b ?=

C .a b =

D .0a b ?=

19.ABC ?内有一点O ,满足3450OA OB OC ++=,则OBC ?与ABC ?的面积之比为( ) A .1:4

B .4:5

C .2:3

D .3:5

20.如图,在ABC 中,60,23,3C BC AC ?===,点D 在边BC 上,且

27

sin BAD ∠=

,则CD 等于( )

A .

23

3

B .

33

C .

33

2

D .

3

3

21.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )

A .33A

B A

C HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+

D .24AB AC HM MO +=-

22.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4

B .

72

C .

258

D .

259

23.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =?,

3

cos 5

A =

,则b 等于( ) A .

35 B .

107

C .

57

D .

52

14

24.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则

::PAB PAC PBC S S S =△△△( )

A .1∶2∶3

B .1∶2∶1

C .2∶1∶1

D .1∶1∶2

25.在矩形ABCD 中,3,3,2AB BC BE EC ===,点F 在边CD 上,若

AB AF 3→→=,则AE BF

→→的值为( ) A .0

B 83

C .-4

D .4

26.在ABC ?中,内角,,A B C 的对边分别是,.a b c ,若cos 2a

B c

=,则ABC ?一定是( ) A .等腰三角形

B .等边三角形

C .直角三角形

D .等腰直角三角形

27.ABC ?中,22:tan :tan a b A B =,则ABC ?一定是( )

A .等腰三角形

B .直角三角形

C .等腰直角三角形

D .等腰或直角三角形

28.已知O ,N ,P 在ABC ?所在平面内,且,0OA OB OC NA NB NC ==++=,且

???PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ?的( )

(注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心

D .外心重心内心

29.三角形ABC 的三边分别是,,a b c ,若4c =,3

C π

∠=

,且

sin sin()2sin 2C B A A +-=,则有如下四个结论:

①2a b =

②ABC ?

③ABC ?的周长为4+

④ABC ?外接圆半径3

R =

这四个结论中一定成立的个数是( ) A .1个

B .2个

C .3个

D .4个

30.在ABC ?中,60A ∠=?,1b =,ABC S ?,则2sin 2sin sin a b c

A B C

++=++( )

A .

3

B .

3

C .

3

D .31.已知ABC ?的内角A 、B 、C 满足()()1sin 2sin sin 2

A A

B

C C A B +-+=--+

,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( )

A .()8bc b c +>

B .()ab a b +>

C .612abc ≤≤

D .1224abc ≤≤

32.奔驰定理:已知O 是ABC ?内的一点,BOC ?,AOC ?,AOB ?的面积分别为A S ,

B S ,

C S ,则0A B C S OA S OB S OC ?+?+?=.“奔驰定理”是平面向量中一个非常优美的

结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ?内的一点,A ,B ,C 是ABC ?的三个内角,且点

O 满足OA OB OB OC OC OA ?=?=?,则必有( )

A .sin sin sin 0A OA

B OB

C OC ?+?+?= B .cos cos cos 0A OA B OB C OC ?+?+?= C .tan tan tan 0A OA B OB C OC ?+?+?=

D .sin 2sin 2sin 20A OA B OB C OC ?+?+?=

33.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且

a b =,则cos B 等于( )

A .

15 B .

14

C .

3 D .

3 34.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形

D .等边三角形

35.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且

2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )

A .

34

B .

58

C .38

D .

23

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.BCD 【分析】

.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断

解:.向量数量积不满足结合律,故错误, ., 解析:BCD 【分析】

A .向量数量积不满足结合律进行判断

B .判断两个向量是否共线即可

C .结合向量数量积与夹角关系进行判断

D .根据向量线性运算进行判断 【详解】

解:A .向量数量积不满足结合律,故A 错误,

B .

12

57

-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,

C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180?,此时0m n <成立,

当0m n <成立时,则m 与n 夹角满足90180θ?

D .由23CD CB =

得22

33CD AB AC =-, 则23λ=,23

μ=-,则22

033λμ+=-=,故D 正确

故正确的是BCD , 故选:BCD . 【点睛】 本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.

2.AC 【分析】

根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】

对于A ,由平面向量数量积定义可知

解析:AC 【分析】

根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】

对于A ,由平面向量数量积定义可知cos ,a b a b a b ?=,则||||||a b a b ?≤,所以A

对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,

对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即

22||||a b a b -?=,cos 1θ=-,

则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ?+>即2||0a a b λ+?>可得530λ+>,解得53

λ>-

, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+?= 所以a 与a b λ+的夹角为锐角时5

3

λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】

本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.

3.ABD 【分析】

对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【

解析:ABD 【分析】

对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得

sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 1

2

s S ab C =和正弦定

理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】

对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得

()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;

对于B ,若sin sin a b A B >?>,则22sin sin A B >,则2212sin 12sin A B -<-,即

cos2cos2A B <,故B 正确;

对于C ,2

11sin 2sin 2sin sin 2sin sin sin 22

S ab C R A R B C R A B C ==???=,故C 错

误;

对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B C

A B C B C

+=-+=--?,则

tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】

本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.

4.CD 【分析】

对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解

解析:CD 【分析】

对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出

(

)

()()

2

2

2

a b

a b ?≠?,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题

是真命题;对于D 由条件推出向量a b +与a b -的夹角是2

π

,所以该命题是真命题. 【详解】

对于A ,若0a ≠,0a b ?=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()

2

2

2

2

2

cos cos a b

a b a b αα?==,而()()

2

2

2

2

a b

a b ?=,

由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以(

)

()()

2

2

2

a b a b ?≠?,

所以该命题是假命题;

对于C ,若非零向量a 、b 满足2

2

2

a b

a b +=+,22222a b a b a b ++?=+,所以

0a b ?=,则a 与b 垂直,所以该命题是真命题;

对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2

π

,所以该命题是真命题. 故选:CD. 【点睛】

本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.

5.BD 【分析】

由正弦定理可得,所以,而,可得,即可求得答案. 【详解】

由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】

本题考查了根据正弦定理求解三角形内角,解题关键是掌握

解析:BD 【分析】

由正弦定理可得sin sin a c A C =,所以sin sin 2

c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得

sin sin a c

A C

=,

∴ sin sin 2

c C A a ==,而a c <,

∴ A C <, ∴

566

C π

π<<, 故3C π

=

23

π. 故选:BD. 【点睛】

本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.

6.AD 【分析】

由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得, 即,解得或.

当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以. 故选:AD 【点睛】

本题考查余弦

解析:AD 【分析】

由余弦定理得2222cos AC BC BA BC BA B =+-??,解得1BC =或2BC =,分别讨论即可. 【详解】

由余弦定理,得2222cos AC BC BA BC BA B =+-??,

即21322

BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6

A B π

==

当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2

π. 故选:AD 【点睛】

本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题.

7.BC 【分析】

根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】

对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两

解析:BC 【分析】

根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】

对于选项A 中:由45,70A C =?=?,所以18065B A C =--=?,即三角形的三个角是确定的值,故只有一解;

对于选项B 中:因为csin sin 115B C b =

=<,且c b >,所以角C 有两解;

对于选项C 中:因为sin sin 17

b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b A

B a

=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】

本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.

8.ABD

【分析】

利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】

对:因为,又,故可得, 故,故选项正确;

对:因为||=1,||=2,与的夹角为

解析:ABD 【分析】

利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】

对A :因为()a b c a b a c ?-=?-?,又a b a c ?=?,故可得()

0a b c ?-=, 故()

a b c ⊥-,故A 选项正确;

对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1

212

a b ?=?

=. 故a 在b 上的投影向量为12a b b b b ??

?

?= ???

,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,

故C 选项错误;

对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -,

则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ?=?+?-=,则AB AD ⊥,故四边形ABCD 是矩形. 故D 选项正确;

综上所述,正确的有:ABD . 故选:ABD . 【点睛】

本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题.

9.BC 【分析】

由题意结合正弦定理可得,再由即可得解. 【详解】

由正弦定理可得,所以,

又,所以, 所以或. 故选:BC. 【点睛】

本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.

解析:BC 【分析】

由题意结合正弦定理可得sin C =()0,150C ∈??即可得解. 【详解】

由正弦定理可得sin sin AB AC C B =

,所以1

sin 2sin 2AB B C AC ?===, 又30B =?,所以()0,150C ∈??, 所以60C =?或120C =?. 故选:BC. 【点睛】

本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.

10.AC 【分析】

对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判

解析:AC 【分析】

对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误. 【详解】

对选项A ,2sin 2sin sin sin a b r A r B A B >?>?>,故A 正确; 对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =?= 所以A B =或2

A B π

+=

,则ABC 是等腰三角形或直角三角形.故B 错误;

对选项C ,因为cos cos a B b A c -=,

所以()sin cos sin cos sin sin A B B A C A C -==+,

sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,

因为sin 0B ≠,所以cos 0A =,2

A π

=

,ABC 是直角三角形,故③正确;

对D ,因为2

2

2

0a b c +->,所以222

cos 02a b c A ab

+-=>,A 为锐角.

但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误. 故选:AC 【点睛】

本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题.

11.BC 【分析】

根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】

对于A 选项:,故A 错;

对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故

解析:BC 【分析】

根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】

对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,

()

111

++++()222

AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;

对于C 选项:cos 248BD BA BC BA BC B BA BC BA

?=??∠=??

=?=,故正确;

对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】

本题考查向量的线性运算和向量的数量积运算,属于基础题.

12.BCD 【分析】

根据共线向量的定义判断A 选项的正误;根据题意判断出角的终边的位置,然后利用等分象限法可判断出角的终边的位置,进而判断B 选项的正误;利用图象法求出函数的最小正周期,可判断C 选项的正误

解析:BCD 【分析】

根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角

2

α

的终边的位置,进而判断B 选项的正误;利用图象法求出函数1

cos 2

y x =+

的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ?<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论. 【详解】

对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;

对于B 选项,2sin sin tan 0cos α

ααα?=>,cos tan sin 0ααα?=<,所以sin 0cos 0αα

>?

, 则角α为第四象限角,如下图所示:

2

α

为第二或第四象限角,B 选项正确;

对于C 选项,作出函数1

cos 2

y x =+

的图象如下图所示:

由图象可知,函数1

cos 2

y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,

tan tan 1A B <,

()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A B

π+--∴-=-===cos 0cos cos C

A B

=-

>,cos cos cos 0A B C ∴<,

对于任意三角形,必有两个角为锐角,则ABC ?的三个内角余弦值必有一个为负数, 则ABC ?为钝角三角形,D 选项正确.

故选:BCD. 【点睛】

本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题.

13.ABD 【分析】

根据平面向量的平行四边形法则与三角不等式分析即可. 【详解】

如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有. 当同向时

解析:ABD 【分析】

根据平面向量的平行四边形法则与三角不等式分析即可. 【详解】

如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+. 当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-. 当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-

故选:ABD 【点睛】

本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.

14.ABCD 【分析】

根据向量的线性运算逐个选项求解即可. 【详解】 ; ;

.

故选:ABCD 【点睛】

本题主要考查了向量的线性运算,属于基础题型.

解析:ABCD 【分析】

根据向量的线性运算逐个选项求解即可. 【详解】

0AB BC CA AC CA ++=+=;

()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-=;

()0OA OD AD OA AD OD OD OD -+=+-=-=; 0NQ QP MN MP NP PM MN NM NM ++-=++=-=.

故选:ABCD 【点睛】

本题主要考查了向量的线性运算,属于基础题型.

15.ABD 【详解】

解:对于:对于实数和向量、,根据向量的数乘满足分配律,故恒有:,故正确.

对于:对于实数,和向量,根据向量的数乘运算律,恒有,故 正确. 对于:若,当 时,无法得到,故不正确. 对

解析:ABD 【详解】

解:对于A :对于实数m 和向量a 、b ,根据向量的数乘满足分配律,故恒有:

()m a b ma mb -=-,故A 正确.

对于B :对于实数m ,n 和向量a ,根据向量的数乘运算律,恒有()m n a ma na -=-,故 B 正确.

对于C :若()ma mb m =∈R ,当 0m =时,无法得到a b =,故C 不正确. 对于D :若(,,0)ma na m n a =∈≠R ,则m n =成立,故D 正确. 故选:ABD . 【点睛】

本题考查相等的向量,相反的向量的定义,向量的数乘法则以及其几何意义,注意考虑零向量的情况.

二、平面向量及其应用选择题

16.A 【分析】

利用平面向量的线性运算,将DE 用AB 和AD 表示,可得出λ和μ的值,由此可计算出

λμ?的值.

【详解】

E 为AO 的中点,且O 为AC 的中点,所以,()

111

244

AE AO AC AB AD ===+, ()

113444DE AE AD AB AD AD AB AD ∴=-=

+-=-,1

4λ∴=,34

μ=-.

因此,133

4416

λμ???=?-=- ???,故选:A. 【点睛】

本题考查利用基底表示向量,要充分利用平面向量的加减法法则,考查运算求解能力,属于中等题. 17.A 【分析】 根据题意得出

tan tan tan A B C

a b c

==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ?为等边三角形,进而可求得BC 所对的ABC ?外接圆的劣弧

长. 【详解】

0a OA b OB c OC ?+?+?=,a b

OC OA OB c c

∴=--,

同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C

b B

c C ?-=-??∴??-=-??,

tan tan tan A B C

a b c

==, 由正弦定理得

tan tan tan sin sin sin A B C A B C ==,所以,111

cos cos cos A B C

==, cos cos cos A B C ∴==,

由于余弦函数cos y x =在区间()0,π上单调递减,所以,3

A B C π

===

, 设ABC ?的外接圆半径为R

,则

22

sin a

R A

=

==,1R ∴=,

所以,边BC 所对的ABC ?外接圆的劣弧长为222133

R A ππ?=?=. 故选:A. 【点睛】

本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 18.C 【分析】 取,a b 夹角为3

π

,计算排除ABD ,得到答案. 【详解】 取,a b 夹角为3π

,则0a b -≠,12

a b ?=,排除ABD ,易知1a b ==. 故选:C . 【点睛】

本题考查了单位向量,意在考查学生的推断能力. 19.A 【解析】

分析:由题意,在ABC ?内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.

详解:由题意,在ABC ?内有一点O ,满足3450++=OA OB OC ,

由奔驰定理可得::3:4:5BOC AOC BOA S S S ???=,所以:3:121:4BOC ABC S S ??==, 故选A .

点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决. 20.A 【分析】

首先根据余弦定理求AB ,再判断ABC 的内角,并在ABD △和ADC 中,分别用正弦定理表示AD ,建立方程求DC 的值. 【详解】

222cos AB AC BC AC BC C =+-??

1

312232332

=+-??

=, 2223

cos 22323

AB BC AC B AB BC +-∴===

???

又因为角B 是三角形的内角,所以6

B π

=

90BAC ∴∠=,

27sin BAD ∠=

,221

cos 1sin 7

BAD BAD ∴∠=-∠=, 21

sin cos 7

DAC BAD ∴∠=∠=

, 在ABD △中,由正弦定理可得sin sin BD B

AD BAD ?=∠,

在ADC 中,由正弦定理可得sin sin DC C

AD DAC

?=

∠,

()

13

2

32227217

7

DC DC -??

=,解得:233DC =

. 故选:A 【点睛】

本题考查正余弦定理解三角形,重点考查数形结合,转化与化归,推理能力,属于中档题型. 21.D 【分析】

构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解. 【详解】

解:如图所示的Rt ABC ?,其中角B 为直角,则垂心H 与B 重合,

O 为ABC ?的外心,OA OC ∴=,即O 为斜边AC 的中点,

M 为BC 中点,∴2AH OM =,

M 为BC 中点,

∴22()2(2)AB AC AM AH HM OM HM +==+=+.

4224OM HM HM MO =+=-

故选:D . 【点睛】

本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和

相关主题