搜档网
当前位置:搜档网 › 高中数学排列组合二项式概率统计知识点归纳及常考题型

高中数学排列组合二项式概率统计知识点归纳及常考题型

“排列、组合、二项式、概率、统计”复习资料

一、基础知识和方法梳理 (一)排列组合 1.计数两原理:

分类计数原理:完成一件事情,有n 类方法,在第1类方法中又有m 1种不同的方式可以完成这件事情,在第2类方法中,又有m 2种方式,……第n 类方法中有m n 种方式可以完成,那么要完成这件事情的方法共有:n m m m N +++=Λ21

分步计数原理:完成一件事情,需要分成n 步完成,在第1步中,有m 1种不同的方式可以完成这一步,在第2步中,有m 2种方式,……第n 步中,有m n 种方式可以完成这一步,那么要完成这件事情的方法共有:n m m m N ???=Λ21 2.排列:

从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 排列数)!

(!

)1()1(m n n m n n n A m

n -=+--=Λ

3.组合:

从n 个不同的元素中不重复选取m 个元素组成一组,与顺序无关; 组合公式:)!

(!!

!)1()1(m n m n m m n n n C m

n -=+--=

Λ;

组合数性质:m n n m n C C -=,m

n m n m n C C C 11+-=+

4.排列组合常用方法:

分类讨论法:将0,1,2,3,4五个数字可以组成多少个无重复数字的五位偶数?

间接法:100件产品含有5件次品,从中任取5件,则至少含有一件次品的取法有多少种? 捆绑、插空法:将3本语文书,3本数学书,2本英语书排成一排,数学书必须排在一起,英

语书不能相邻,则有多少中排列方式?

特殊元素特殊位置优先考虑法:例如,将0,1,2,3可以组成多少个无重复数字的四位数 分组法:将5个苹果分给甲、乙、丙三人,每人至少一个苹果,有多少种分配方案? 隔板法:例如,将10个相同的小球装入3个编号为1,2,3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少盒子的编号数,这样的装法总数有多少种? 等可能性法:六个字母a 、r 、r 、r 、b 、c 排成一排,有多少种排列方式?

(二)二项式定理

1.二项式定理:n

n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)(,其中r

n C 为第1

+r 项的二项式系数,=-n

b a )(

2.通项公式:r

r n r n r b a C T -+=1,),1,0(n r Λ=

3.二项式定理的性质: (1)对称性,二项式系数是关于

2

n

对称 (2)增减性与最大值,当n 为偶数时,二项式系数最大项为第12+n

项,最大值为2n

n C

当n 为奇数时,二项式系数最大项为第121+-n 项和第12

1

++n 项,最大值为21

21+-=n n n n C C (3)二项式系数之和n

n n n n C C C 210=+++Λ

奇数项与偶数项的二项式系数之和相等1

31202-=++=++n n n n n C C C C ΛΛ

(三)概率

1.概率的定义:在大量重复进行同一试验时事件A 发生的频率n

m

总是接近于某个常数p ,这时就把这个常数叫做事件A 的概率,记做)(A P .

2.事件的和A+B :表示事件A 和B 至少有一个发生; 事件的积A ×B :表示事件A 和B 同时发生

B A B A B A B A ?=++=?,

3.常见的几种类型的概率计算:

(1)等可能事件:可预知的有限个结果,且每个结果出现的可能性相同 计算方法:n

m A P =

)( (2)互斥事件:在一次试验中,事件A 发生了,则事件B 一定不会发生,事件B 发生了,事件A 不可能发生

互斥事件有一个发生的概率计算方法:)()()(B P A P B A P +=+, 特殊的,对立事件:1)()(=+A P A P

(3)相互独立事件:在一次试验中,事件A 发生与否对事件B 发生的概率没有影响,同理,事件B 发生与否对事件A 发生的概率没有影响,

若A 与B 是独立事件,则A 与B ,A 与B ,A 与B 都是独立事件 独立事件同时发生的概率的计算方法:)()()(B P A P B A P ?=?

(4)n 次独立重复事件恰有k 次发生的概率:k

n k k n n p p C k P --=)1()(

4.关于两个事件常见的概率计算:(若21)(,)(p B P p A P ==)

5.注意事项

(1)等可能事件的概率中,基本事件数目的计算可以分化得细致一点或粗略一点,这样虽然形式上有所差别,结果往往是一样的,通常有这样一些不同考虑:“整体考虑或局部考虑” 、“元素可辨或不可辨” 、“元素放回或不放回” 、“元素有序或无序”.

(2)重视几种概率类型的混合,注意概率加法、乘法的混合运算,适当注意概率类型的突破. (3)准确理解文字(生活)语言,如“至少”、“至多”、“都”、“不都”、“都不”、“恰有几个”、“有几个”,“只有第几次”、“第几次”,“直到第几次”等等,然后等价转化为数学(概率)语言,并注意表述规范.

(四)统计

1.离散型随机变量的定义:若随机试验的结果可以用一个变量表示,这个变量叫做随机变量。 2.离散型随机变量的分步列:i i p x P ==)(ξ

分步列的性质:(1)0≥i p ;(2)121=+++ΛΛi p p p

特殊分步:二项分步:),1,0(,)(Λ===-k q p C k P k

n k k n ξ,记为),(~p n B ξ

3.离散型随机变量的期望(平均值):ΛΛ++++=i i p x p x p x E 2211ξ

4.离散型随机变量的方差:ΛΛ+-++-+-=i i p E x p E x p E x D 2

222121)()()(ξξξξ

5.期望和方差的性质:

(1)ξξξξD a b a D b aE b a E 2

)(,)(=++=+;(2)2

2

)(ξξξE E D -=; (3)若),(~p n B ξ,则npq D np E ==ξξ,

6.抽样方法:简单随机抽样、系统抽样、分层抽样 (1)三种抽样方法的共同点:每个个体被取出的概率都等于

N

n (2)各自的特点及相互关系:简单随机抽样是逐个抽取;系统抽样先将个体平均分组,在第一组中采用简单随机抽样,然后按某种规则抽取;分层抽样是根据个体的差异进行分层,每层中采用简单随机抽样或系统抽样

(3)适用范围:当个体数较少时,用简单随机抽样;当个体数较多时,用系统抽样;当个体差异明显时,用分层抽样

7.总体分布的估计:用样本的频率分布来估计总体的概率分布

(1)若个体的取值很少时,其几何表示是条形图,其高度表示对应的频率,

(2)若个体数取值较多时,甚至无限时,其几何表示为没有间隔的直方图来表示,其直方图的面积为相应范围内的频率,此时可用一条光滑的曲线来表示,即总体密度曲线。 8.特殊的分布:正态分布

(1)定义:若总体密度曲线接近于正态曲线(中间高,两端低,左右对称),则服从正态分布,记为:),(2

σμξN ~

(2)正态曲线的性质:在x 轴上方,以x 轴为渐近线;关于直线μ=x 对称;在μ=x 时取得最高点;当μx 时,曲线下降;当μ一定时,曲线形状由σ确定,σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”

(3)关于标准正态分布的计算:)(1)(),()(0000x x x x P x Φ-=-Φ<=Φ (4)关于一般的正态分布的计算:)()(),()(0000σ

μ

ξ-Φ=<=x x F x P x F

二、例题分析

类型一:二项式定理及相关性质的考查

例1.设二项式n

x x )(13--的展开式中的第五项是常数项,求展开式中系数最大的项.

例2.化简(1)n

n n n n n C C C 2)1(42121-+++-Λ;

(2))1(5)1(10)1(10)1(5)1(2

345-+-+-+-+-x x x x x .

类型二:以排列组合为基础的等可能事件的概率计算

例3.袋中有5个白球,3个黑球,从中任意摸出3个,求下列事件发生的概率; (1)摸出2个或3个白球;(2)至少摸出1个白球;(3)至少摸出1个黑球.

例4.有9国乒乓球队,内有3个亚洲球队,抽签分成三组进行预赛(每组3个队)试求:(1)三个组中各有一个亚洲球队的概率;

(2)3个亚洲球队集中在某一组的概率.

类型三:互斥事件、独立事件的综合问题

例5.根据以往的比赛纪录,乒乓球单打比赛中,每局中甲胜乙的概率为0.6、乙胜甲的概率为0.4,某日比赛进行五局(并非五局三胜制),求:

①甲只胜第一局的概率;②甲只胜一局的概率;

③甲胜第一局的概率;④甲至少胜一局的概率;

⑤直到第四局甲才胜的概率;⑥假定采用五局三胜制,甲取胜的概率有多大?

例6.如图:用A 、B 、C 、D 四类不同的元件连接成系统N ,当元件A 正常工作且元件B 、C 都正常工作,或当元件A 正常工作且元件D 正常工作时,系统N 正常工作.已知元件A 、B 、C 、D 正常工作的概率依次为

.5

4

,43,43,32 (Ⅰ)求元件A 不正常工作的概率;

(Ⅱ)求元件A 、B 、C 都正常工作的概率;

(Ⅲ)求系统N 正常工作的概率.

类型四:n 次独立重复事件的概率

例7.有9粒种子分别种在甲、乙、丙三个坑内,每坑3粒,每粒种子的发芽率为0.5,若一个坑内至少有1粒种子发芽,则不需要补种,否则需要补种,

求(1)需要补种的坑的个数的数学期望;(2)恰有一个坑需要补种的概率;(3)有坑需要补种的概率.

高中数学100个热点问题(三): 排列组合中的常见模型

第80炼 排列组合的常见模型 一、基础知识: (一)处理排列组合问题的常用思路: 1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法? 解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求, 只需将剩下的元素全排列即可,所以排法总数为44496N A =?=种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。 例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种 解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简 单。3310785N C C =-=(种) 3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。 例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。 解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。所以共有213433108C C A =种方案 (二)排列组合的常见模型 1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。 例如:5个人排队,其中甲乙相邻,共有多少种不同的排法

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

排列组合题型总结

排列组合题型总结 排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。 一.直接法、 1. 特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理: 25A 24A =240 2.特殊位置法 (2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A , 共有14A 1 4A 24A =192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因 而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ??个,其中0在百位的有 2242?C ?22A 个,这是不合题意的。故共可组成不同的三位数333352A C ??-2242?C ?22A =432 (个) 三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方 法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ?=100中插 入方法。 四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×4 4A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校

排列组合二项式定理知识点

第十六章 排列、组合、二项式定理 一、排列 )!(!)())((m n n m n n n n P m m n -= +---=4444434444421Λ个相乘 121 (如:)!(!3553453 5-=??=P ) 二、组合 !)!(!m m n n P P C m m m n m n -== (如:123345335533 353 5????= -==!)!(!P P C ) m n n m C C -=n ,m n m n m C C C 11+-=+n (如:253C C =5,36253C C C =+5) 三、二项式定理 1.二项式定理:000b a C b a n n n -=+)(111b a C n n ??+-n n n b a C ??+0Λ (1)展开式共有n+1项,其中第r+1项:r r n r n r b a C T ??=-+1 (2)其中r n C (0,1,2…)叫二项式系数 2.二项式系数的性质 (1)在二项展开式中与首末两端“等距离”的两项的二项式系数相等。(对称性) (2)展开式中二项式系数最大的项: 若n 是偶数,是中间一项即第12 +n 项,二次项系数为2n n C ; 若n 是奇数,是中间两项即第21+n 、2 1 +n +1项,二次项系数为21 -n n C 、21 +n n C ; 【区别】展开式中系数最大的项:?? ?≥≥+++的系数 的系数的系数 的系数r r T T T T r r 121?求出r (3)二项式系数的和为n 2,即n n n n C C C 210=+++Λn 【区别】所有系数的和:令字母为1 (4)偶数项二项式系数和等于奇数项二项式系数和,即1 31202-=++=++n n ΛΛn n n C C C C 3.二项式定理的主要应用 (1)赋值求职; (2)证明某些整除问题或求余数; (3)证明关于指数式与多项式的不等式; (4) 进行近似计算。

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第 1类办法中有m1种不同的方法,在第 2 类办法中有m2种不同的方法,?,在第n 类办法中有m n种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第 1步有m1种不同的方法,做第 2步有m2种不同的方法,做第n步有m n种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素 . 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例 1. 由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解: 由于末位和首位有特殊要求 , 应该优先安排 , 以免不合要求的元素占了这两个位置 . 先排末位共有C13 然后排首位共有C14 最后排其它位置共有A43 由分步计数原理得C41C13A43 288 练习题 :7 种不同的花种在排成一列的花盆里 , 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 . 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。由分步计数原理可得共有A55A22A22480种不同的排法 练习题 : 某人射击 8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为20

高考专题---总结排列组合题型

总结排列组合题型 一.直接法 1.特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择,其余2位有四个可供选择,由乘法原理:=240 2.特殊位置法 (2)当1在千位时余下三位有=60,1不在千位时,千位有种选法,个位有种,余下的有,共有=192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数个,其中0在百位的有个,这是不合题意的。故共可组成不同的三位数-=432(个) 三.插空法当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有=100中插入方法。 四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有种排法,而男生之间又有种排

法,又乘法原理满足条件的排法有:×=576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种() 2.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有()(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有 其余的就是19所学校选28天进行排列) 五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法 例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。 分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种 练习1.(a+b+c+d)15有多少项? 当项中只有一个字母时,有种(即a.b.c.d而指数只有15故。 当项中有2个字母时,有而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即 当项中有3个字母时指数15分给3个字母分三组即可 当项种4个字母都在时四者都相加即可. 练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?() 3.不定方程X 1+X 2 +X 3 +…+X 50 =100中不同的整数解有() 六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法? 分析:分出三堆书(a 1,a 2 ),(a 3 ,a 4 ),(a 5 ,a 6 )由顺序不同可以有=6种,而这6种分法只算一 种分堆方式,故6本不同的书平均分成三堆方式有=15种 练习:1.6本书分三份,2份1本,1份4本,则有不同分法? 2.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。

高中数学排列组合例题

到车间也有7种分依此类推由分步计数原理共有76种不同的排法 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这 两个位置 先排末位共有C 3 然后排首位共有C i 最后排其它位置共有A 3 113 由分步计数原理得 C 4C 3A 4 =288 练习题:7种不同的花种在排成一列的花盆里 ,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内 5 2 2 部进行自排。由分步计数原理可得共有 A 5A 2A ; =480种不同的排法 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素 的位置,没有限制地安排在 m 个位置上的排列数为 m n 种 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新果将这两个节目插入原节目单中,那么不同插法的种数为 _42_ 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯六. 环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法? 解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以 从此位置把圆形展成直线其余7人共有(8-1 )!种排法即7 ! 要求某几个元素必须排在一起的问题 ,可以用捆绑法来解决问题 ?即将需要相邻的元素合并 为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列 ?练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三. 不相邻问题插空策略 例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续岀场,则节目的岀场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有 A 5种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 Ae 不同的方法,由分步计数原理,节目的不同顺序共有 A 5A 4 ______ 种 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两 练习 一5个节目已排成节目单,开演前又增加了两个新节目 ----------- 插入原节目单中, 且两个新 节目不相邻,那么不同插法的种数为 JQ_ 四. 定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题 ,可先把这几个元素与其他元素一起进行排列 ,然后用总排列数除以这几个 元素之间 的全排列数,则共有不同排法种数是: A 7∕A 3 (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 A 7 种方法,其余的三个位置甲乙丙共有 丄种坐法,则共有 A :种 方法。 思考:可以先让甲乙丙就坐吗 ? — — (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 ___________ 方法 定序问题可以用倍缩法,还可转化为占位插 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? C 15O 五. 重排问题求幕策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 J-种分法.把第二名实习生分配 排列组合 A 4并 -CKMXxMXXX) ABCDEFGHA D- B E A F H G

排列组合二项式定理知识点

排列组合项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以.有.重.复.元.素.的排列. 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以 从m个不同元素中,每次取出n个元素可重复排列数m- m?…m = m n..例

3! 1 . 3! 如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: m n 种) 二、排列. 1.(1)对排列定义的理解. 定义:从n 个不同的元素中任取 m (贰n )个元素,按照一定顺序 排成一列, 叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺 序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (mcn)个元素排成一列,称为从n 个不同元素中取 出 m 个元素的一个排列.从n 个不同元素中取出m 个元素的一个排列数,用 符号表 示. ⑷排列数公式: 注意:n n! (n 1)! n!规定 0! = 1 m m m m 1 m m 1 m m 1 On, A n 1 A n A m C n A n mA n A n nA n 1 /规^定 C n C n 1 2.含有可重元素的排列问题. 对含有相同元素求排列个数的方法是:设重集 S 有k 个不同元素a 1, a 2,……a n 其中限重复数为n 1、n ..... n k ,且n = n 计尊+ .. n k ,则S 的排列 例如:已知数字3、2、2,求其排列个数n 喈3又例如:数字5、5、5、 求其排列个数?其排列个数 个数等于n n! n !n 2!...n k

(完整)高中数学排列组合专题复习

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第2类 1 办法中有 m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步 1 有 m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置.

排列组合 二项式定理知识点

排列组合二项定理考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有 ..重复 ..的排列. ..元素 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例

如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 例如:已知数字3、2、2,求其排列个数3! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1! 3!3==n .

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

高中数学排列组合与二项式定理知识点总结

排列组合与二项式定理知识点 1.计数原理知识点 ①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m! Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 经常运用的数学思想是: ①分类讨论思想;②转化思想;③对称思想. 4.二项式定理知识点: ①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn 特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn ②主要性质和主要结论:对称性Cnm=Cnn-m 最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项) 所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1 ③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。 6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

高中数学题型总结与易错点提示(排列组合)

排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有 34A 由分步计数原理得11 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 C 1 4 A 3 4 C 1 3 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端 定序问题可以用倍缩法,还可转化为占位插空模型处理

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

高中数学-排列组合二项式定理知识点

排列组合二项式定理知识点 2、排列、组合

3、二项式定理 内容典型题 定义①二项式定理: (a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n =∑ = n r r n C a n-r b r(n∈N+) ②二项式展开式第r+1项通项公式: T r-1 =C r n a n-r b r 其中C r n(r=0,1,2,…,n)叫做二项式系数. 8.二项式8)1 (- x的展开式中的第5项是( ) A. 70x4 B. 70x2 C. 56x3 D. -562 3 x 9.二项式(x-2)12展开式中第3项的系数是( ) A.264 B.-264 C.66 D.-1760 10.(x-2)8 的展开式中, x6的系数是( ) A. 56 B. -56 C. 28 D. 224 11.(x2+)5展开式中的10x是( ) A.第2项 B.第3项 C.第4项 D.第5项 12.二项式x-1 x 6 的展开式中常数项是( ) A. 1 B. 6 C. 15 D. 20 13.设(3-x)n=n n x a x a x a a+???+ + +2 2 1 ,已知 n a a a a+???+ + + 2 1 =64,则n=. 14.设二项式(3x+5)10= 1 8 8 9 9 10 10 a x a x a x a x a+ +???+ + +,则 1 8 9 10 a a a a a+ -???- + -=. 15.二项式2x-1 x 6 的展开式中二项式系数最大的项是. 性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等. ②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大. ③二项式系数的和为n2,即 n C+1 n C+…+r n C+…+n n C=n2 ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即 n C+2 n C+…=1 n C+3 n C+…=1 2-n

排列组合二项式知识点及例题

排列组合 分类计数原理:完成一件事,有n 种不同的方法,在1类办法中有m 1种不同的办法,在第2类办法中有m 2种不同的方法······在第n 种办法中有m n 种不同的方法。那么完成这件事共有N= m 1 +m 2+······ m n 种不同的方法 分步计数原理:完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的打方法·····做第n 步有m n 种不同的方法,那么完成这件事共有N= m 1 ×m 2×······×m n 种不同的方法 1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示 3.排列数公式:(1)(2)(1)m n A n n n n m =---+L (,,m n N m n *∈≤) 4 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=. 5.排列数的另一个计算公式:m n A =!()!n n m - 6 组合概念:从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 7.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 8.组合数公式:(1)(2)(1)!m m n n m m A n n n n m C A m ---+==L 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且 9.组合数的性质1:m n n m n C C -=.规定:10=n C ; 10.组合数的性质2:m n C 1+=m n C +1-m n C C n 0+C n 1+…+C n n =2n 排列组合问题的解题策略 一、相临问题——捆绑法 一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 二、不相临问题——选空插入法 若 个人站成一排,其中 个人不相邻,可用“插空”法解决 例2. 7名学生站成一排,甲乙互不相邻有多少不同排法? 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.

(完整版)高中数学完整讲义——排列与组合8.排列组合问题的常用方法总结2

1 思维的发掘 能力的飞跃 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理. ⑴乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???L 种不同的方法.又称乘法原理. ⑴加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑴组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取知识内容 排列组合问题的常用方法总结2

相关主题