搜档网
当前位置:搜档网 › 1.2.1 三角函数线 教案(优秀经典公开课比赛教案)

1.2.1 三角函数线 教案(优秀经典公开课比赛教案)

1.2.1 三角函数线    教案(优秀经典公开课比赛教案)
1.2.1 三角函数线    教案(优秀经典公开课比赛教案)

1.2.1 三角函数线

一、教学目标:

知识与技能:

1.复习三角函数的定义、定义域与值域、符号、及诱导公式;

2.利用三角函数线表示正弦、余弦、正切的三角函数值;

3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

过程与方法:

掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。

情感、态度与价值观

通过任意角的三角函数定义学习,让学生体会数形结合的思想方法,帮助学生形成科学的世界观、

价值观。

二.重点难点

重点:正弦、余弦、正切线的概念。

难点:正弦、余弦、正切线的利用。

三、教材与学情分析

利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的联系,并在角的变化过程中,将这种联系直观地体现出来.所以,信息技术可以帮助学生更好地理解三角函数的本质.激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境.

四、教学方法

问题引导,主动探究,启发式教学.

五、教学过程

1.导入新课

思路1.(情境导入)同学们都在一些旅游景地或者在公园中见过大观览车,大家是否想过大观览车在转动过程中,座椅离地面的高度随着转动角度的变化而变化,二者之间有怎样

的相依关系呢?

思路2.(复习导入)我们研究了三角函数在各象限内的符号,学习了将任意角的三角函数化成0°—360°角的三角函数的一组公式,前面还分析讨论了三角函数的定义域,这些内容

的研究,都是建立在任意角的三角函数定义之上的,这些知识在以后我们继续学习“三角”内容时,是经常、反复运用的,请同学们务必在理解的基础上要加强记忆.由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.我们知道,直角坐标系内点的坐标与坐标轴的方向有关.因此自然产生一个想法是以坐标轴的方向来规定有向线段的方向,以使它们的取值与点的坐标联系起来.

新知探究

(1)提出问题:问题①:回忆上节课学习的三角函数定义并思考:三角函数的定义能否用

几何中的方法来表示,应怎样表示呢?

问题②:回忆初中学过的线段,若加上方向会怎样呢?什么是有向线段?

活动:指导学生在平面直角坐标系内作出单位圆,设任意角α的顶点在原点,始边与x

轴的非负半轴重合,终边与单位圆相交于点P(x,y),x 轴的正半轴与单位圆相交于A(1,0),过P 作x 轴的垂线,垂足为M;过A 作单位圆的切线,这条切线必平行于y 轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.教师点拨学生观察线段的方向与点P 的坐标.显然,线段OM 的长度为|x|,线段MP

的长度为|y|,它们都只能取非负值.

当角α的终边不在坐标轴上时,我们可以把OM 、MP 都看作带有方向的线段:

如果x>0,OM 与x 轴同向,规定此时OM 具有正值x;如果x<0,OM 与x 轴正向相反(即反向), 规定此时OM 具有负值x,所以不论哪一种情况,都有OM=x.

如果y>0,把MP 看作与y 轴同向,规定此时MP 具有正值y;如果y<0,把MP 看作与y

轴反向,规定此时MP 具有负值y,所以不论哪一种情况,都有MP=y.

引导学生观察OM 、MP 都是带有方向的线段,这种被看作带有方向的线段叫做有向线段. 于是,根据正弦、余弦函数的定义,就有

sin α=r y =1

y =y=MP, cos α=r x =1x =x=OM. 这两条与单位圆有关的有向线段MP 、OM 分别叫做角α的正弦线、余弦线.

类似地,我们把OA 、AT 也看作有向线段,那么根据正切函数的定义

和相似三角形的知识,就有tan α=

x y =OA

AT =AT. 这条与单位圆有关的有向线段AT,叫做角α的正切线.

讨论结果:①能.②被看作带有方向的线段叫做有向线段.

(2)提出问题:问题①:怎样把三角函数线与有向线段联系在一起?

问题②:正弦线、余弦线、正切线在平面直角坐标系中是怎样规定的?

当角α的终边变化时,它们有什么变化?

活动:师生共同讨论,最后一致得出以下几点:

(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.

(2)当角α的终边在x轴上时,正弦线、正切线都变成点.

(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,

一定要先作单位圆.

(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,

不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.

(5)三种有向线段的正负与坐标轴正反方向一致,三种有向线段的数量与三种三角函数值相同.

正弦线、余弦线、正切线统称为三角函数线.

讨论结果:①略.②略.

(3)学以致用

例1 如图7,α,β的终边分别与单位圆交于点P,Q,过A(1,0)作切线AT,交射线OP于点T,交射线OQ的反向延长线于T′,点P、Q在x轴上的射影分别为点M、N,则

sinα=______________,cosα=______________,tanα=______________,

sinβ=______________,cosβ=______________,tanβ=______________.

活动:根据三角函数线的定义可

知,sinα=MP,cosα=OM,tanα=A T,sinβ=NQ,cosβ=ON,tanβ=A T′.

答案:MP OM AT NQ ON A T′

点评:掌握三角函数线的作法,注意用有向线段表示三角函数线时,字母的书写顺序不能随意颠倒.

变式训练1.利用三角函数线证明|sinα|+|cosα|≥1.

解:当α的终边落在坐标轴上时,正弦(或余弦)线变成一个点,而余弦(或正弦)线的长等于r,

所以|sinα|+|cosα|=1.当角α终边落在四个象限时,利用三角形两边之和大于第三边有

|sinα|+|cosα|=|OM |+|MP |>1,∴|sinα|+|cosα|≥1.

例2 在单位圆中画出适合下列条件的角α的终边或终边所在的范围,并由此写出角α的集合: (1)sinα=21;(2)sinα≥2

1. 活动:引导学生画出单位圆,对于(1),可设角α的终边与单位圆交于A(x,y),则sinα=y,所以

要作出满足sinα=

21的终边,只要在单位圆上找出纵坐标为2

1的点A,则OA 即为角α的终边;对于(2),可先作出满足sinα=21的角的终边,然后根据已知条件确定角α的范围.

解:(1)作直线y=

21交单位圆于A 与B 两点,连结OA,OB,则OA 与OB 为角α的终边,如图8所示.

故满足条件的角α的集合为{α|α=2kπ+

6π或α=2kπ+65π,k ∈Z }. (2)作直线y=

2

1交单位圆于A 与B 两点,连结OA,OB,则OA 与OB 围成的区域(如图中的阴影部分) 即为角α的终边所在的范围.故满足条件的角α的集合为{α|2kπ+6

π≤α≤2kπ+65π,k ∈Z }. 点评:在解简单的特殊值(如±21,2

2等)的等式或不等式时,应首先在单位圆内找到对应的终边(作纵坐标为特殊值的直线与单位圆相交,连结交点与坐标原点作射线),一般情况下,用(0,2π)内的角表示它,然后画出满足原等式或不等式的区域,用集合表示出来. 例2. 求下列函数的定义域:

(1)y=log sinx (2cosx+1); (2)y=lg(3-4sin 2x).

活动:先引导学生求出x 所满足的条件,这点要提醒学生注意,研究函数必须在自变量允

许的范围内研究,否则无意义.再利用三角函数线画出满足条件的角x 的终边范围.求解时,可根据各种约束条件,利用三角函数线画出角x 满足条件的终边范围,写出适合条件的x 的取值集合.

解:(1)由题意,得??????

??????????????->≠>>+≠>21cos ,1sin ,0sin ,01cos 2,1sin ,0sin x x x x x x ,则?????????+<<-+≠+<<,322322,22,22πππππππππk x k k x k x k (k ∈Z ). ∴函数的定义域为{x|2kπ

2π,k ∈Z }. (所求x 的终边所在的区域如图中的阴影部分所示)

(2)∵3-4sin 2x>0,∴sin 2x<

43.∴23-

-,2kπ+3π)∪(2kπ+32π,2kπ+34π)(k ∈Z ),即x ∈(kπ-3π,kπ+3

π)(k ∈Z ). (所求x 的终边所在的区域如图中的阴影部分所示)

变式训练2. 求函数y=1-2cosx 的定义域. 解:要使函数有意义,需满足2cosx-1≥0,所以cosx≥

21. 故由余弦函数线可知函数的定义域为[2kπ-3π-,2kπ+3

π],k ∈Z . 六、课堂小结

本节课我们学习了有向线段的定义,正弦线、余弦线、正切线的定义,这三种三角函数线都是一些特殊的有向线段,其之所以特殊,一是其与坐标轴平行(或重合),二是其与单位圆有关,这些线段分别都可以表示相应三角函数的值,所以说它们是三角函数的一种几何表示. 三角函数线是利用数形结合的思想解决有关问题的重要工具,利用三角函数线可以解或证明三角不等式,求函数的定义域以及比较大小,三角函数线也是后面将要学习的三角函数的图象的作图工具.

七、课后作业

课时练与测

八、教学反思

教师在教学中,始终引导学生紧扣三角函数的定义,善于利用数形结合.在利用三角函数定义解读三角函数线,让学生在解题应用中感受数形结合思想。

(完整)初中锐角三角函数教案

锐角三角函数 中考主要考查点: 1. 锐角三角函数定义;特殊角的三角函数值; 2. 解直角三角形;解直角三角形的应用; 3. 直角三角形的边角关系的应用 ? 知识点1. 直角三角形中边与角的关系 中,∠C=90° (1)边的关系: (2)角的关系: (3)边与角的关系: sinA = cosA= tanA= cotA= sinA =cosB = a c , cosA =sinB = b c ,tanA ==a b , tanB =b a , cotA=b a ? 知识点2. 特殊角的三角函数值 特殊角30°,45°,60°的三角函数值列表如下: α sinα cosα tanα 30° 1 2 33 45° 22 22 1 60° 1 2 斜边 的对边 A ∠斜边 的邻边A ∠邻边的对边A ∠ 对边的邻边A ∠2 3 233

? 知识点3. 三角函数的增减性 已知∠A 为锐角,sinA 随着角度的增大而 增大 ,tanA 随着角度的增大而 增大 , cosA 随着角度的增大而 减小 。 例1. 已知∠A 为锐角,且cosA≤ 2 1 ,那么( ) (A ) 0°<A≤60°(B )60°≤A <90°(C )0°<A≤30°(D )30°≤A <90° ? 知识点4. 同角三角函数与互为余角的三角函数之间的关系。 1. 同角三角函数的关系 1cos sin 22=+A A A A A cos sin tan = 1cot tan =?A A 2. 互为余角的三角函数之间的关系90=+B A B A B A sin cos cos sin == ?=47cos 43sin ο 1tan tan =?B A ? 知识点5. 直角三角形的解法 直角三角形中各元素间的关系是解直角三角形的依据,因此,解直角三角形的关键是 正确选择直角三角形的边角关系式,使两个已知元素(其中至少有一个元素是边). 重要类型: 1.已知一边一角求其它。 2.已知两边求其它。 例2. 在中,∠C=90°,,∠A -∠B=30°,试求的值。 A C B

第28章_锐角三角函数全章教案

课题锐角三角函数——正弦 一、教学目标 1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。 2、能根据正弦概念正确进行计算 3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。 二、教学重点、难点 重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实. 难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。 三、教学过程 (一)复习引入 操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片) 小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。 你想知道小明怎样算出的吗? 师:通过前面的学习我们知道,利用相似三角形的方法可以测 算出旗杆的大致高度; 实际上我们还可以象小明那样通过测量一些角的度数和一些线 段的长度,来测算出旗杆的高度。 这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。 下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦 (二)实践探索 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m,那么需要准备多长的水管? 分析: 问题转化为,在Rt△ABC中,∠C=90o,∠A=30o,BC=35m,求AB 根据“再直角三角形中,30o角所对的边等于斜边的一半”,即 34 1米 10米 ?

全国高中数学优质课 余弦定理教学设计

《余弦定理》教学设计 一、教学内容解析 本节内容选自普通高中课程标准实验教科书人教A版《数学》必修5第一章《解三角形》第一节正弦定理和余弦定理。第一节约4课时,2课时通过探究证明正弦定理,应用正弦定理解三角形;2课时通过探究证明余弦定理,应用余弦定理解三角形。本节课是余弦定理的第一课时,属于定理教学课。 正余弦定理是定量研究三角形边角关系的基础,它们为解三角形提供了基本方法,为后续解决测量等实际问题提供了理论基础和操作工具。余弦定理是继正弦定理之后的解三角形又一有力工具,完善了解三角形体系,为解决三角形的边角关系提供了新的方法;是对任意三角形“边、角、边”和“边、边、边”问题进行量化分析的结果,将两种判定三角形全等的定性定理转化为可计算的公式。 纵观余弦定理的发展史,它的雏形出现公元前3世纪。在欧几里得《几何原本》卷二对钝角三角形和锐角三角形三边关系的阐述中,利用勾股定理将余弦定理的几何形式进行了证明。1593年,法国数学家韦达首次将欧几里得的几何命题写成了我们今天熟悉的余弦定理的三角形式,直到20世纪,三角形式的余弦定理才一统天下。“余弦定理是作为勾股定理的推广而诞生的,以几何定理的身份出现,直到1951年,美国数学家荷尔莫斯在其《三角学》中才真正采用解析几何的方法证明了余弦定理,至于向量方法的出现,更是晚近的事了。” 从新旧教材的内容设计对比来看,无论是问题的提出,定理的证明,简单应用都呈现出变化。旧教材数学第二册(下)中,余弦定理被安排在第五章《平面向量》的第二节解斜三角形中。基于特殊到一般的数学思想,从直角三角形

切入,提出问题后,直接用向量的方法推导定理。新教材将余弦定理安排在独立章节《解三角形》中,首先给出探究:如果已知一个三角形的两边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形,从量化的角度研究这个问题,也为余弦定理解三角形的类型做了铺垫。在定理的推导过程中,同样用了向量方法,但在推导前提出思考:联系已经学过的知识,我们从什么途径来解决这个问题?新教材还结合余弦定理和余弦函数的性质,分别对三种形状的三角形进行了量化分析,旧教材没有涉及此内容。 从余弦定理的发展史和教材的设置变化来看,欧式几何依据基本的逻辑原理,建立几何关系,论证严谨,但思维量大,需要分类讨论。而作为沟通代数、几何与三角函数的工具——向量引入后,欧式几何中的平行、相似、垂直都可以转化成向量的加减、数乘、数量积的运量,从而把图形的基本性质转化成向量的运算体系,由此开创了研究几何问题的新方法。而且在证明之后还提出问题:用坐标方法怎样怎样证明余弦定理?还有其他的方法吗? 教材的编排,就是希望学生了解可以从向量、解析方法和三角方法等多种途径证明余弦定理,另外对向量工具性作用有所体会和认识。 基于以上分析,本节课的教学重点是: 通过对三角形边角关系的探索,发现并证明余弦定理。 二、教学目标设置 结合《课程标准》和教材编排,本节课的教学目标确定为: 1.发现并掌握余弦定理及其推论,利用余弦定理能够解决一些与三角形边角有关的计算问题。 2.通过对三角形边角关系的探索,能证明余弦定理,了解可以从向量、解析方法和三角方法等多种途径证明余弦定理。

初中数学九年级《锐角三角函数:正弦》公开课教学设计

28.1 锐角三角函数(教案) 第 1 课时正弦 【知识与技能】 1. 让学生理解当直角三角形的锐角固定时,它的对边与斜边的比值是一个定值的事实; 2. 掌握正弦函数意义,能依据正弦函数定义进行有关计算. 【过程与方法】通过对30°和45°与其所对的直角边与斜边的比值之间关系的探讨,可以获得“直角三角形中,当锐角一定时,这个锐角的对边与斜边的比是固定值”这一重要结论,发展学生的演绎推理能力. 【情感态度】在探索正弦函数概念的过程中,可进一步培养学生的创新意识,发展学生的形象思维,增强由特殊到一般逻辑推理能力. 【教学重点】了解正弦函数定义,理解当锐角一定时它所对的直角边与斜边的比固定不变这一事实.【教学难点】加深直角三角形中,当它的某一锐角固定时这角的对边与斜边的比是个定值”的理解. 一、情境导入,初步认识 问题为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌. 现测得斜坡与水平面所成角的度数是30°, 为使水管出水口到水平面的高度为35m,那么需准备多长的管? 【教学说明】对所提示的问题,教师应引导学生如何将这一实际问题转化为数学模型,让学生在相互交流中获得结论. 教师应重点关注学生获取结论的过程,即是否运用 30 的对边1 “ 斜边= 2 ” 这一结论。 二、思考探究,获取新知 探究 1 如果将上述问题中出水口到水平面的高度改为50m,那么需准备多长的水管? 思考 1 通过对前面问题和探究的思考,你有什么发现? 【教学说明】在学生自主探究,获得结论后,让他们相互交流各自体会,为掌握本节知 识积累感性认识. 最后教师与学生一道进行简要总结. 【归纳结论】在一个直角三角形中,如果一个锐角为30°,那么不管三角形的大小如 何,这个角的对边与斜边的比值都等于1,是一个固定值. 2 ∠ C=90°,∠ A = 45°,计算∠ A的对边BC与斜思考 2 如图,在Rt△ACB中,

省优秀课一等奖:锐角三角函数全章教案

【锐角三角函数全章教案】 锐角三角函数(第一课时) 教学三维目标: 一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。 二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。 三.情感目标:提高学生对几何图形美的认识。 教材分析: 1.教学重点: 正弦,余弦,正切概念 2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动 1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。 2.归纳三角函数定义。 siaA= 斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边 的对边 A A ∠∠ 3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。 4.学生练习P21练习1,2,3 二.探究活动二 1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°

2. 求下列各式的值 (1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)0 4530cos sia +ta60°-tan30° 三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=2 3 ,AC=23,求AB 四.小结 五.作业课本p85-86 2,3,6,7,8,10

解直角三角形应用(一) 一.教学三维目标 (一)知识目标 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. (二)能力训练点 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感目标 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法. 2.难点:三角函数在解直角三角形中的灵活运用. 3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾 1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=b a (2)三边之间关系 a 2 + b 2 = c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°. 以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动 1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情. 2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题评析

1.2.1 三角函数线 教案 (1)(优秀经典公开课比赛教案)

1.2.1 三角函数线 一、教学目标: 知识与技能: 1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值; 3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。 过程与方法: 掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。 情感、态度与价值观 通过任意角的三角函数定义学习,让学生体会数形结合的思想方法,帮助学生形成科学的世界观、 价值观。 二.重点难点 重点:正弦、余弦、正切线的概念。 难点:正弦、余弦、正切线的利用。 三、教材与学情分析 利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的联系,并在角的变化过程中,将这种联系直观地体现出来.所以,信息技术可以帮助学生更好地理解三角函数的本质.激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境. 四、教学方法 问题引导,主动探究,启发式教学. 五、教学过程 1.导入新课 思路1.(情境导入)同学们都在一些旅游景地或者在公园中见过大观览车,大家是否想过大观览车在转动过程中,座椅离地面的高度随着转动角度的变化而变化,二者之间有怎样 的相依关系呢? 思路2.(复习导入)我们研究了三角函数在各象限内的符号,学习了将任意角的三角函数化成0°—360°角的三角函数的一组公式,前面还分析讨论了三角函数的定义域,这些内容

的研究,都是建立在任意角的三角函数定义之上的,这些知识在以后我们继续学习“三角”内容时,是经常、反复运用的,请同学们务必在理解的基础上要加强记忆.由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.我们知道,直角坐标系内点的坐标与坐标轴的方向有关.因此自然产生一个想法是以坐标轴的方向来规定有向线段的方向,以使它们的取值与点的坐标联系起来. 新知探究 (1)提出问题:问题①:回忆上节课学习的三角函数定义并思考:三角函数的定义能否用 几何中的方法来表示,应怎样表示呢? 问题②:回忆初中学过的线段,若加上方向会怎样呢?什么是有向线段? 活动:指导学生在平面直角坐标系内作出单位圆,设任意角α的顶点在原点,始边与x 轴的非负半轴重合,终边与单位圆相交于点P(x,y),x 轴的正半轴与单位圆相交于A(1,0),过P 作x 轴的垂线,垂足为M;过A 作单位圆的切线,这条切线必平行于y 轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.教师点拨学生观察线段的方向与点P 的坐标.显然,线段OM 的长度为|x|,线段MP 的长度为|y|,它们都只能取非负值. 当角α的终边不在坐标轴上时,我们可以把OM 、MP 都看作带有方向的线段: 如果x>0,OM 与x 轴同向,规定此时OM 具有正值x;如果x<0,OM 与x 轴正向相反(即反向), 规定此时OM 具有负值x,所以不论哪一种情况,都有OM=x. 如果y>0,把MP 看作与y 轴同向,规定此时MP 具有正值y;如果y<0,把MP 看作与y 轴反向,规定此时MP 具有负值y,所以不论哪一种情况,都有MP=y. 引导学生观察OM 、MP 都是带有方向的线段,这种被看作带有方向的线段叫做有向线段. 于是,根据正弦、余弦函数的定义,就有 sin α=r y =1 y =y=MP, cos α=r x =1x =x=OM. 这两条与单位圆有关的有向线段MP 、OM 分别叫做角α的正弦线、余弦线. 类似地,我们把OA 、AT 也看作有向线段,那么根据正切函数的定义 和相似三角形的知识,就有tan α= x y =OA AT =AT. 这条与单位圆有关的有向线段AT,叫做角α的正切线.

《锐角三角函数》教案

《锐角三角函数》教案 教学目标 1.知识与技能: (1)经历探索直角三角形中边角关系的过程,理解正切正弦、余弦的意义和与现实生活的联系. (2)能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度(坡比)等. (3)能够根据直角三角形的边角关系,用正切、正弦、余弦进行简单的计算. 2.过程与方法: 体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题. 3.情感态度与价值观: 进一步锻炼学生用数学的观点来解释身边的事物,形成良好的数学思维习惯和思维品质. 教学重点 理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系. 教学难点 理解正切、正弦、余弦的意义,并用它来表示两边的比. 教学过程 第一环节创设问题情境 活动内容:观察梯子的倾斜程度 梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?为了描述梯子的这种倾斜程度,先给大家介绍三个简单的概念:倾斜角,铅垂高,水平宽.1.图1—1和图1—2中,这里摆放的两个梯子,你能辨别出那一个比较陡一些吗?你是如何判断的?

2.图1—3中,这里摆放的两个梯子,你能辨别出那一个比较陡一些吗?你又是如何判断的? 对于图1—3,学生可能难于下手,这时老师可以借助几何画板的动态演示,引导学生比较对边与邻边的比值,即比较表一中的1t 与2t 大小,当12t t >、12t t <、12t t 时,借助几何画板直观的验证梯子的倾斜程度,以突破学生认识上的障碍.(为了方便研究,表格中的数据精确到十分位). 活动目的:先让学生从图1-1和图1-2中直观感受梯子的倾斜程度,再让学生理性思考该如何寻找方法判断图1-3中梯子的倾斜程度.这样学生会感到知识上的匮乏,从而对数学产生好奇心和求知欲.让他们从实例中体会不同情况下比较梯子的倾斜程度只靠直观感受是不够的,还需要其他方法——用边的比进行比较. 第二环节 探求新知 活动内容1:在小明家的墙角处放有一架较长的梯子,墙很高,又没有足够长的尺来测量,你有什么巧妙的方法得到梯子的倾斜程度呢? 图1— 1 图1—2 图1— 3 表 1

杨启刚1.3三角函数的诱导公式-公开课教案

公开课教案 教学课题: 1.3三角函数的诱导公式 教学时间:2014.11.20第七节课教学地点:北楼一楼授课班级:高一(2)班执教人:杨启刚●三维目标 1.知识与技能 (1)理解正弦、余弦的诱导公式. (2)培养学生化归、转化的能力. 2.过程与方法 (1)能运用公式一、二、三推导公式四. (2)掌握诱导公式并运用其进行三角函数式的求值、化简以及简单三角恒等式的证明. 3.情感、态度与价值观 通过公式四的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质. ●重点、难点 重点:诱导公式的探究,运用诱导公式进行简单三角函数式的求值、化简与恒等式的证明,提高对数学内部联系的认识. 难点:发现圆的几何性质(特别是对称性)与三角函数性质的联系.式的关系.●教学建议 1.三角函数的诱导公式是圆的对称性的“代数表示”,因此,用数形结合的思想,从单位圆关于坐标轴、原点等的对称性出发研究诱导公式,是一个自然的思路.利用单位圆的对称性,让学生自主发现终边分别关于原点或坐标轴对称的角的三角函数值之间的关系,使得诱导公式(数)与单位圆(形)得到紧密结合,成为一个整体,不仅大大简化了诱导公式的推导过程,缩减了认识、理解诱导公式的时间,而且还有利于学生对公式的记忆,减轻了学生的记忆负担.2.诱导公式应当在理解的基础上记忆,而且应当使学生学会利用单位圆帮

助记忆.教科书对诱导公式的特点进行了概括,教学中要留有时间让学生思考、讨论、归纳,引导学生建立各组公式与相应图形的联系,并对各个公式的异同进行比较,以此加深公式的理解. ●教学过程 设任意角α的终边与单位圆交于点P1(x,y),π+α的角的终边与单位圆交于点P2. 1.点P2的坐标是什么? 【提示】P2(-x,-y) 2.根据三角函数的定义,你能得出角π+α与角α的三角函数值间的关系吗? sin(π+α)=-sin_α,cos(π+α)=-cos_α;tan(π+α)=tan_α. 任意角α与-α的终边与单位圆的交点有怎样的位置关系? 你能用三角函数的定义验证-α与α的三角函数值的关系吗? sin(-α)=-sin_α;cos(-α)=cos_α;tan(-α)=-tan_α. 任意角α与π-α的终边与单位圆的交点有怎样的位置关系? 1.公式四:sin(π-α)=sin_α;cos(π-α)=-cos_α;tan(π-α)=-tan_α. 2.公式一~四可以概括为:

锐角三角函数教案

第一章 直角三角形的边角关系 1.1 锐角三角函数(2) 一、知识点 1. 认识锐角三角函数——正弦、余弦 2. 用sinA,cosA 表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算. 二、教学目标 知识与技能 1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系. 2. 能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算. 过程与方法 1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2、体会解决问题的策略的多样性,发展实践能力和创新精神. 情感态度与价值观 1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学. 2、形成实事求是的态度以及交流分享的习惯. 三、重点与难点 重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 四、复习引入 设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望. 五、探究新知 探究活动1(出示幻灯片4):如图,请思考: (1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2) 的关系是和2 2 2111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则 的关系是和2 2 2111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________. B 1 B 2 A C 1 C 2

第二十八章锐角三角函数-教案全章 (1)

【锐角三角函数全章教案】 锐角三角函数(第一课时) 教学三维目标: 一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。 二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。 三.情感目标:提高学生对几何图形美的认识。 教材分析: 1.教学重点: 正弦,余弦,正切概念 2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动 1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。 2.归纳三角函数定义。 siaA= 斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边 的对边 A A ∠∠ 3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。 4.学生练习P21练习1,2,3 二.探究活动二 1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°

2. 求下列各式的值 (1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)0 45 30cos sia +ta60°-tan30° 三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=2 3 ,AC=23,求AB 四.小结 五.作业课本p85-86 2,3,6,7,8,10 解直角三角形应用(一) 一.教学三维目标 (一)知识目标 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. (二)能力训练点 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感目标 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法. 2.难点:三角函数在解直角三角形中的灵活运用. 3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾 1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA= c a cosA=c b tanA=b a (2)三边之间关系 a 2 +b 2 =c 2 (勾股定理)

任意角的三角函数公开课教案(精.选)

任意角的三角函数(第一课时) 教学目标 1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 一、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化). 二、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关

系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业] (一)复习引入、回想再认 开门见山,面对全体学生提问: 在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢? 探索任意角的三角函数(板书课题),请同学们回想,再明确一下: (情景1)什么叫函数?或者说函数是怎样定义的? 让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调: 传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域. 现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数 f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作: f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域. (情景2)我们在初中通过锐角三角形的边角关系,学习

锐角三角函数教学设计数学优秀教学设计案例实录能手公开课示范课.docx

锐角三角函数教学设计 §28?1锐角三角函数(一) 一. 指导思想 建构主义学习理论的核心是:以学生为屮心,强调学生对知识的主动探索,主动发现和对所学知识意义的主动建构;教师只对学生的意义建构起帮助和促进作用,并不要求教师直接向学生传授和灌输知识。 《数学课程标准》提出:学生是数学学习的主人,教师是数学学习的纽织者、引导者与合作者;有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方法。学生的数学学习内容应当是现实的、冇意义的、富冇挑战性的,这些内容要有利于学生主动的进行观察、实验、猜想、验证、推理打交流活动。教师应向学生提供充分从事数学活动的机会,帮助他们在动手实践、自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。 因此,在木节课的每个教学活动屮,教师努力做到:给予学生充分的独立思考、探究的时间,使学生面对新问题,寻求新的解决办法;参与到学生活动中,适时进行点拨与指导,对学生在活动屮的各种表现,都应该及时给予鼓励,使他们真正体验到白己的进步,感受到成功的喜悦;为学生提供协作、交流的机会,使每个学牛的个性得以张扬,自我表现意识和团队精神得以增强。 二. 教学背景分析 (一)教学内容分析: 1.地位及作用 《锐角三角函数概念》是人教版义务教育课程标准实验教科书数学九年级下册笫28章第一节的内容。 锐角三角函数的概念是以相似三角形的知识为基础的,它的建立是对代数屮已初步涉及的函数概念的一次充实和进一步开阔视野,也将是高中阶段学习任意角的三角函数的基础。锐角三角函数的概念,既是本章的重点,也是难点.又是学好本章内容的关键?因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角Z间的关系,从而才能利川这些关系解直角三角形。此内容乂是数形结合的典范.因此,学好本节内容是十分必要的,对本单元的学习必须引起足够的重视. 2.课时安排 本节教材共分三课时完成,:第-?课时是正弦概念的建立及其简单应用;第二课时是余弦、正切概念的建立及其简单应用;笫三课时是综合应用。 (二)学生情况分析: 学生前面已经学习了三角形、四边形、和似三角形和勾股定理的知识,为锐角三角函数的学习

锐角三角函数-正切教学设计

23.1锐角的三角函数 1. 锐角的三角函数 第一课时正切 教学目标 ◆知识与技能 1.初步了解角度与数值的一一对应的函数关系。 2.会求直角三角形中某个锐角的正切值。 3.了解坡度的有关概念。 ◆过程与方法 让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维习惯,提高学生运用数学知识解决实际问题的能力。 ◆情感态度 通过探究活动激发学生学习的积极性和主动性,引导学生自主探索,合作交流,培养学生的创新意识。 教学重点: 1.从现实情境中探索直角三角形的边角关系。 2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。 教学难点: 锐角三角函数的概念的理解。 教学准备 多媒体课件制作 教学设计 一、导入新课 导语:因为这座桥的设计让它成为了旅游新热点,火起来的原因不是因为怪异的设计或者美不胜收的景色,而是大家都很好奇这个桥的坡度到底有多陡?陡峭堪比过山车!

不少人给这座桥赋予了极不靠谱的数据,实际上这个坡的斜率仅为6.1%,如果按咱们口头常用单位来讲还不足4度。 大家看到这个图片后一定很吃惊,那我们要想了解这副图的背景故事,我们就要来学习这里出现的数据6.1%和4度代表了什么? (导入课题锐角三角函数) 二、推进新课 1.交流合作 【问题1】在图23-2中有两个直角三角形,直角边AC与A 1C 1 表示水平面,斜 边AB与A 1B 1 分别表示两个不同的坡面,哪个更陡?你是怎么判断的? 学生可由水平长度相等,铅直高度不同进行判断. 【问题2】当水平长度和铅直高度都不相等时,类似的在图23-3中,坡面AB 与A 1B 1 哪个更陡?你又是如何判断呢?

公开课教案解直角三角形

解直角三角形复习课教案 教学目标: 1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三 角形的两个锐角互余及锐角三角函数解直角三角形. 2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数 解直角三角形,逐步培养学生分析问题、解决问题的能力. 3、渗透数形结合的数学思想,培养学生良好的学习习惯 思想方法: 1、数形结合思想:用锐角三角函数解直角三角形,主要是从“数”上去研 究的.在具体解题时,要画出它的平面或截面示意图,按照图中边角之 间的关系去进行数的运算. 2、方程的思想:在解直角三角形时,常常通过设未知数列方程求解,使 问题变得清楚明了. 3、转化的思想:在求三角函数值和解直角三角形时,常利用三角函数的 意义,可以实现边和角的互化,利用互余角的三角函数关系可以实现“正弦”与“余弦”的互化. 教学重点: 1、锐角三角函数 2、特殊角的三角函数值 3、直角三角形的解法. 教学难点: 三角函数在解直角三角形中的灵活运用. 四、考题透视 锐角三角函数在中考中考查的难度不大,分数约4-6分,主要以填空题、选择题出现;解直角三角形方面的应用题历来都是中考的重点和热点内容之一,分数达到8~12分不等,分值占的比例较大,应引起足够的重视。 考点一:锐角三角函数的概念 例1(郴州市2007年)如图1在直角三角形 B 3

ABC 中,则______. 考点二:特殊角的三角函数值的计算 例2:计算 考点三:解非直角三角形 例3 :如图所示,已知:在△ABC中,∠A=60,∠B=45,AB=8.求△ABC的面积(结果可保留根号)。 考点四:解直角三角形的实际问题 例4、一高速铁路即将动工,工程需要测量某一段河的宽度。如图1,一测量员在河岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°. (参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48); 1)求所测之河的宽度 2)除图1的测量方案外,请你再设计一种测量江宽的方案,并在图2中画出图形。

锐角三角函数教学设计

6.1锐角三角函数⑴教学设计 一.教学目标: 1.知识与技能: 了解三角函数的概念,理解正弦、余弦、正切的概念; 掌握在直角三角形之中,锐角三角函数与两边之比的对应关系; 掌握锐角三角函数的概念并会求一个锐角的三角函数值. 2.过程与方法: ⑴ 通过经历三角函数概念的形成过程,丰富学生的数学活动经验; ⑵ 渗透数形结合的数学思想方法. 3.情感态度与价值观: ⑴ 让学生感受数学来源于生活又应用于生活,体验数学的生活化经历; ⑵ 培养学生主动探索,敢于实践,勇于发现,合作交流的精神. 二.重点、难点: 重点:锐角三角函数的概念. 难点:锐角三角函数概念的形成. 三.教学过程: (一)、创设情境,激趣设疑 通过创设“生活中测量塔的高度、山坡上修建的扬水站需要的水管 ”的情境,让学生思考利用直角三角形的边角关系能否求物体的高度和长度. 设计意图:从生活中的实例出发,设置疑问,激发学生的求知欲. (二)、合作探究,引出新知 1.实践:已知一个45°的∠A ,在角的一边上任意取一点B ,作BC ⊥AC 于点C.量出BC ,AB 的长度(精确到1毫米).计算AB BC 的值(结果保留2个有效数字),并将所得的结果与你同伴所得的结果进行比较. 设计意图:通过动手操作、合作、交流,直观感知比值AB BC 非常接近,大小和点B 的位置无关,并由此猜想比值是个定值。在活动的过程中,教给学生探

究的常用方法:观察、测量、比较、归纳、猜想等,有效培养学生的探究能力,丰富学生的数学活动经验。同时学生的实践活动,让他们经历了三角函数的概念的初步形成过程. 教师引导学生验证:对于给定一锐角α,比值AB BC 是一定值. ① 利用相似三角形的性质,说明“对于每一个确定的锐角α,在角的一边上任取一点B,作BC ⊥AC 于点C,比值AB BC 都是一个确定的值,与点B 在角的边上的位置无关”. ② 出示几何画板,演示对应于不同大小的角度,总有相应的比值AB BC ,让学生直观感知比值AB BC 与角度的对应. 设计意图:利用相似三角形对应边成比例的性质,验证第一环节的猜想是正 确的,即:当角度确定时,比值AB BC 是个定值.同时利用几何画板的直观演示,让学生 进一步感知:对应于每一个不同的角度, AB BC 都会有一个确定的值.至此,锐角三角函数的概念已是呼之欲出. 教师引导学生发现当锐角α确定时,AB AC ,AC BC 的比值也是定值,并说明理由. 设计意图: 先给出比值AB BC 是定值的验证,然后类比2的验证过程得出另两个比值也是定值,这样的设计可以降低难度,并渗透“类比”的数学思想方法和探究方法. 4.新知应用、变式1、变式2于学生掌握新知,为本节课的后续学习打下基础。 5.教师引导学生说出锐角α与AB BC ,AB AC ,AC BC

锐角三角函数全章教案设计

锐角三角函数全章教案 单元要点分析 内容简介 本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容.第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用. 相似三角形和勾股定理等是学习本章的直接基础. 本章属于三角学中的最基础的部分内容,而高中阶段的三角内容是三角学的主体部分,无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础.教学目标 1.知识与技能 (1)通过实例认识直角三角形的边角关系,即锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值. (2)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角. (3)运用三角函数解决与直角三角形有关的简单的实际问题. (4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题. 2.过程与方法 贯彻在实践活动中发现问题,提出问题,在探究问题的过程中找出规律,再运用这些规律于实际生活中. 3.情感、态度与价值观 通过解直角三角形培养学生数形结合的思想.

重点与难点 1.重点 (1)锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值也很重要,?应该牢牢记住. (2)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题. 2.难点 (1)锐角三角函数的概念. (2)经历探索30°,45°,60°角的三角函数值的过程,发展学生观察、分析,?解决问题的能力. 教学方法 在本章,学生首次接触到以角度为自变量的三角函数,初学者不易理解.?讲课时应注意,只有让学生正确理解锐角三角函数的概念,才能掌握直角三角形边与角之间的关系,才能运用这些关系解直角三角形.故教学中应注意以下几点: 1.突出学数学、用数学的意识与过程.三角函数的应用尽量和实际问题联系起来,减少单纯解直角三角形的问题. 2.在呈现方式上,突出实践性与研究性,三角函数的意义要通过问题经出,?再加以探索认识. 3.对实际问题,注意联系生活实际. 4.适度增加训练学生逻辑思维的习题,减少机械操作性习题,?增加探索性问题的比重.课时安排 本章共分9课时. 28.1 锐角三角函数4课时

锐角三角函数全章教案

28.1.1锐角三角函数 初三备课组 教学目标 1.知识与技能 (1)了解锐角三角函数的概念,能够正确应用sinA、表示直角三角形中两边的比;记忆30°、45°、60°的正弦函数值,并会由一个特殊角的三角函数值说出这个角; (2)能够正确地使用计算器,由已知锐角求出它的三角函数值,?由已知三角函数值求出相应的锐角. 2.过程与方法 通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力. 3.情感、态度与价值观 引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重点与难点 1.重点:正弦三角函数概念及其应用. 2.难点:使学生知道当锐角固定时,它的对边与斜边的比值也是固定的这一事实.用含有几个字母的符号组sinA表示正弦,正弦概念. 教学过程 情境引入 比萨斜塔1350 年落成时就已倾斜,其塔顶中心点偏离垂直中心线2.1 m.至今,这座高54.5 m 的斜塔仍巍然屹立. 你能用“塔身中心线与垂直中心线所成的角θ”来描述比萨斜塔的倾斜程度吗? 问题1为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35 m,需要准备多长的水管? 这个问题可以归结为: 在Rt△ABC 中,∠C=90°,∠A=30°,BC=35 m, 求AB. 在上面的问题中,如果出水口的高度为50 m,那么需要准备多长的水管? 思考:由这些结果,你能得到什么结论? 结论:在直角三角形中,如果一个锐角的度数是30°,那么不管三角形的大小如何,这个角的对边与斜 边的比值是一个固定值,为0.5 . 问题2:如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A 的对边与斜边的比. B

(优质课)锐角三角函数教案

教学设计: §28.1 锐角三角函数 授课人:和金平 编号: 48号

§28.1 锐角三角函数(一) 一、教学目标: 1、理解直角三角形中锐角正弦函数的意义,并会求锐角的正弦值; 2、掌握根据锐角的正弦值及直角三角形的一边,求直角三角形其他边长的方法; 3、经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究能力。 教学重点: 理解正弦(sinA)概念,掌握当直角三角形的锐角固定时,它的对边与斜边的比值是固定值.教学难点: 在直角三角形中当锐角固定时,它的对边与斜边的比值是固定值的事实。 二、教学过程: 1、创设情景,提出问题:(PPT演示) 在唐僧师徒取经的路上,遇到了一座山,这座山有多高呢?这可难住了唐僧。大徒弟孙悟空目测山的顶部,视线与水平线的夹角为30度,然后从地面飞到山顶,路程是1000米。 你能帮孙悟空计算出山的高度吗? 1000米 B A C 情境探究: 分析:这个问题可以归结为,在Rt△ABC中,∠C=90°,∠A=30°,AB=1000m,求BC 根据“在直角三角形中,30°角所对的边等于斜边的一半”,即 可得BC=AB =500m,也就是说,这座山的高度是500m 思考1:在上面的问题中,如果孙悟空从山底部飞到山顶1500米,那么山的高度是多少? 可得B’C =AB’ =750m 仍有 1 2 A BC AB ∠ == 的对边 斜边 1 2 ''1 , A B C ∠ == 的对边 1 2

结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角 的对边与斜边的比值都等于 思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?如果是,是多少? 在Rt△ABC 中,∠C =90°,由于∠A =45°,所以 Rt△ABC 是等腰直角三角形,假设 BC= ,由勾股定理得: A 因此 C B 45°时,不管这个直角三角形的大小如何,这个角的对 边与斜边的比都等于从上面这两个问题的结论中可知,在一个Rt △ABC 中,∠C=90° 当∠A=30°时,∠A 的对边与斜边的比都等于1 2 ,是个固定值; 当∠A=45°时,∠A ,也是一个固定值. 2、【探究】当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 任意画Rt△ABC 和Rt△A’B’C ,使得∠C =∠C ’=90°,∠A =∠A’= , 那么 与 有什么关系.你能解释一下吗? 由于∠C =∠C ’=90°, ∠A =∠A ’= 所以Rt△ABC ∽ Rt△A’B’C’ 【为了更直观地验证这一结论,教师几何画板演示:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比不变;当锐角A 的度数增大时,不管三∠A 的对边与斜边的比值变大。】 1 2 a 22222 22AB AC BC BC a =+==AB =2BC AB ===a a 2 αAB BC ' '' 'B A C B α,'''' BC AB B C A B ∴=B'C' .AB '' BC A B =即

相关主题